Патенты автора Ибрагимов Наиль Габдулбариевич (RU)

Группа изобретений относится к способу соединения и разъединения труб для добычи битуминозной нефти и устройству для лазерной стыковой сварки и резки труб. Техническим результатом является повышение надежности колонны труб при закачке теплоносителя. Способ соединения и разъединения труб для добычи битуминозной нефти включает спуск труб в скважину с соединением лазерной сваркой и подъем труб с разъединением лазерной резкой за один оборот вокруг места соединения. При этом применяют трубы из низкоуглеродистой стали. Трубы оснащены по верхнему краю кольцевыми упорами, позволяющими при взаимодействии с устьевым оборудованием взаимодействовать лазерной сваркой и резкой так, чтобы луч лазера сварки или резки располагался в зоне стыка труб при вращении вокруг свариваемых или разрезаемых труб. При спуске в скважину первую стыкуемую трубу фиксируют устьевым оборудованием от осевого перемещения и поворота, ограничивая вылет из скважины ее кольцевым упором. Вторую трубу стыкуют торец в торец с первой трубой. После этого область стыка охватывают устройством лазерной сварки, ориентируясь на упор первой трубы, с возможностью вращения со скоростью, позволяющей качественно и герметично сварить стыкуемые трубы. При первом вращении устройства лазерной сварки производят контроль расположения стыка. При втором вращении сваривают лазером стык труб, после чего производят обследование качества сварного шва. Трубы спускают и вторую трубу фиксируют благодаря ее кольцевому упору в устьевом оборудовании. Процесс сварки труб повторяют до спуска всех свариваемых труб в скважину. При извлечении из скважины труб первую с края трубу извлекают, а вторую фиксируют устьевым оборудованием от осевого перемещения и поворота, ограничивая вылет из скважины ее кольцевым упором. После этого область стыка охватывают устройством лазерной резки, ориентируясь на упор второй трубы, с возможностью вращения со скоростью, позволяющей качественно разрезать стыкуемые трубы. При вращении устройства лазерной резки разрезают лазером трубы. Первую трубу отправляют на стеллажи для труб, а вторую извлекают из скважины. Фиксируют следующую трубу в устьевом оборудовании. Процесс резки труб повторяют до извлечения необходимого количества труб из скважины. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение при получении дистиллята в условиях нефтепромысла. Способ получения дистиллята включает разделение продукции на фракции в ректификационной колонне, направление широкой фракции легких углеводородов из ректификационной колонны в теплообменник, охлаждение до температуры, достаточной для конденсации, сепарирование, возврат части широкой фракции легких углеводородов в верхнюю часть ректификационной колонны, направление остальной части на склад, способ отличается тем, что широкую фракцию углеводородов направляют из ректификационной колонны в дополнительную малую ректификационную колонну, где жидкие углеводороды отделяют от газообразных углеводородов, получая дистиллят, затем дистиллят нагревают в испарителе и направляют обратно в дополнительную малую ректификационную колонну в зону массобмена жидких и газообразных углеводородов, где утяжеляют жидкую фракцию углеводородов за счет дополнительного отделения газообразных углеводородов и легкокипящих жидких углеводородов, по мере накопления утяжеленного дистиллята в дополнительной малой ректификационной колонне балансовое количество дистиллята направляют на охлаждение в теплообменнике, отделяют от дистиллята воду и газ в буферно-сепарационной емкости и направляют дистиллят в накопительную емкость, где отделяют газ, накапливают дистиллят и в последующем отправляют потребителю, при этом газообразные углеводороды из верха дополнительной малой ректификационной колонны, буферно-сепарационной емкости и накопительной емкости направляют в систему газосбора, а жидкие легкокипящие углеводороды из дополнительной малой ректификационной колонны подают в шлемовую трубу ректификационной колонны и включают в технологическую схему конденсации широкой фракции легких углеводородов. Технический результат - увеличение выхода дистиллята повышенной плотности. 1 ил., 1 пр.

Группа изобретений относится к нефтегазодобывающей промышленности, в частности к средствам эксплуатации скважин с горизонтальными стволами, в том числе с применением тепловых методов. Установка включает два хвостовика разной длины, сообщенные с входом насоса, причем один из хвостовиков оснащен боковым каналом с управляемым золотниковым клапаном, соединенным штоком с поршнем силового цилиндра, внутренняя полость которого сообщена трубкой с поверхностью для перемещения избыточным давлением поршня, сжатия возвратной пружины и перекрытия бокового канала с отсечением добываемого флюида из скважины. Для возврата в первоначальное состояние поршня вместо пружины может служить давление жидкости на выходе насоса, для этого другая полость цилиндра может быть снабжена другой трубкой, которая сообщена с выходом насоса. Хвостовики спущены в скважину параллельно, короткий из них оснащен управляемым клапаном, а длинный снабжен входом в удаленной зоне горизонтального ствола скважины. Длинный хвостовик может быть сообщен с входом насоса через переточный канал, соединенный с корпусом золотникового клапана с возможностью открытия при перекрытии бокового канала короткого хвостовика, внутрь скважины может быть спущен дополнительный хвостовик, сообщающий вход насоса со средней зоной горизонтального ствола. Поршень может быть подпружинен двумя пружинами, одна из которых выполнена предварительно сжатой примерно до середины рабочего хода поршня. Технический результат заключается в повышении эффективности добычи нефти одним насосом из разных интервалов горизонтального ствола скважины. 2 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к способам разобщения водоносных и нефтеносных интервалов ствола горизонтальной скважины. При реализации способа проводят спуск с промывкой в пробуренную необсаженную эксплуатационной колонной горизонтальную часть ствола скважины по меньшей мере одного скважинного фильтра в составе хвостовика, оборудованного срезаемыми заглушками. Далее проводят герметизацию скважинного пространства между хвостовиком и стенками скважины пакером или пакерами. Затем разрушают заглушки внутри хвостовика специальным инструментом, отсоединяют хвостовик от транспортной колонны, которую извлекают на поверхность. Проводят освоение скважины, спуск подземного оборудования и ввод скважины в эксплуатацию. Пакер используют водонабухающий, или нефтенабухающий, или водонефтенабухающий. Перед спуском хвостовика фильтры дополнительно оборудуют нижним пакером, проводят исследование в открытом стволе скважины на наличие и определение интервалов притоков воды, калибровку открытого ствола с шаблонированием и определяют участки открытого ствола скважины без каверн в стенках скважины с двух сторон от интервалов водопритоков. С учетом этих исследований собирают хвостовик и спускают в скважину. Фильтры располагают вне интервалов водопритоков. Пакеры располагают в определенных участках открытого ствола скважины, а именно с двух сторон от интервалов водопритоков. Верхний пакер располагают в обсаженной части ствола скважины. После чего осуществляют замену скважинной жидкости в стволе скважины на жидкость, обеспечивающую наиболее быстрое набухание пакеров. После технологической выдержки, достаточной для набухания пакеров, спрессовывают пространство между эксплуатационной и транспортной колоннами труб нагнетанием жидкости, обеспечивающей наиболее быстрое набухание пакеров. В случае отсутствия герметичности повторяют замену скважинной жидкости в стволе скважины на жидкость, обеспечивающую наиболее быстрое набухание пакеров, технологическую выдержку и опрессовку до полного отсутствия циркуляции в скважине или приемистости в межтрубном пространстве. При наличии водопритока со стороны забоя скважины низ хвостовика оборудуют клапаном, пропускающим жидкость в направлении из хвостовика в скважину. Техническим результатом является повышение эффективности изоляции обводненных интервалов открытого ствола горизонтальной скважины за счет объективного контроля установки и активации (посадки) пакеров. 1 з.п. ф-лы, 8 ил.

Изобретение относится к нефтяной промышленности и может найти применение на нефтепромысле при очистке попутной воды и прочих технологических жидкостей. Устройство включает корпус, отвод, сетку в отводе, крышку на отводе и уплотнение крышки. Корпус и отвод выполнены цилиндрическими, цилиндрический отвод вварен в цилиндрический корпус под углом 40-50 градусов к оси цилиндрического корпуса со стороны, обратной потоку очищаемой воды. В качестве сетки использована сетка Рабица из пружинной проволоки, свернутая в цилиндр с нахлестом от четверти до половины поверхности цилиндра с наружным диаметром, соответствующим внутреннему диаметру отвода, и длиной, равной длине от крышки до внутренней поверхности корпуса, дальней от крышки, с образованием части сетки, касающейся дальней стенки корпуса, и частично выступающей из отвода части сетки, расположенной первой по направлению потока очищаемой пластовой воды. Повышается работоспособность фильтра. 1 ил.

