Патенты автора Харьковский Сергей Валентинович (RU)

Изобретение относится к области литейного производства и может быть использовано при отливке полых лопаток газотурбинных двигателей. При изготовлении составного стержня из керамической массы изготавливают основной стержень (1) с выступами (2) на наружной поверхности и обжигают его. Из керамической массы с полимерным связующим изготавливают дополнительный стержень (4) путем его прокатки, вырезки заготовки стержня (4) из пластины, профилирования упомянутой заготовки на керамическом драйере и обжига. Перед каждым проходом прокатки пластины осуществляют проход вальцевания. Вырезку заготовки осуществляют лазерным лучом с энергией W в импульсе, составляющей 0,1<W≤1,0 (мДж), и длительностью τ импульса, составляющей 1⋅10-8<τ<1⋅10-4 (с). Дополнительный стержень фиксируют на выступах основного стержня с использованием пленочного керамического клея (3) с образованием неразъемного соединения, что позволяет упростить процесс сборки составного стержня. Стержень образован из однородного по составу керамополимерного материала без включений воздуха в его объеме. Обеспечивается повышение качества литого полого изделия за счет повышения качества поверхности дополнительного стержня. 1 ил.

Изобретение относится к устройствам для наполнения сосудов высокого давления газами и предназначено для автономного использования. Комплекс для подвода криогенной жидкости в емкости, газификации криогенной жидкости и хранения газа высокого давления включает резервуар криогенной жидкости, насос, входом соединенный через всасывающий трубопровод, и жидкостной клапан с резервуаром криогенной жидкости, а выходом через напорный трубопровод и заправочный клапан - с входом емкостей, выходом соединенных через выходной клапан с внешним газопроводом высокого давления, механически связанную с насосом турбину, которая входом соединена с источником газа высокого давления, а выходом - с атмосферой, включает массовый расходомер-счетчик криогенной жидкости, подключенный к напорному трубопроводу насоса перед заправочным клапаном, емкости выполнены из двух или более сосудов высокого давления, соединенных между собой через запорные клапаны на входе и выходе каждого сосуда, а в качестве источника газа высокого давления используют баллон с азотом, снабженный выпускным клапаном и регулятором давления. Комплекс способен функционировать автономно, в условиях отсутствия электроснабжения, без потери потенциала газа высокого давления, при высоком уровне безопасности и надежности. 2 з.п. ф-лы, 1 ил.

Изобретение относится к криогенной технике. Способ подачи потребителю газообразного водорода высокого давления заключается в нагнетании насосом по перекрываемому трубопроводу жидкого водорода из резервуара в накопитель-газификатор, выполненный в виде емкости полного объема Vп, где с повышением температуры и давления за счет подводимого тепла жидкий водород превращают в газообразный высокого давления. Емкость с объемом Vп выполнена с расположенной в ней внутренней емкостью объемом Vв, которая с перекрытием соединена с насосом и через сквозные отверстия - с емкостью объема Vп. Отношение объемов Vв/Vп выбрано в диапазоне от 0,3 до 1,0 в зависимости от максимального давления водорода при постоянной максимальной температуре емкости объема Vп. Заполнение внутренней емкости объемом Vв за один цикл осуществляют водородом дозированной массы со сверхкритическими значениями давления и температуры. Изохорический нагрев водорода обеспечивают теплом окружающей среды с достижением заданного максимально допустимого давления газообразного водорода перед подачей потребителю. После заправки баллонов потребителя при снижении давления в емкости Vп до установленного уровня отключают перекрываемый трубопровод от потребителя и подключают к технологической емкости. Охлаждают оставшийся в емкости Vп водород жидким азотом по криогенным магистралям из источника и продолжают перепускать водород в технологическую емкость со снижением давления и температуры в емкости Vп до уровня значения давления водорода на выходе из насоса при работе. Затем включают насос, добавляют до заданного значения дозированную массу водорода из резервуара жидкого водорода и осуществляют следующий цикл подачи потребителю газообразного водорода. Технический результат заключается в достижении максимально допустимого давления газообразного водорода в заполняемой емкости, исключении вибраций потока и уменьшении энергозатрат, повышении долговечности накопителя-газификатора, увеличении быстродействия заправки баллонов, обеспечении возможности восстановления высокого давления водорода в емкости до уровня максимального давления после снижения давления. 1 ил.