Изобретение относится к нефтяной промышленности и может найти применение при ремонте нефтепромыслового трубопровода. При ремонте на участке трубопровода выкапывают 3 ямы. В ямах вскрывают трубопровод. В средней яме в трубопровод помещают 2 резиновые торпеды, в третью яму помещают одну торпеду. Обвязывают, герметизируют трубопровод и устанавливают направляющую для спуска гибкой трубы в трубопровод. Закачивают технологическую жидкость и прокачивают резиновые торпеды в средней яме в противоположных направлениях с выходом одной торпеды в первую яму и остановки второй торпеды на участке трубопровода. В третьей яме в сторону скважины спускают гибкую трубу в трубопровод с постоянной циркуляцией технологической жидкости через гибкую трубу. На выходе в желобную систему отбирают технологическую жидкость с загрязнениями. Проводят гибкую трубу попеременно в обе стороны трубопровода с определением метража спущенной гибкой трубы до достижения посадки, определяемой по росту давления циркулируемой технологической жидкости на участке трубопроводов с торпедой и определением чистоты участка трубопровода, не содержащего торпеду. Поднимают гибкую трубу и демонтируют направляющую. Промывают технологической жидкостью в обратном направлении участок трубопровода от скважины с выходом третьей торпеды в третью яму. Вскрывают участок трубопровода в месте посадки гибкой трубы, вырезают участок трубопровода с окаменевшими отложениями, извлекают из него торпеду. Заменяют участок трубопровода на новый участок, демонтируют все направляющие для спуска гибкой трубы, восстанавливают целостность и запускают трубопровод в работу. Технический результат: ремонт трубопровода практически любой кривизны без разбуривания внутреннего пространства трубопровода. 1 ил.

Изобретение относится к машиностроению и может найти применение в нефтяной промышленности при изготовлении крупноразмерных аппаратов для хранения и подготовки нефти. Стенд содержит секции передвижной роликоопоры, установленные на рельсовом пути с возможностью перемещения по нему вдоль продольной оси симметрии стенда, отдельную секцию приводной редукторной роликоопоры и по меньшей мере одну секцию приводных роликоопор, при этом он снабжен семафорным прижимом, установленным на краю крайней приводной роликоопоры, и устройством для совмещения обечаек, установленным со стороны, противоположной секции передвижной роликоопоры, с возможностью перемещения вдоль продольной оси симметрии стенда по рельсам, смещенным от продольной оси симметрии стенда на заданную величину. Использование изобретения позволяет механизировать процесс сборки обечаек и повысить точность их соединения. 12 ил.

Изобретение относится к машиностроению и может найти применение в нефтяной промышленности при изготовлении крупноразмерных аппаратов для хранения и подготовки нефти. Стенд содержит секции передвижной роликоопоры, установленные на рельсовом пути с возможностью перемещения по нему вдоль продольной оси симметрии стенда, отдельную секцию приводной редукторной роликоопоры и по меньшей мере одну секцию приводных роликоопор, при этом он снабжен семафорным прижимом, установленным на краю крайней приводной роликоопоры, и устройством для совмещения обечаек, установленным со стороны, противоположной секции передвижной роликоопоры, с возможностью перемещения вдоль продольной оси симметрии стенда по рельсам, смещенным от продольной оси симметрии стенда на заданную величину. Использование изобретения позволяет механизировать процесс сборки обечаек и повысить точность их соединения. 12 ил.
Изобретение относится к нефтяной промышленности и может найти применение при очистке скважины от асфальтосмолопарафиновых, сульфидсодержащих, солевых и прочих отложений. При удалении отложений из скважины, снабженной электроцентробежным насосом, проводят закачку горячей нефти в затрубное пространство и ее циркуляцию через колонну насосно-компрессорных труб. Перед закачкой нефти в затрубное пространство производят запуск электроцентробежного насоса, а при закачке горячей нефти прокачивают третью часть объема подогретой нефти с температурой 40°С с расходом не более 6 л/с и давлением не более 4 МПа, после чего прокачивают оставшиеся 2/3 объема горячей нефти с температурой, близкой к 80°С, при этом последние 2 м3 горячей нефти прокачивают в режиме естественного охлаждения, после чего скважину оставляют в работе. Повышается эффективность очистки скважины.
Изобретение относится к нефтяной промышленности и может найти применение при очистке скважины, снабженной штанговым глубинным насосом от асфальтосмолопарафиновых, сульфидсодержащих, солевых и прочих отложений. При осуществлении способа увеличивают число качаний станка-качалки до состояния, при котором не происходит зависания колонны штанг, останавливают станок-качалку, устанавливают балансир станка-качалки в верхнее положение, открывают задвижки на трубном и затрубном пространстве, закачкой технологической жидкости насосным агрегатом, не превышая давления, допустимого на эксплуатационную колонну, определяют наличие циркуляции. При закачке нефти в затрубное пространство подогревают нефть до температуры 40-45°C и прокачивают третью часть объема подогретой нефти с расходом не более 6 л/с и давлением не более 4 МПа, после чего нагревают нефть до температуры 80-100°C и прокачивают оставшиеся 2/3 объема горячей нефти. Последние 2 м3 горячей нефти прокачивают в режиме естественного охлаждения. Повышается эффективность очистки скважины от отложений.
Изобретение относится к защите подземных сооружений и трубопроводов от электрохимической коррозии и может быть использовано для восстановления глубинных анодных заземлителей. Способ включает промывку заземлителя, послойную засыпку, уплотнение, увлажнение активатора в скважине и присоединение заземлителя к станции катодной защиты, при этом для доступа к заземлителю проводят очистку от грунта ствола скважины до верхнего электрода заземлителя, при промывке заземлителя закачку воды производят через газоотводную трубку, отбор воды с загрязнениями ведут через устье скважины, после чего продолжают закачку воды до момента прекращения излива воды через устье скважины, а перед засыпкой активатора проводят технологическую выдержку до осушения скважины, при этом в качестве активатора используют гранулы фракции до 5 мм токопроводящего материала с удельным электрическим сопротивлением не более 1·10-2 Ом·м. Технический результат: повышение эффективности восстановления работоспособности анодного заземлителя. 3 пр.

Изобретение относится к нефтяной и газовой промышленности, в частности к установкам улавливания и очистки сероводородосодержащего газа на нефтепромысле, и может быть использовано при нейтрализации сероводорода в выбросах резервуарного газа в условиях колеблющегося режима заполнения резервуара водонефтяной эмульсией. Серозатвор включает вертикальный цилиндрический корпус с размещенной внутри вертикальной трубой, штуцер подвода сырья, штуцер отвода газа, штуцер отвода серы. В корпусе соосно вертикальной трубе размещен стакан дном вверх от низа корпуса до высоты, не доходящей до верха корпуса, соединение вертикальной трубы и днища стакана выполнено герметично, вертикальная труба и стакан установлены эксцентрично в корпусе, серозатвор снабжен горизонтальным сепаратором с наклонным днищем и крышкой, соединенным с внутренним объемом стакана патрубком, вокруг горизонтального сепаратора выполнена рубашка, соединенная каналом с внутренним объемом корпуса с расположением патрубка внутри канала, штуцер подвода сырья выполнен соединенным с вертикальной трубой выше стакана, штуцер отвода газа соединен с вертикальной трубой выше штуцера подвода сырья, штуцер отвода серы выполнен соединенным с внутренним объемом горизонтального сепаратора вблизи нижней части наклонного днища, серозатвор дополнительно снабжен первым штуцером подвода теплоносителя, размещенным с возможностью подачи теплоносителя в нижнюю часть корпуса, вторым штуцером подвода теплоносителя, размещенным в нижней части рубашки, первым штуцером отвода теплоносителя, размещенным в верхней части корпуса, вторым штуцером отвода теплоносителя, размещенным в верхней части рубашки, вторым штуцером отвода газа в крышке горизонтального сепаратора, при этом площадь поперечного сечения вертикальной трубы и площадь поперечного сечения горизонтального сепаратора относятся как 1:(16-18). Изобретение обеспечивает сокращение уноса газа с серой. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для создания привода погружного электронасоса для подъема жидкости из нефтедобывающей скважины. Технический результат заключается в обеспечении охлаждения косинусного конденсатора и повышении надежности токоввода. Погружной электродвигатель включает корпус, статор, ротор, узел токоввода и модуль с косинусным конденсатором. Электрический разъем косинусного конденсатора размещен в нижней части модуля. Изолированный силовой проводник размещен в пазах статора и соединен с электрическим разъемом косинусного конденсатора и узлом токоввода погружного электродвигателя. Внутреннее пространство косинусного конденсатора изолировано от масла, а внутреннее пространство погружного электродвигателя, заполненное маслом, сообщено с пространством вокруг модуля. В погружном электродвигателе в качестве модуля может быть использована гильза основания погружного электродвигателя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение при очистке скважинной жидкости. Способ включает спуск в скважину и подъем из скважины фильтра очистки скважинной жидкости, содержащего фильтрующую сетку и щелевой патрубок. Спуск фильтра производят со скоростью, не допускающей налипания загрязнений на сетке и щелях при спуске. После спуска проводят технологическую выдержку в течение времени оседания взмученных загрязнений в интервале размещения фильтра. Подъем производят со скоростью, исключающей возможность продавливания загрязнений через сетку и щели за счет напора жидкости. Во время подъема проводят периодические остановки на время оседания загрязнений с сетки и щелей. Повышается эффективность очистки. 1 ил.

Изобретение относится к области трубопроводного транспорта и может быть использовано при строительстве трубопроводов различного назначения, транспортирующих агрессивные среды. Металлическую трубу футеруют пластмассовой оболочкой. Концы пластмассовой оболочки удаляют на длину, превышающую длину термической деструкции пластмассы от места сварки. Концы пластмассовой трубы закрепляют к внутренней поверхности концов металлической трубы расширением внутренних и наружных втулок. На концах трубы и на наружных торцах внутренних и наружных втулок изготавливают фаски, причем притупление под сварку выполняют только на внутренней втулке. На концах втулок в сборе выполняют конусный раструб. Расширение втулок осуществляют последовательным перемещением расширителя вдоль оси металлической трубы изнутри к упору. Упор имеет опорную поверхность с углом, равным углу фаски металлической трубы и втулок под сварку. Упор также имеет центральное отверстие, диаметр которого равен или больше наружного диаметра расширителя и внутреннего диаметра конусного раструба втулок на величину не более чем на толщину стенки внутренней втулки. Способ снижает стоимость изготовления металлической трубы с внутренней пластмассовой оболочкой и повышает надежность ее антикоррозионной защиты. 3 ил.

Изобретение относится к области трубопроводного транспорта и может быть использовано при строительстве трубопроводов различного назначения, транспортирующих агрессивные среды. Труба с внутренней пластмассовой оболочкой содержит концентрично расположенные на концах трубы и скрепленные с ней сборные защитные втулки. Сборные защитные втулки состоят из внутренних и наружных колец, причем наружные кольца изготовлены с толщиной стенки, не превышающей толщину пластмассовой оболочки. Внутреннее кольцо снабжено наружной фаской. На наружной поверхности, в районе пластмассовой оболочки, внутреннее кольцо имеет кольцевые проточки глубиной не менее 0,5 мм и не более 1/3 толщины внутреннего кольца. Кольцевые проточки снабжены на торцах фасками или в углах скруглениями. Толщина наружного кольца меньше толщины оболочки не более чем на 1/3. Наружные и внутренние кольца между собой изнутри трубы соединены сваркой. Труба с внутренней пластмассовой оболочкой снижает стоимость антикоррозионной защиты трубы, обеспечивает прочность сборных защитных втулок, обеспечивает необходимую герметичность и прочность зоны прижатия пластмассовой оболочки к стальной трубе. 3 ил.
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения. Техническим результатом является экономия электроэнергии и устранение коррозии зон трубопроводов возле электроизолирующих вставок. Способ эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения включает создание разности потенциалов между трубопроводами и заземлителями, электрическое разъединение пункта схождения трубопроводов и самих трубопроводов с помощью электроизолирующих вставок, измерение разности потенциалов между концами электроизолирующей вставки и/или измерения падения напряжения на электроизолирующей вставке, установку величины защитного потенциала, обеспечивающего необходимую длину защищаемой зоны, использование диэлектрического материала наружной изоляции трубопроводов, контроль герметичности трубопровода и целостности его наружной изоляции. Возле каждого трубопровода размещают стационарные измерительные неполяризующиеся электроды сравнения длительного действия и перпендикулярно оси трубопровода вспомогательные стальные датчики потенциала. Выполняют электрическую коммутацию трубопровода с завышенным значением потенциала с трубопроводом с заниженным значением потенциала и регулирование величины устанавливаемых потенциалов на обоих трубопроводах, периодическое определение потенциалов с использованием стационарных измерительных неполяризующихся электродов сравнения длительного действия и вспомогательных стальных датчиков потенциала на коммутируемых трубопроводах с идентификацией каждого измерения по времени и разрыв коммутации при возвращении защитного поляризационного потенциала трубопровода к нормальному значению, регулировку защитного потенциала в точке создания разности потенциалов между трубопроводами и заземлителями, по результатам периодического определения потенциалов с использованием стационарных измерительных неполяризующихся электродов сравнения длительного действия и вспомогательных стальных датчиков потенциала. 1 з.п. ф-лы.
Изобретение относится к нефтяной промышленности и может найти применение при извлечении пакера из скважины. При извлечении пакера из скважины открывают затрубную задвижку, производят натяжение инструмента и закачку под пакер жидкости, жидкость под пакер закачивают под давлением насыщения околоскважинной зоны, после насыщения околоскважинной зоны повышают давление до давления не более допустимого на эксплуатационную колонну. В качестве жидкости используют жидкость с плотностью 1,04-1,27 г/см3 или пластовую воду данного месторождения. В качестве жидкости может быть использован раствор поверхностно-активного вещества в пластовой воде данного месторождения или раствор поверхностно-активного вещества в воде с плотностью 1,04-1,1 г/см3. Повышается эффективность извлечения заклиненного пакера из скважины. 2 з.п. ф-лы.