Изобретение относится к области авиадвигателестроения, турбостроения, а именно к стендам для моделирования процессов теплообмена в охлаждаемых лопатках, и может найти применение при проектировании и оптимизации систем охлаждения лопаток высокотемпературных газовых турбин. Сущность изобретения состоит в том, что стенд содержит последовательно установленные источник сжатого воздуха, камеру сгорания, газовый канал для организации течения горячего газа, закрепляемый в канале пакет испытуемых образцов, выполненных в виде соосно стыкуемых цилиндров с внутренними полостями, которые предназначены для прохождения охлаждающего воздуха, причем ось цилиндров ориентирована перпендикулярно оси газового канала. На боковой поверхности одного из цилиндров выполнено по крайней мере одно сквозное отверстие заданной формы и размера. В газовом канале установлено средство крепления пакета, выполненное с возможностью обеспечения поворота образцов вокруг их продольной оси. На выходе газового канала расположен ресивер с дроссельной заслонкой, а стенд снабжен датчиками температуры, размещенными соответственно на входе газового канала, в полости сплошного цилиндра, датчиками давления и дополнительными датчиками давления и температуры, установленными на входе и выходе канала для прохождения охлаждающего воздуха. Технический результат - повышение эффективности испытаний за счет обеспечения возможности моделирования процесса теплообмена при различных углах взаимодействия горячего газового потока с охлаждающей воздушной пленкой на поверхности испытуемого образца. 1 з.п. ф-лы, 2 ил.

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины. Заменяют сопловой аппарат первой ступени (из оставшихся) конвертированной турбины на сопловой аппарат повышенной пропускной способности. В горелки камеры сгорания подают для сжигания газообразное низкокалорийное топливо типа продукта-газа или биогаза. На установившемся режиме работы конвертированного двигателя изменением расхода топлива устанавливают температуру продуктов сгорания газа в камере не выше 800 K. Уменьшают степень повышения полного давления компрессора до 3-4. Механическую энергию передают потребителю мощности через выводной вал двигателя с редуктором. Изобретение позволяет обеспечить эксплуатацию отработавших ресурс двигателей на низкокалорийных газообразных топливах из твердых бытовых отходов и биоотходов, улучшить экологию, уменьшить расходы на эксплуатацию установок и увеличить их ресурс. 2 з.п. ф-лы, 1 ил.

Устройство для оптимизации радиальных зазоров многоступенчатого осевого компрессора газотурбинного авиационного двигателя сжатым воздухом, отводимым из компрессора, содержит корпус с проточной частью. Сжатый воздух последовательно проходит внутренние полости ступеней компрессора. Ротор каждой ступени включает множество радиально расположенных лопаток, закрепленных на диске. Устройство содержит кожух, закрепленный на валу и размещенный под дисками, по меньшей мере, трех последних ступеней компрессора, и систему из уплотнений и щелей между этими дисками и кожухом, отверстий в указанных дисках и выпускных отверстий кожуха. Вход в устройство связан с областью конца компрессора, где циклические нагрузки на авиадвигатель определяют максимальный нагрев воздуха. Уплотнения, щели и отверстия размещены так, что создают петлеобразное течение указанного воздуха в кожухе от входа вдоль полотен дисков к выпускным отверстиям, через которые воздух попадает в кожух, в общем направлении, противоположном направлению воздушного потока в проточной части. Достигается снижение тепловых напряжений дисков ротора, минимизация внутренних утечек сжатого воздуха оптимизацией изменения радиального зазора адекватно циклическим нагрузкам авиационного двигателя за счёт соответствующего изменения температуры дисков. 5 з.п. ф-лы, 5 ил.

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии гарантированных параметров в широком температурном диапазоне атмосферного воздуха при пониженном выбросе вредных веществ в составе выхлопных газов

Изобретение относится к области транспортного машиностроения, турбостроения и может найти применение в охлаждаемых лопатках высокотемпературных газовых турбин

Изобретение относится к области турбостроения, в частности к охлаждаемым лопаткам, предназначенным для высокотемпературных турбин

 


Наверх