Изобретение относится к нефтяной промышленности и может найти применение при очистке жидкости в стволе скважины от плавающего мусора и взвешенных частиц. Устройство включает щелевой патрубок, сетку, клапан, герметизатор межтрубного пространства скважины, муфту, корпус и цилиндрическое днище. Сетка размещена вокруг части щелевого патрубка со щелями. Щелевой патрубок и корпус закреплены нижними частями соответственно внутри и снаружи цилиндрического днища. Щелевой патрубок расположен внутри корпуса и соединен в верхней части выше щелей с корпусом подкосами. В качестве клапана использован клапан тарельчатого типа. Клапан и муфта размещены в верхней части щелевого патрубка. Герметизатор межтрубного пространства скважины размещен на наружной части цилиндрического днища. Отношение ширины щелей патрубка к ширине ячейки сетки составляет (3,5-5):(0,7-3,5). Повышается эффективность очистки скважинной жидкости. 1 ил.
Изобретение относится к области защиты металлов от коррозии. Способ ремонта системы защиты от коррозии трубопроводов куста скважин нефтяного месторождения, содержащей установки катодной защиты скважин и протекторной защиты трубопроводов, групповую замерную установку (ГЗУ), станции катодной защиты (СКЗ) и анодные заземлители, характеризуется тем, что на корпусе ГЗУ монтируют кабельные линии с подключением к каждому трубопроводу и блок совместной защиты трубопроводов (БСЗТ), кабельные выводы подключают к регулировочному плато БСЗТ, протекторно-защищенные трубопроводы через диоды и регулируемые сопротивления подключают к катодно-защищенным трубопроводам в БСЗТ, при этом в качестве СКЗ используют СКЗ и анодные заземлители, смонтированные на скважине для катодной защиты обсадной колонны скважины с трубопроводом, катодно-защищенный трубопровод используют в качестве «донора» для обеспечения тока защиты остальных трубопроводов, защитный потенциал которых снизился менее минимально допустимого -0,9 В или срок службы протекторов которых истек, проставляют вставки для электрического разобщения трубопроводов и пункта схождения трубопроводов, все трубопроводы подключают к БСЗТ и производят регулировку тока защиты на трубопроводах, значения защитных потенциалов на которых превышают -1,05 В, производят снижение и перераспределение токов защиты между трубопроводами, протекторную защиту отключают при потенциале защиты менее -0,9 В, потенциал на вновь подключаемых трубопроводах устанавливают (-0,9) - (-1,05) В, при подключении одного из каналов БСЗТ к корпусу пункта схождения трубопроводов и трубопроводам до перемычки потенциал устанавливают порядка (-0,7) - (-0,8) В и регулируют величину токов утечек. Технический результат: устранение коррозии околошовных зон трубопроводов и повышение степени антикоррозионной защиты трубопроводов.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при одновременно-раздельной эксплуатации добывающих скважин. Техническим результатом является определение герметичности скважинного оборудования. При определении герметичности скважинного оборудования при одновременно-раздельной добыче жидкостей из скважины штанговым глубинным насосом и электроцентробежным насосом определяют динамический уровень в межтрубном пространстве верхнего объекта, снимают динамограмму штангового глубинного насоса. Далее снимают параметры работы электроцентробежного насоса с телеметрической системой, отбирают контрольную пробу жидкости из выкидной линии на обводненность, убеждаются в исправности и герметичности устьевой арматуры, останавливают штанговый глубинный насос верхнего объекта. Затем как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса производят опрессовку колонны насосно-компрессорных труб с помощью электроцентробежного насоса нижнего объекта с прослеживанием изменения давления на буфере при работе на закрытую задвижку. После остановки электроцентробежного насоса следят за показаниями работы установки по станции управления, при наличии аварийного сигнала “турбинное вращение” делают заключение о сливе жидкости из колонны насосно-компрессорных труб и о негерметичности обратного клапана электроцентробежного насоса. При идентичных темпах увеличения и падения давления на буфере скважины в различных положениях наземного привода штангового глубинного насоса и темпе падения давления в пределах не более 2 МПа за 15 минут делают заключение о герметичности коммутатора и колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины. При темпе увеличения давления на буфере скважины в верхнем положении наземного привода штангового глубинного насоса ниже и темпе падения выше, чем в нижнем положении привода штангового глубинного насоса, делают заключение о негерметичности манжетного крепления в замковой опоре коммутатора. Если в верхнем положении наземного привода штангового глубинного насоса электроцентробежный насос не развивает давления на буфере скважины, а в нижнем развивает и происходит подъем уровня жидкости в затрубном пространстве, то делают заключение о выходе манжетного крепления штангового глубинного насоса из замковой опоры коммутатора. Если как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса темп падения давления на буфере более 2 МПа за 15 минут, то делают заключение о негерметичности коммутатора и/или колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины. Далее запускают штанговый глубинный насос и электроцентробежный насос в работу, не останавливая штангового глубинного насоса верхнего объекта, останавливают работу электроцентробежного насоса нижнего объекта. Сразу после остановки электроцентробежного насоса нижнего объекта прослеживают уровень жидкости в межтрубном пространстве, а также периодически записывают изменение давления под пакером по показаниям телеметрической системы на табло контроллера станции управления. При стабильно повышающемся уровне жидкости делают заключение о негерметичности, а при неизменном уровне жидкости делают заключение о герметичности пакера или участка колонны насосно-компрессорных труб от электроцентробежного насоса до пакера. 2 ил.
Изобретение относится к области защиты металлов от коррозии. Способ ремонта системы защиты от коррозии трубопроводов куста скважин нефтяного месторождения, содержащей установки катодной защиты скважин и протекторной защиты трубопроводов, групповую замерную установку (ГЗУ), станции катодной защиты (СКЗ) и анодные заземлители, характеризуется тем, что на корпусе ГЗУ монтируют кабельные линии с подключением к каждому трубопроводу и блок совместной защиты трубопроводов (БСЗТ), кабельные выводы подключают к регулировочному плато БСЗТ, протекторно-защищенные трубопроводы через диоды и регулируемые сопротивления подключают к катодно-защищенным трубопроводам в БСЗТ, при этом в качестве СКЗ используют СКЗ и анодные заземлители, смонтированные на скважине для катодной защиты обсадной колонны скважины с трубопроводом, катодно-защищенный трубопровод используют в качестве «донора» для обеспечения тока защиты остальных трубопроводов, защитный потенциал которых снизился менее минимально допустимого -0,9 В или срок службы протекторов которых истек, проставляют вставки для электрического разобщения трубопроводов и пункта схождения трубопроводов, все трубопроводы подключают к БСЗТ и производят регулировку тока защиты на трубопроводах, значения защитных потенциалов на которых превышают -1,05 В, производят снижение и перераспределение токов защиты между трубопроводами, протекторную защиту отключают при потенциале защиты менее -0,9 В, потенциал на вновь подключаемых трубопроводах устанавливают (-0,9) - (-1,05) В, при подключении одного из каналов БСЗТ к корпусу пункта схождения трубопроводов и трубопроводам до перемычки потенциал устанавливают порядка (-0,7) - (-0,8) В и регулируют величину токов утечек. Технический результат: устранение коррозии околошовных зон трубопроводов и повышение степени антикоррозионной защиты трубопроводов.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при одновременно-раздельной эксплуатации добывающих скважин. Техническим результатом является определение герметичности скважинного оборудования. При определении герметичности скважинного оборудования при одновременно-раздельной добыче жидкостей из скважины штанговым глубинным насосом и электроцентробежным насосом определяют динамический уровень в межтрубном пространстве верхнего объекта, снимают динамограмму штангового глубинного насоса. Далее снимают параметры работы электроцентробежного насоса с телеметрической системой, отбирают контрольную пробу жидкости из выкидной линии на обводненность, убеждаются в исправности и герметичности устьевой арматуры, останавливают штанговый глубинный насос верхнего объекта. Затем как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса производят опрессовку колонны насосно-компрессорных труб с помощью электроцентробежного насоса нижнего объекта с прослеживанием изменения давления на буфере при работе на закрытую задвижку. После остановки электроцентробежного насоса следят за показаниями работы установки по станции управления, при наличии аварийного сигнала “турбинное вращение” делают заключение о сливе жидкости из колонны насосно-компрессорных труб и о негерметичности обратного клапана электроцентробежного насоса. При идентичных темпах увеличения и падения давления на буфере скважины в различных положениях наземного привода штангового глубинного насоса и темпе падения давления в пределах не более 2 МПа за 15 минут делают заключение о герметичности коммутатора и колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины. При темпе увеличения давления на буфере скважины в верхнем положении наземного привода штангового глубинного насоса ниже и темпе падения выше, чем в нижнем положении привода штангового глубинного насоса, делают заключение о негерметичности манжетного крепления в замковой опоре коммутатора. Если в верхнем положении наземного привода штангового глубинного насоса электроцентробежный насос не развивает давления на буфере скважины, а в нижнем развивает и происходит подъем уровня жидкости в затрубном пространстве, то делают заключение о выходе манжетного крепления штангового глубинного насоса из замковой опоры коммутатора. Если как в нижнем, так и в верхнем положении наземного привода штангового глубинного насоса темп падения давления на буфере более 2 МПа за 15 минут, то делают заключение о негерметичности коммутатора и/или колонны насосно-компрессорных труб в интервале от электроцентробежного насоса до устья скважины. Далее запускают штанговый глубинный насос и электроцентробежный насос в работу, не останавливая штангового глубинного насоса верхнего объекта, останавливают работу электроцентробежного насоса нижнего объекта. Сразу после остановки электроцентробежного насоса нижнего объекта прослеживают уровень жидкости в межтрубном пространстве, а также периодически записывают изменение давления под пакером по показаниям телеметрической системы на табло контроллера станции управления. При стабильно повышающемся уровне жидкости делают заключение о негерметичности, а при неизменном уровне жидкости делают заключение о герметичности пакера или участка колонны насосно-компрессорных труб от электроцентробежного насоса до пакера. 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение при очистке жидкости в стволе скважины от плавающего мусора и взвешенных частиц. Техническим результатом является повышение эффективности очистки скважинной жидкости. Фильтр для очистки скважинной жидкости включает щелевой патрубок, сетку, герметизатор межтрубного пространства скважины и муфту. Щелевой патрубок выше щелей перекрыт заглушкой. Фильтр содержит корпус и цилиндрическое днище, при этом сетка размещена вокруг части щелевого патрубка со щелями на расстоянии от щелевого патрубка. Снизу сетка опирается на цилиндрическое днище, сверху пространство между сеткой и щелевым патрубком закрыто перегородкой. Пространство между сеткой и корпусом сверху открыто, а снизу перекрыто цилиндрическим днищем. Щелевой патрубок и корпус закреплены нижними частями соответственно внутри и снаружи цилиндрического днища. Щелевой патрубок расположен внутри корпуса и соединен в верхней части выше щелей с корпусом подкосами, муфта размещена в верхней части щелевого патрубка. Герметизатор межтрубного пространства скважины размещен на наружной части цилиндрического днища, при этом отношение ширины щелей патрубка к ширине ячейки сетки составляет (3,5-5):(0,7-3,0). 1 ил.

Изобретение относится к нефтяной промышленности и может найти применение при очистке скважины с пакером. Устройство включает патрубок, закрепленные на патрубке верхнюю пару металлических конусных колец, обращенных основанием конуса вверх, с закрепленным между конусными кольцами герметизатором в виде конусного кольца с отверстиями по внешнему краю, нижнюю пару металлических конусных колец, обращенных основанием конуса вниз, с закрепленным между конусными кольцами герметизатором в виде кольца с отверстиями по внутреннему краю, ребра жесткости, поддерживающие пары металлических конусных колец. Отношение диаметров отверстий в герметизаторе верхней пары металлических конусных колец и отверстий в нижней паре металлических конусных колец составляет (6-10):(1-4) мм соответственно. Отверстия располагают из расчета равенства расстояния между соседними отверстиями. Исключается эффект поршня при подъеме и спуске, обеспечивается возможность промывки, перелива скважинной жидкости при подъеме. 1 ил.

Изобретение относится к нефтяной промышленности, в частности к защите скважинных пакеров от шлама. Устройство включает патрубок, закрепленные на патрубке пары металлических колец, поддерживаемые ребрами жесткости, размещенные в каждой паре металлических колец между металлическими кольцами верхний и нижний герметизаторы межтрубного пространства в виде плоского кольца, отверстия в каждой паре металлических колец и герметизаторе. Количество отверстий в верхней и нижней парах металлических колец и герметизаторах одинаковое. Отверстия расположены на диаметрах, углы между которыми одинаковые. Пары металлических колец и герметизаторы установлены так, что в проекции на горизонтальную плоскость диаметры, на которых находятся отверстия в верхней паре металлических колец и герметизаторе и нижнем металлическом кольце и герметизаторе, расположены под углом друг к другу, равным половине угла между соседними диаметрами одной пары металлических колец и герметизатора. Отношение диаметров отверстий верхней пары металлических колец и герметизатора к диаметрам отверстий нижней пары металлических колец и герметизатора составляет (6-10):(1-4) мм соответственно, при этом отверстия располагают из расчета равенства расстояния между соседними отверстиями, между каждым отверстием и краем герметизатора и патрубком. Исключается эффект поршня, повышаются функциональные возможности. 2 ил.
Изобретение относится к нефтедобывающей промышленности и может найти применение при интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами. Технический результат - повышение эффективности кислотной обработки скважины за счет создания гидродинамической связи с пропластками, не охваченными кислотным воздействием. Способ заканчивания горизонтальной скважины включает спуск колонны насосно-компрессорных труб с пусковыми муфтами и с воронкой на конце, размещение воронки в интервале башмака эксплуатационной колонны, спуск гибкой безмуфтовой трубы с гидромониторной насадкой на конце внутри колонны насосно-компрессорных труб, ввод гидромониторной насадки в горизонтальный необсаженный ствол скважины и размещение на забое скважины, при открытой межтрубной задвижке на устье скважины прокачку раствора кислоты с созданием расхода, обеспечивающего эффект «резания» породы, при открытой затрубной задвижке по безмуфтовой трубе заполнение горизонтального ствола скважины водным раствором поверхностно-активного вещества, закрытие затрубной задвижки и продавливание раствора поверхностно-активного вещества по безмуфтовой трубе в пласт, закрытие задвижки на трубном пространстве гибкой безмуфтовой трубы, при закрытом межтрубном и трубном пространстве по затрубному пространству продавку раствора кислоты, находящегося в стволе скважины, в пласт со ступенчатым подъемом давления и выдержкой на каждой ступени, проведение технологической выдержки для реакции раствора кислоты с породой, промывку ствола скважины, подъем гибкой безмуфтовой трубы из скважины, прокачку инертного газа по затрубному пространству с отбором жидкости по колонне насосно-компрессорных труб, закачку в скважину жидкости глушения, освоение скважины. Причем предварительно в горизонтальном стволе размещают компоновку с долотом, равным диаметру горизонтального ствола, с приводом, промывают горизонтальный ствол скважины с вращением и расхаживанием компоновки прямой промывкой 0,1-0,3%-ным раствором поверхностно-активного вещества в пластовой воде в объеме не менее 25 м3 до чистой воды, поднимают компоновку в вертикальный ствол скважины и выдерживают в течение 30 минут, после этого шаблонируют горизонтальный ствол скважины компоновкой до забоя. Прокачку кислоты через гибкую безмуфтовую трубу производят при давлении не менее 20 МПа и расходе не менее 3 л/с. 1 пр.
Изобретение относится к нефтяной промышленности и может быть применено для интенсификации работы скважины. В скважину спускают колонну насосно-компрессорных труб до забоя и промывают скважину циркуляцией, закачивают через колонну насосно-компрессорных труб на забой водный раствор поверхностно-активного вещества в объеме 3-4 м3 и продавливают водой плотностью 1,17-1,19 г/см3 в объеме 5-6 м3. Поднимают колонну насосно-компрессорных труб с доливом скважины водой плотностью 1,17-1,19 г/см3 до устья. Выполняют перфорацию скважины в интервалах продуктивного пласта, спускают колонну насосно-компрессорных труб с конусообразной воронкой и патрубком на устье скважины. Нижний конец колонны насосно-компрессорных труб устанавливают на 30-50 м выше планируемой верхней границы проппантного моста. Закачкой воды плотностью 1,17-1,19 г/см3 восстанавливают циркуляцию. Для создания проппантного моста используют проппант фракции 16/20 и выше. Проппант загружают в воронку по объему с одновременной подачей воды плотностью 1,17-1,19 г/см3. Поддерживают концентрацию проппанта в воде 50 кг/м3 в начале и до 100-150 кг/м3 в конце засыпки. После засыпки всего объема проппанта продолжают подачу воды через воронку для вытеснения проппанта из колонны насосно-компрессорных труб в объеме, равном объему колонны. Проводят технологическую выдержку для осаждения проппанта в течение 4-8 часов, восстанавливают циркуляцию жидкости, плавным допуском колонны насосно-компрессорных труб без циркуляции определяют верхнюю границу проппантного моста. При необходимости досыпают проппант при малой величине моста или вымывают часть моста при его большой величине, после чего поднимают из скважины колонну насосно-компрессорных труб. Технический результат заключается в сокращении времени образования проппантного моста и исключении расхода жидкости разрыва через нижние перфорационные отверстия.
Изобретение относится к строительству скважин и может найти применение при бурении скважины через зоны поглощения промывочной жидкости. Техническим результатом является изоляция широкого интервала поглощения. При строительстве скважины бурят скважину со вскрытием интервала поглощения. Способ изоляции зоны поглощения включает спуск в скважину колонны бурильных труб с открытым концом, не доходя до забоя, промывку забоя, перекрытие затрубного пространства. В колонну бурильных труб заливают глинистый раствор плотностью 1,12-1,16 г/см3 с наполнителем в виде улюка и кордного волокна 10-30% от объема раствора, буферную жидкость, гельцемента в виде смеси цемента с 7-9% глинопорошка, затворенного на технической воде с добавлением 1,5-2,5% хлорида кальция, и техническую воду. Открывают затрубное пространство. По колонне бурильных труб производят заливку технической воды частично с вращением и частично с расхаживанием колонны бурильных труб. При этом не допускают погружения колонны бурильных труб ниже начально установленной глубины конца. Поднимают колонну бурильных труб на глубину выше уровня залитых объемов и вымывают остатки цементного раствора из колонны бурильных труб. Закрывают затрубное пространство. По колонне бурильных труб продавливают техническую воду. Проводят технологическую выдержку для схватывания и твердения цемента. Спускают открытый конец колонны бурильных труб и нащупывают голову цементного моста. Повторяют операции на новой глубине столько раз, сколько достаточно для создания общего цементного моста не менее интервала зоны поглощения. Поднимают из скважины колонну бурильных труб. Разбуривают цементный мост, добуривают скважину до проектной глубины, обсаживают и цементируют затрубное пространство.

Изобретение относится к трубопроводному транспорту и может быть использовано при электрическом разъединении трубопроводов и/или их участков с электрохимической защитой. Способ включает установку в токоизолирующее соединение внутреннего диэлектрического элемента. Кроме того, данный диэлектрический элемент герметично наносят и на внутреннюю поверхность участка трубопровода, имеющего наружную электрохимическую защиту. На внутреннюю поверхность отдельных деталей участка трубопровода, имеющего наружную электрохимическую защиту, могут устанавливать отдельные диэлектрические элементы, которые герметично соединяют между собой и с диэлектрическим элементом токоизолирующего соединения диэлектрическим материалом или диэлектрическими вставками. Суммарная длина общего диэлектрического элемента или диэлектрических элементов деталей участка трубопровода с наружной электрохимической защитой позволяет исключить ток утечки защитного потенциала по перекачиваемой электропроводной среде или снизить его до такого значения, при котором внутренняя коррозия токоизолирующего соединения протекала бы дольше срока службы всего трубопровода. Изобретение увеличивает срок службы токоизолирующих соединений за счет исключения внутренней коррозии или снижения ее скорости. 1 з.п. ф-лы, 3 ил.

Изобретение относится к газогорелочным устройствам и может найти применение при сжигании попутных нефтяных газов. Труба факельная включает опору, корпус и штуцер ввода газа. Опора выполнена конической. На стыке опоры и корпуса размещено эллиптическое днище, снабженное в нижней части трубкой с вентилем. Снаружи корпус и опора снабжены подогревателем в виде змеевика с началом змеевика, расположенным ниже эллиптического днища, и концом змеевика, расположенным выше штуцера ввода газа. Технический результат - выведение оседающих примесей и конденсата из факельной трубы. 1 ил.
Изобретение относится к нефтяной промышленности и может найти применение при очистке скважины. Способ включает промывку забоя циркуляцией моющей композиции в скважине по гибкой трубе и колонне насосно-компрессорных труб. Промывают забой пластовой водой до ухода ее части, затем промывают газожидкостной смесью, стравливают давление до атмосферного, доливают в скважину пластовую воду, по колонне насосно-компрессорных труб прокачивают и по гибкой трубе внутри колонны насосно-компрессорных труб отбирают моющую композицию из пластовой воды, водорастворимого поверхностно-активного вещества "ИТПС-04-А" и органического растворителя «МИА-пром», заполняют скважину раствором поверхностно-активного вещества МЛ-81Б в пластовой воде, вспененным на 40-60% воздухом с количеством кислорода менее 9%, промывают скважину циркуляцией указанного раствора, вымывают продукты реакции прямой и обратной промывкой, стравливают давление до атмосферного, заполняют скважину пластовой водой, определяют приемистость пласта, закачивают в призабойную зону глинокислоту, проводят выдержку на реагирование, вымывают продукты реакции раствором поверхностно-активного вещества МЛ-81Б в пластовой воде, вспененным на 40-60% воздухом с количеством кислорода менее 9%, определяют приемистость пласта. Повышается эффективность очистки скважины.

Изобретение относится к области теплоэнергетики и может быть использовано при обслуживании аппаратов в технологических линиях производства продукции из нефти. Пароохладитель включает цилиндрический корпус с установленным по его оси трубчатым каналом с разбрызгивателем. Разбрызгиватель выполнен с возможностью создания потоков водяных капель в виде конуса, обращенного основанием к выходной части корпуса по ходу парового потока с осью конуса по оси корпуса и с углом при вершине конуса 120°. Трубчатый канал выполнен с наклонной и горизонтальной частями. Наклонная часть выполнена от стенки корпуса до оси корпуса с углом наклона к оси корпуса 60°, обращенным к входной части корпуса по ходу парового потока. При таком выполнении пароохладителя обеспечивается более полное смешение пара и воды и увеличивается эффект теплоотдачи. 2 ил.
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой нефти. Технический результат - повышение дебита добывающих скважин без выхода из строя глубинно-насосного оборудования. Способ эксплуатации пары скважин, добывающих высоковязкую нефть, включает закачку пара через горизонтальную нагнетательную скважину, отбор пластовой продукции через горизонтальную добывающую скважину, расположенную ниже и параллельно нагнетательной скважине, причем в нагнетательную скважину спускают две колонны насосно-компрессорных труб разного диаметра, конец колонны большего диаметра размещают в начале горизонтального ствола, конец колонны меньшего диаметра размещают в конце горизонтального ствола, в добывающей скважине размещают оптоволоконный кабель и колонну насосно-компрессорных труб с электроцентробежным насосом и датчиками температуры на входе в электродвигатель электроцентробежного насоса и в электроцентробежном насосе. Через нагнетательную скважину закачивают пар, затем проводят термобарометрические измерения, посредством оптоволоконного кабеля выявляют зоны горизонтального ствола добывающей скважины с наибольшей температурой, среди выявленных зон определяют зону с изменением угла набора кривизны не более 2 градусов на 10 м, в определенной зоне размещают электроцентробежный насос, изменением подачи пара через нагнетательную скважину и периодичностью работы электроцентробежного насоса устанавливают режим работы пары скважин, при котором электроцентробежный насос работает в постоянном режиме при температуре перекачиваемой пластовой продукции, равной максимально допустимой для электроцентробежного насоса. 1 пр.
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации устаревших и изношенных скважин с дефектными эксплуатационными колоннами. Технический результат - повышение эффективности добычи нефти. При эксплуатации скважины проводят спуск в скважину первой колонны насосно-компрессорных труб с пакером. Пакер размещают ниже несплошности эксплуатационной колонны, затем устанавливают пакер. Осуществляют спуск второй - малой колонны насосно-компрессорных труб внутри первой колонны насосно-компрессорных труб с пакером. Осуществляют отбор пластовой продукции по второй малой колонне насосно-компрессорных труб. Для проведения работ выбирают скважину, добывающую нефтяную эмульсию с малым дебитом, способным быть воспроизведенным штанговым насосом в малой колонне насосно-компрессорных труб. В качестве насоса в малой колонне насосно-компрессорных труб подбирают штанговый насос, обеспечивающий дебит скважины, бывший до проведения работ. Монтируют оборудование в скважине. Проводят технологическую выдержку для разделения в скважине нефтяной эмульсии на воду и нефть и образования водной среды на входе в насос. С устья скважины по внутренней стенке первой колонны насосно-компрессорных труб дозируют деэмульгатор. Запускают в работу насос. Уровень жидкости в скважине поддерживают вблизи уровня насоса. 1 пр.
Изобретение относится к нефтяной промышленности и может найти применение при интенсификации работы скважины. В способе гидроразрыва пласта, включающем тестовую закачку жидкости разрыва и пачки жидкости разрыва с проппантом, корректирование проекта разрыва и проведение основного процесса разрыва, при закачке компонентов в жидкость разрыва вводят смесь 10-27%-ного расвора соляной кислоты, метилен-фосфорной кислоты и воды в концентрации 1-2 л на 1 м3 жидкости разрыва, при соотношении раствора соляной кислоты, метилен-фосфорной кислоты и воды (15-25):(55-65):(15-25) об.% соответственно. Технический результат - увеличение эффективности гидроразрыва пласта. 3 пр.

Безбалансирный станок-качалка содержит стойку-опору, вдоль которой установлены винт ходовой и электропривод. На винте ходовом установлена с возможностью продольного перемещения и вращения гайка. В верхней части стойки-опоры установлены с возможностью вращения ролики, охватываемые гибкими связями-канатами. Один из концов каждой связи прикреплен к траверсе, а другой прикреплен к соответствующему противовесу. Противовесы связаны с гайкой и имеют возможность совершать согласованное возвратно-поступательное движение вдоль стойки-опоры, при этом винт ходовой размещается между противовесами. Гайка содержит сквозное отверстие, перпендикулярное продольной оси винта ходового, в которое вставлены с возможностью поворота цилиндрические вкладыши с прямоугольными пазами, обращенными к винту ходовому. В пазах цилиндрических вкладышей размещены с возможностью вращения на осях ролики обкатные. Выступающие во внутреннюю полость гайки части роликов обкатных в своем поперечном сечении соответствуют форме ленточной нарезки - канавкам, по которым они обкатываются, обеспечивая возвратно-поступательное движение гайки относительно винта ходового. Повышается эксплуатационная надежность, снижается себестоимость привода и затраты на обслуживание. 3 ил.

Изобретение относится к скважинным насосным установкам и может быть применено для одновременно-раздельной эксплуатации двух пластов. Установка включает колонну лифтовых труб, верхний и нижний пакеры, установленные над соответствующими пластами, хвостовик с каналами, колонну штанг и штанговый насос с дополнительным всасывающим клапаном, сообщенным выходом с отверстием в стенке цилиндра, полым корпусом с боковым отверстием, сообщенным с межтрубным пространством, основным всасывающим клапаном в нижней части и разделительным поршнем, размещенным ниже отверстия для дополнительного всасывающего клапана в цилиндре с возможностью ограниченного продольного перемещения вниз в полость корпуса и вверх под воздействием плунжера, дополнительный нагнетательный клапан, пропускающий из полости корпуса через боковое отверстие в межтрубное пространство. Основной и дополнительный всасывающие клапаны сообщены каналами, размещенными в хвостовике, с одним из пластов, не сообщенным с другим каналом, а полость плунжера сообщена с лифтовыми трубами. Дополнительный всасывающий клапан сообщен с отверстием в цилиндре кольцевым пространством, образованным кожухом, охватывающим снаружи нижнюю часть цилиндра с отверстием и корпус, который снабжен снизу, ниже бокового отверстия, дополнительным цилиндром. Разделительный поршень оснащен дополнительным поршнем под дополнительный цилиндр и внутренним каналом, сообщающим подпоршневое пространство дополнительного цилиндра с внутренней полостью корпуса. Дополнительный нагнетательный клапан установлен во внутреннем канале разделительного поршня. Технический результат заключается в повышении эффективности одновременно-раздельной эксплуатации скважин с малым диаметром. 2 ил.

Группа изобретений относится к системе подачи жидких химических реагентов в объекты дозирования нефтяной и газовой промышленности. Система содержит емкость хранения химического реагента, насос-дозатор, объект дозирования, установленные в нем контрольно-измерительные приборы, гидростатический датчик давления, установленный в емкости хранения, блок управления. Блок управления выполнен с возможностью управления насосом-дозатором в зависимости от сигналов гидростатического датчика давления и контрольно-измерительных приборов. На основании сигнала блок управления определяет массу химического реагента в емкости хранения, текущий расход реагента в объекте дозирования определяется косвенно, через разность масс химического реагента в емкости хранения через задаваемые в блоке управления интервалы времени. Повышается точность учета химического реагента без изменения его текучести и, следовательно, с уменьшением нагрузки на оборудование. 2 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к скважинным штанговым насосным установкам. Установка включает колонну лифтовых труб, пакер, хвостовик и штанговый насос с боковым отверстием в цилиндре, делящим этот цилиндр на две части, пропорциональные производительностям соответствующих пластов, размещенным в кожухе над двухканальным корпусом, в одном из каналов которого размещен дополнительный всасывающий клапан с выходом в зазор между кожухом и цилиндром, а второй канал сообщен с входом штангового насоса, входы первого и второго каналов сообщены с надпакерным пространством скважины и хвостовиком или наоборот. Согласно изобретению штанговый насос выполнен вставным с удлиненным нижним манжетным креплением и якорным башмаком, сообщенным с выходом двухканального переходника. Зазор между цилиндром и кожухом над боковым отверстием цилиндра герметизирован уплотнительной катушкой с манжетами и запорным элементом, которая верхним концом соединена с подгоночным патрубком, оборудованном на стыке с колонной лифтовых труб перевернутым якорным башмаком механического крепления вставного насоса, а верхняя часть цилиндра снабжена перевернутым замком соответствующего верхнего механического крепления. Причем верхняя поверхность уплотнительного кольца якорного башмака располагается ниже торца пружины перевернутого замка на расстоянии, равном от бокового отверстия цилиндра до середины запорного элемента уплотнительной катушки. Технический результат заключается в сокращении объема производимых работ на скважине при определении дебита и обводненности каждого эксплуатируемого пласта. 4 ил.

Изобретение относится к нефтегазодобывающей отрасли, в частности к осуществлению подачи жидких химических реагентов в объекты дозирования нефтяной и газовой промышленности. При осуществлении способа измеряют давление столба химического реагента в емкости хранения с помощью гидростатического датчика давления, передают сигнал от датчика в блок управления, определяют с помощью блока управления массу химического реагента в емкости хранения. Прекращают подачу реагента при достижении заданной максимальной массы в емкости хранения, определяют параметры технологического процесса в объекте дозирования, по результатам этих измерений с помощью блока управления определяют необходимое к подаче количество и осуществляют подачу с помощью насоса дозатора. Определяют текущий расход химического реагента в объекте дозирования косвенно, путем определения разности масс химического реагента в емкости хранения через задаваемые в блоке управления интервалы времени. Повышается точность учета химического реагента без изменения его текучести и, следовательно, уменьшение нагрузки на оборудование. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения и может найти применение при изготовлении двухвенцовой звездочки. Способ включает обработку пазов плунжерным фрезерованием. Предварительно вытачивают впадину между венцами, проводят черновое точение, а чистовое выполняют антивибрационной фрезой с боковыми режущими поверхностями. При чистовом точении обрабатывают сначала все зубья верхнего венца, затем нижнего. Диаметр режущей части фрезы подбирают максимально приближенным к наименьшему радиусу профиля впадины между зубьями. Выдерживают постоянным расстояние от места закрепления до места резания как на верхнем, так и на нижнем венцах. При нарезании каждого зуба разбивают кривую резания на отдельные участки, каждый из которых характеризуется своим радиусом кривизны. На каждом участке назначают свой режим резания в зависимости от величины радиуса кривизны и разницы проходимого пути резания и пути движения оси фрезы. Движение фрезы выполняют с возвратом к частично обработанной поверхности до образования выступов одинаковой высоты. При расчете подачи фрезы на каждом участке изменяют подачу по сравнению с прямым участком на величину изменяющего коэффициента. Изобретение направлено на повышение точности выполнения двухвенцовой звездочки. 1 ил.

Изобретение относится к химической промышленности. Конденсатор серы содержит трубчатый теплообменник (1), расположенный горизонтально, на выходе из которого расположена приемная камера (9), в верхней части которой размещен штуцер выхода газа и сетка (11), подогреваемая посредством змеевика (12), заполненного теплоносителем (13), а в нижней части вертикально под сеткой расположен выходной штуцер (14) серы с кожухом (15), заполненным теплоносителем (13). Межтрубное пространство (5) трубчатого теплообменника (1) заполнено теплоносителем (13), в качестве которого используется водный раствор диэтиленгликоля с рабочей температурой 120°C на входе в межтрубное пространство (5) и 180°C на выходе из межтрубного пространства (5). Выход из межтрубного пространства (5) соединен со входом в змеевик (12) подогрева сетки (11) и со входом (19) в кожух (15) обогреваемого выходного штуцера (14), выходы (20) из змеевика (12) подогрева сетки (11) и из кожуха (15) обогреваемого выходного штуцера (14) соединены с установкой термической подготовки теплоносителя (24), которая соединена с входом в межтрубное пространство (5). Изобретение позволяет обеспечить полное удаление серы из газа. 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение на нефтепромысле при подготовке нефтяной эмульсии к горячему обезвоживанию. Отстойник для внутрипромысловой подготовки нефти к горячему обезвоживанию включает корпус, узел ввода нефтяной эмульсии, узел вывода нефти и узел вывода пластовой воды. Корпус выполнен цилиндрическим с боковыми сферическими стенками, узел ввода нефтяной эмульсии, узел вывода нефти, узел вывода пластовой воды выполнены в виде горизонтальной трубы, заглушенной с торцев, с вертикальными штуцерами, размещенными асимметрично относительно центра трубы и отстоящими от края трубы на 10-20% ее длины, образуя короткую и длинную стороны трубы, узел ввода нефтяной эмульсии расположен в нижней части корпуса, снабжен вертикальным подводящим патрубком, горизонтальной трубой, расположенной по оси корпуса, перфорированной снизу с боков отверстиями в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса, узел вывода нефти расположен в верхней части корпуса, размещен в другой стороне корпуса, снабжен вертикальным отводящим штуцером, горизонтальной трубой меньшего диаметра, чем труба узла ввода нефтяной эмульсии, расположенной по оси корпуса с перфорационными отверстиями сверху с боков в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса, узел вывода пластовой воды расположен в нижней части корпуса под узлом вывода нефти, снабжен вертикальным отводящим штуцером, горизонтальной трубой меньшего диаметра, чем труба узла ввода нефтяной эмульсии, расположенной по оси корпуса с перфорационными отверстиями снизу с боков в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса. Технический результат заключается в повышении эффективности подготовки нефти. 2 ил.

Изобретение относится к нефтяной промышленности и может найти применение на нефтепромысле при подготовке пластовой воды для системы поддержания пластового давления. Отстойник гидрофобный жидкофазный для внутрипромысловой подготовки пластовой воды включает корпус, узел ввода пластовой воды, узел вывода нефти, узел вывода очищенной пластовой воды и перегородку. Корпус выполнен цилиндрическим с боковыми сферическими стенками. Узел ввода пластовой воды, узел вывода нефти, узел вывода очищенной пластовой воды выполнены в виде горизонтальной трубы с вертикальными штуцерами, размещенными асимметрично относительно центра трубы и отстоящими от края трубы на 15-20% ее длины, образуя короткую и длинную стороны трубы. Узел ввода пластовой воды расположен в верхней части корпуса, снабжен вертикальным подводящим штуцером, горизонтальной трубой, расположенной по оси корпуса, перфорированной снизу и с боков отверстиями в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса, и длинным - вблизи нижней части перегородки. Узел вывода нефти расположен в верхней части корпуса, размещен по другую сторону от перегородки, снабжен вертикальным отводящим штуцером, горизонтальной трубой меньшего диаметра, чем труба узла ввода пластовой воды, расположенной по оси корпуса вблизи другой боковой стенки корпуса с перфорационными отверстиями в верхней части в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса, и длинным - вблизи верхней части перегородки. Узел вывода очищенной пластовой воды расположен в нижней части корпуса под узлом вывода нефти, снабжен вертикальным отводящим штуцером, горизонтальной трубой меньшего диаметра, чем труба узла ввода пластовой воды, расположенной по оси корпуса с перфорационными отверстиями в нижней части в виде эллипса с длинной осью вдоль трубы, с коротким концом трубы, расположенным вблизи боковой стенки корпуса. Перегородка выполнена перпендикулярной оси корпуса и перекрывающей третью часть от верха корпуса, снабжена отверстием в верхней части, расположенным на уровне трубы узла вывода нефти. Технический результат заключается в повышении эффективности очистки пластовой воды от нефти и механических примесей. 2 ил.

Изобретение относится к области нефтедобычи, в частности к ремонту скважин. Техническим результатом является повышение эффективности осуществления ремонта скважин. Предложен способ цементирования дополнительной колонны, включающий в себя этапы, на которых: проводят геофизические исследования скважины для определения состояния ЭК, местоположений интервалов нарушений и интервалов перфорации; спускают и устанавливают компоновку дополнительной колонны в скважину на глубину, определенную в соответствии с результатами геофизических исследований; спускают в скважину оборудование для закачки цементного раствора; осуществляют подготовку расчетного объема цементного раствора и закачку его в дополнительную колонну; осуществляют закачку в дополнительную колонну продавочной жидкости таким образом, чтобы цементный раствор заполнил межколонное пространство; оставляют скважину на время ожидания затвердевания цемента. При этом на основании результатов геофизических исследований определяют длину цементируемой дополнительной колонны, количество и места установки уплотнительных устройств на дополнительной колонне из расчета их последующего расположения на расстоянии 8-12 м выше и ниже интервалов нарушений и на расстоянии 8-12 м над верхней границей интервала перфорации. А сборку компоновки дополнительной колонны выполняют путем установки уплотнительных устройств в соответствии с данными, полученными на этапе определения мест установки уплотнительных устройств, и путем установки жестких центраторов выше и ниже от уплотнительных устройств, причем установку уплотнительных устройств осуществляют следующим образом: на дополнительную колонну снизу одевают верхнее ограничительное кольцо, резиновую уплотнительную манжету самоуплотняющегося типа, конусообразный упор с жесткими лепестками и зазорами, обеспечивающими проход цементного раствора, причем ограничительное кольцо и конусообразный упор жестко закрепляют на дополнительной колонне. 2 з.п. ф-лы, 2 ил.

Изобретение относится к нефтедобывающей отрасли и может быть использовано при добыче нефти. Штанговая насосная установка содержит цилиндр 1 с корпусом клапана 2, седлом 3 и упором седла 4 в своей нижней части. Колонна штанг 5 соединена с оправкой 6, вдоль тела которой выполнены продольные выборки-каналы 7 до опорного седла 8, размещенного внизу оправки 6. В верхней части оправки 6 выполнен упор 9. Выборки-каналы 7 предназначены для протока скважинной жидкости при открытом нагнетательном клапане. Оправка 6 проходит сквозь полый плунжер 10. На нижнюю часть полого плунжера 10 насажена втулка клапанная 11 с возможностью ограниченного продольного перемещения вдоль оправки 6. К нижней части оправки 6 присоединен шток 12 с наконечником 13 на нижнем его конце. Длина штока 12 равна или больше длины хода насоса. Шток 12 проходит сквозь внутреннюю полость сборки заборного стакана, содержащего запорный элемент 14, упор цанговый 15, расположенный в верхней части заборного стакана, и уплотнитель 16. Сборка заборного стакана (14, 15, 16) размещена в корпусе клапана 2. Нижняя часть запорного элемента 14 выполнена в виде наружной усеченной конической или сферической поверхности с возможностью герметичного взаимодействия с седлом 3. В верхней части корпуса клапана 2 выполнен уступ 17, диаметр которого меньше внутренних диаметров цилиндра 1, корпуса клапана 2 и выступов на внешней поверхности упора цангового 15. Снижается гидравлическое сопротивление в узле клапана, повышается надежность клапанов, расширяется техническая надежность ШНУ. 2 з.п. ф-лы, 3 ил.

Изобретение относится к нефтедобыче, а именно к устройству, используемому при свабировании в насосно-компрессорной трубе, в частности в насосно-компрессорной трубе диаметром 2 дюйма. Устройство включает металлический стержень, представляющий собой насосную штангу, головку, при помощи резьбового соединения прикрепленную к нижней части металлического стержня, манжету, установленную на металлическом стержне с возможностью перемещения вдоль его оси, шплинт, установленный в металлическом стержне и головке так, чтобы предотвращать отвинчивание головки, стопор. Стопор выполнен с возможностью закрепления в предварительно заданном месте на металлическом стержне так, чтобы обеспечивать движение манжеты в предварительно заданном диапазоне. Стопор представляет собой кольцо с трапецеидальным сечением, при этом диаметр кольца в ближней к головке части соответствует диаметру головки, и в стопоре выполнен по меньшей мере один канал для текучей среды. Повышается надежность и удобство эксплуатации свабовой мандрели. 3 з.п. ф-лы, 2 ил.
Способ изоляции зоны поглощения при бурении скважины включает спуск в скважину компоновки, содержащей пакер и бурильные трубы, посадку пакера, продавливание под пакер изолирующих материалов, проведение технологической выдержки для схватывания цемента, срыв пакера, контроль изоляции, подъем компоновки из скважины, разбуривание цементного моста и продолжение бурения скважины. Cпуск компоновки производят со скоростью не более 0,5 м/с, после спуска фиксируют собственный вес компоновки, перед посадкой пакера включают буровой насос при полностью открытой задвижке на манифольде и прокачивают буровой раствор, постепенно закрывают задвижку и устанавливают давление по манометру 2-3 МПа, одновременно производят посадку пакера созданием нагрузки 10-12 т для полной герметизации затрубного пространства, доливают затрубное пространство водой, продавливают под пакер при давлении не более 9 МПа изолирующие материалы, состоящие из первой порции из цемента и воды плотностью порядка 1,6-1,7 г/см3, второй порции из цемента, воды плотностью порядка 1,6-1,7 г/см3 и 8 -12% (по весу) кальцинированной соды, третьей порции из цемента и воды плотностью порядка 1,6-1,7 г/см3 и 2-4% (по весу) хлорида кальция и четвертой порции из цемента и воды плотностью порядка 1,6-1,7 г/см3, проводят технологическую выдержку для схватывания цемента, снимают осевую нагрузку с пакера, выдерживают 3-5 минут, вызывают циркуляцию жидкости в скважине, при наличии циркуляции делают вывод об изоляции зоны поглощения, производят подъем компоновки из скважины с минимальной скоростью подъема первых 5-6 м. 3 пр. Технический результат- повышение эффективности изоляции зон поглощения при бурении скважин. 3 пр.

Изобретение относится к оголовкам факельной установки для сжигания аварийных выбросов газа и может быть использовано в нефтегазодобывающей и других отраслях промышленности, связанных с аварийным сжиганием газа. При изготовлении факельного оголовка при сборке фланца с трубой обеспечивают перпендикулярность посадочной поверхности фланца и оси трубы приваркой фланца к трубе и механической обработкой посадочной поверхности фланца в сборе с трубой, конусность и соответствие конусной и цилиндрической детали производят формованием конусной детали конусным прижимом по конусной поверхности в условиях сборки и/или фиксированием цилиндрической детали от проявления эллипсности. При этом остальные детали соединяют сваркой и с помощью резьбовых соединений. Изобретение обеспечивает устойчивость работы факельного оголовка. 4 ил.
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх