Патенты автора Марчуков Евгений Ювенальевич (RU)

Изобретение относится к способам регулирования газотурбинного двигателя для обеспечения температуры газа перед турбиной, не превышающей максимально допустимых значений. Способ регулирования авиационного газотурбинного двигателя включает эксплуатационные ограничения максимальных значений частот вращения ротора (nMAX) и температуры газов (ТгОГР) на максимальном режиме работы двигателя. Предварительно проводят испытания нескольких образцов исправных двигателей, при этом производят измерение частоты вращения ротора (n) и температуры газа перед турбиной (Тг), затем строят зависимость температуры газа перед турбиной Тг от частоты вращения ротора n, по этой зависимости определяют изменение температуры газа перед турбиной (ΔТг) при изменении частоты вращения ротора на 1%. При испытаниях конкретного образца двигателя осуществляют настройку ограничения максимальной частоты вращения (nMAX), для чего выводят двигатель на режим частоты вращения ротора, соответствующий (90÷96)% от максимального режима, при этом измеряют частоту вращения ротора (n0) и температуру газа перед турбиной (Тг0), определяют максимальную частоту вращения ротора (nMAX) по формуле в соответствии с полученными данными производят регулировку ограничения максимальной частоты вращения ротора (nMAX) в регуляторе двигателя. Техническим результатом, достигаемым при использовании заявленного способа, является обеспечение надежности эксплуатации двигателя в течение заданного ресурса. 1 ил.

Изобретение относится к способам испытаний турбореактивного двигателя для определения основных параметров при настройках ограничителей, не превышающих максимально допустимых значений. При реализации способа предварительно для данного типа двигателей со штатной программой поддержания эксплуатационных ограничений максимальных значений частот вращения роторов низкого и высокого давления на максимальном режиме работы двигателя формируют программу ограничения частоты вращения ротора низкого давления, а также программу ограничения частоты вращения ротора низкого давления с увеличением относительно исходной, затем проводят испытания репрезентативного количества двигателей данного типа, при которых на максимальном режиме выполняют измерение тяги и частот вращения роторов низкого и высокого давления, затем определяют изменение частоты вращения ротора высокого давления и изменение тяги. Далее для двигателя, у которого на максимальном режиме при штатной программе превышено по меньшей мере одно из значений частот вращения роторов низкого и высокого давления, измеряют частоту вращения ротора низкого давления, частоту вращения ротора высокого давления и тягу на максимальном режиме, затем определяют относительную величину отклонения исходного параметра от настройки ограничения, после выбирают наименьшее значение ограничений из ограничений для ротора низкого давления и ротора высокого давления по абсолютной величине, которое в дальнейшем принимают за ограничение. Далее определяют истинное значение тяги при настройках ограничителей, не превышающих максимально допустимых значений частот вращения роторов низкого и высокого давления на максимальном режиме работы двигателя. Технический результат заключается в обеспечении определения основных параметров двигателя с учетом максимально допустимых значений настроек ограничителей.

Изобретение относится к области авиации, точнее к воздушно-реактивным двигателям с форсажной камерой. Стабилизатор пламени форсажной камеры воздушно-реактивного двигателя содержит консольные радиальные элементы и узел подвеса. На каждом консольном радиальном элементе стабилизатора размещен по меньшей мере один контейнер, частично заполненный металлом или сплавом с температурой плавления менее 350°С и плотностью более 7000 кг/м3. Консольные радиальные элементы стабилизатора выполнены с тангенциальными ответвлениями. Контейнеры размещены на концах тангенциальных ответвлений консольных радиальных элементов стабилизатора. Контейнеры выполнены осесимметричной формы. Внутри контейнеров выполнена одна или несколько поперечных перегородок с одним или несколькими отверстиями в перегородках. Свободная часть контейнера заполнена инертным газом. Изобретение обеспечивает повышение колебательной устойчивости стабилизатора пламени. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области авиации, точнее к газотурбинным двигателям (ГТД) с адаптивной форсажной камерой (АФК). Адаптивная форсажная камера ГТД содержит корпус с шарнирно закрепленными на нем поворотными и фиксирующимися в радиальном направлении стабилизаторами пламени, снабженными, по меньшей мере, одной парой боковых ответвлений. АФК снабжена кольцевым тепловым экраном, размещенным на корпусе за местом крепления стабилизаторов к корпусу адаптивной форсажной камеры, на внутренней поверхности теплового экрана симметрично оси стабилизатора установлены парные обтекатели в количестве, равном числу стабилизаторов, парные обтекатели установлены таким образом, чтобы в нерабочем положении стабилизаторов упомянутые обтекатели были расположены перед первыми по потоку боковыми ответвлениями соответствующих стабилизаторов, при этом каждый обтекатель выполнен уголковым с передней и задней стенками. Передняя стенка образует с ближайшим боковым ответвлением стабилизатора аэродинамический профиль в нерабочем положении стабилизатора, а задняя стенка обтекателя выполнена под отрицательным углом к оси форсажной камеры. На верхней части каждого обтекателя сформирована полка, направленная в сторону боковых ответвлений соответствующего стабилизатора в нерабочем положении. На тепловом экране адаптивной форсажной камеры сформирован кольцевой наплыв со стороны набегающего потока. Изобретение обеспечивает снижение газодинамических потерь в газовом тракте адаптивной форсажной камеры на бесфорсажных режимах работы ГТД, снижение радиолокационной заметности на форсажном режиме, а также уменьшение размеров и массы поворотных стабилизаторов пламени. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области авиации, точнее, к газотурбинным двигателям с адаптивной форсажной камерой (АФК). Поворотный стабилизатор пламени адаптивной форсажной камеры двухконтурного газотурбинного двигателя содержит корпус с каналом подвода топливовоздушной смеси и перфорацией в задней по потоку стенке, шарнирный узел подвеса к корпусу форсажной камеры, выполненный в корневой части корпуса, окно для входа топливовоздушной смеси. Окно для входа топливовоздушной смеси размещено в области корневой части корпуса стабилизатора, при этом канал подвода топливовоздушной смеси за упомянутым окном выполнен симметрично раздваивающимся на боковые каналы, сходящиеся в концевой части. Оси боковых каналов в центральной части расположены радиально для стабилизатора, зафиксированного в рабочем положении, стабилизатор снабжен рычагом в области корневой части корпуса, шарнирно сообщенным с механизмом привода, при этом на корпусе форсажной камеры перед каждым стабилизатором закреплена форсунка, выходом направленная в область соответствующего окна для входа топливовоздушной смеси стабилизатора, зафиксированного в рабочем положении. В концевой части стабилизатора выполнено по меньшей мере одно отверстие увеличенного по сравнению с перфорацией задней стенки проходного сечения. Изобретение обеспечивает снижение массы узлов крепления и приводов, а также снижение газодинамических потерь в газовом тракте и заметности в радиолокационных и инфракрасных диапазонах на бесфорсажном режиме. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области эксплуатации газотурбинных установок. На ряде исправных газотурбинных установок, содержащих газогенератор и силовую турбину, фиксируют в заданном диапазоне частот вращения роторов зависимости изменения частоты вращения и амплитуд вибраций корпусов газогенератора и силовой турбины от времени на выбеге роторов при останове газотурбинной установки. Вычисляют критические частоты вращения, формируют типовые зависимости изменения частот вращения роторов низкого давления, высокого давления и силовой турбины и амплитуд вибраций по каждому вибродатчику, размещенному на корпусах газогенератора и силовой турбины, от времени, фиксируют текущие зависимости значений критических частот и амплитуд вибраций на конкретной газотурбинной установке, сравнивают с типовыми зависимостями, при отклонении текущих значений критических частот и/или амплитуд от типовых на более чем 5% формируют сигнал об изменении технического состояния опор конкретного ротора. Типовую зависимость изменения частот вращения роторов и амплитуд вибраций от времени, а также критических частот вращения формируют для конкретной газотурбинной установки на начальном этапе ее эксплуатации. Дополнительно типовую зависимость частот вращения и амплитуд вибраций от времени разбивают на участки по количеству критических частот в данном диапазоне частот вращения роторов, в каждом из которых определяют значение критической частоты и амплитуду вибраций при ее прохождении и сравнивают с текущими значениями на том же участке, а при отклонении текущих значений от типовых хотя бы на одном участке формируют сигнал об изменении технического состояния опоры конкретного ротора. Технический результат - определение узлов, в которых происходит изменение технического состояния на стадии допустимого времени эксплуатации без разрушения деталей газотурбинной установки, что повышает ее эксплуатационную экономичность. 2 з.п. ф-лы, 2 ил.

Изобретение относится к форсажной камере сгорания авиационных двухконтурных газотурбинных двигателей и способу её работы. Форсажная камера сгорания двухконтурного турбореактивного двигателя содержит корпус, смеситель, выполненный в виде чередующихся по окружности радиальных каналов первого и второго контуров, стабилизаторы и топливные форсунки. Радиальные каналы второго контура смесителя имеют прямоугольную форму в выходном сечении, стабилизаторы установлены на выходе из каждого радиального канала второго контура смесителя с образованием в процессе работы форсажной камеры между выходным сечением радиальных каналов второго контура и стабилизатором по их боковым сторонам плоских парных щелей равной ширины. Стабилизаторы выполнены в виде пластин или равнобоких уголковых элементов и установлены на корпусе с возможностью поворота и фиксации таким образом, что продольные оси симметрии выходного сечения радиального канала второго контура и соответствующего стабилизатора лежат в одной плоскости. Способ работы включает подачу потока первого контура и потока второго контура в соответствующие чередующиеся по окружности радиальные каналы смесителя, подачу топлива и организацию процесса горения в зоне смешения потоков первого и второго контуров, стабилизацию процессов горения и подачи топлива. Стабилизацию процессов горения и подачи топлива осуществляют путем разделения потока на выходе из каждого радиального канала второго контура смесителя на парные плоские струи, направленные поперек потока первого контура и противоположно относительно друг друга с образованием зоны циркуляции за стабилизатором, подачу топлива осуществляют непосредственно в парные плоские струи или в зоны циркуляции. Изобретение позволяет снизить потери полного давления и вес форсажной камеры. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к способам регулирования турбореактивного двигателя для обеспечения ограничений частот вращения роторов низкого и высокого давления и температуры газов за турбиной в регуляторе двигателя, не превышающих максимально допустимых значений. Способ регулирования авиационного турбореактивного двухконтурного двигателя, в котором предварительно для данного типа двигателей со штатной программой поддержания эксплуатационных ограничений максимальных значений частот вращения роторов низкого (n1ОГР) и высокого давления (n2ОГР) и температуры газов за турбиной (Т4ОГР) на максимальном режиме работы двигателя формируют программу ограничения частоты вращения ротора низкого давления (n1ОГР), а также программу ограничения частоты вращения ротора низкого давления с увеличением на 1% относительно исходной (n1ОГР+1%), затем проводят испытания репрезентативного количества образцов двигателей данного типа, при которых на максимальном режиме выполняют измерение частот вращения ротора низкого и высокого давления и температуры газов за турбиной при программах n1ОГР (n1, n2, Т4) и n1ОГР+1% (n1+1%, n2+1%, Т4+1%), затем определяют изменение частоты вращения ротора высокого давления и изменение температуры газов за турбиной по формулам: (Δn2=n2+1%/n2); (ΔT4=Τ4+1%/T4), далее для двигателя, у которого на максимальном режиме при штатной программе превышено по меньшей мере одно из значений (n1ОГР), (n2ОГР), (Т4ОГР), измеряют частоту вращения ротора низкого давления (n1ИСХ), частоту вращения ротора высокого давления (n2ИСХ) и температуру газов за турбиной (Т4ИСХ) на максимальном режиме, затем определяют относительную величину отклонения исходного параметра (n1ИСХ), (n2ИСХ) и (Т4ИСХ) от настройки ограничения δn1 по формулам: затем выбирают наименьшее значение из δn1(по n1), δn1(по n2) и δn1(по Т4) по абсолютной величине, которое в дальнейшем принимают за δn1, далее по формулам определяют настройки ограничений частот вращения роторов низкого (n1НАСТ) и высокого давления (n2НАСТ) и температуры газов за турбиной (Т4НАСТ): n1НАСТ=n1ИСХ*(1+δn1); n2НАСТ=n2ИСХ*(1+Δn2*δn1); Т4НАСТ=Т4ИСХ*(1+Δt4*δn1), на основании которых корректируют штатную программу поддержания эксплуатационных ограничений максимальных значений частот вращения роторов низкого и высокого давления и температуры газов за турбиной на максимальном режиме работы двигателя. Изобретение обеспечивает повышение надежности эксплуатации двигателя в течение заданного ресурса.

Изобретение относится к области металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для литья деталей газовых турбин с монокристальной структурой с рабочей температурой до 1100°С и выше. Литейный жаропрочный никелевый сплав с монокристальной структурой содержит, мас.%: углерод 0,002-0,1, хром 3,0-6,0, кобальт 4,0-7,5, вольфрам 2,0-4,0, молибден 2,5-4,0, алюминий 5,5-7,0, тантал 7,0-10,0, ванадий 0,1-0,5, рений 3,5-5,0, цирконий 0,01-0,05, иттрий 0,001-0,1, лантан 0,001-0,1, церий 0,001-0,1, кремний 0,01-0,2, марганец 0,01-0,2, бор 0,005-0,03, магний 0,01-0,03, празеодим 0,01-0,1, никель – остальное, при соблюдении следующих условий: 44,8≥3,0СМо+1,6CW+2,3СТа+1,3CRe, где СМо, CW, СТа, CRe - концентрации соответствующих элементов в сплаве, мас.% и СAl/(СTa+CW+СMo)≥1,0 (ат.%/ат.%), где СAl, СTa, CW, СMo – концентрации соответствующих элементов в γ'-фазе, ат.%. Обеспечивается высокая жаропрочность при сохранении удельного веса 8,82 г/см3. 2 табл.

Изобретение относится к области металлургии - к производству литейных жаропрочных никелевых сплавов, предназначенных для литья лопаток и других ответственных деталей газовых турбин, имеющих монокристальную структуру. Литейный жаропрочный никелевый сплав с монокристаллической структурой содержит углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, рений, бор, церий, лантан, иттрий, магний, отличается тем, что он дополнительно содержит гафний, марганец, кремний, скандий, титан, ниобий, цирконий при следующем соотношении компонентов, мас.%: углерод 0,002-0,1, хром 2,8-6,0, кобальт 3,0-6,5, вольфрам 2,0-5,0, молибден 1,5-3,5, алюминий 5,4-6,3, титан 0,1-1,2, ниобий 0,1-1,0, тантал 7,2-9,0, гафний 0,1-0,3 рений 4,3-7,0, бор 0,005-0,01, цирконий 0,005-0,03, церий 0,001-0,1, лантан 0,001-0,1, иттрий 0,001-0,1, магний 0,01-0,03, марганец 0,01-0,2, кремний 0,01-0,2, скандий 0,005-0,03, никель - остальное, при соблюдении следующих условий:44,2≥3,0CMo+1,6CW+2,3CTa+1,3CRe+10,0CHf, где СМо, CW, СТа, CRe, CHf - концентрации соответствующих легирующих элементов в сплаве, мас.%, иСAl/(CTi+CNb+CTa+CHf+0,57CW+0,46CMo)≥1,0 (ат.%/ат.%), где СAl, СTi, CNb, СТа, CHf, CW, СМо - концентрации соответствующих элементов в γ'-фазе, ат.%. Обеспечивается снижение удельного веса сплава при сохранении высокого уровня жаропрочности. 2 табл.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных никелевых сплавов с монокристаллической структурой, используемых при изготовлении деталей ответственного назначения газотурбинных двигателей и установок, в первую очередь, рабочих и сопловых лопаток газовых турбин, работающих при температуре 1000°С и выше. Жаропрочный никелевый сплав для литья деталей с монокристаллической структурой содержит, мас.%: углерод 0,005-0,02, хром 3,0-4,0, кобальт 5,0-6,5, вольфрам 2,0-3,5, молибден 2,5-3,5, алюминий 5,5-6,5, титан 0,4-1,5, тантал 7,0-9,0, рений 5,5-7,0, цирконий 0,01-0,05, иттрий 0,001-0,1, лантан 0,001-0,1, церий 0,001-0,1, кремний 0,01-0,2, марганец 0,01-0,2, бор 0,005-0,03, никель - остальное, при соблюдении следующих условий: 41,6≥3,0СМо+1,6СW+2,3СТа+1,6CRe, где СМо, CW, СТа, CRe - концентрации элементов в сплаве, в мас.% и СAl/(CTi+CTa+0,58CW+0,48CMo)≥1,0 (ат.%/ат.%), где СAl, СTi, СТа, CW, СМо - концентрации соответствующих элементов в γ'-фазе, в ат.%. Обеспечиваются высокие значения жаропрочности без присутствия в составе сплава элемента платиновой группы. Сплав имеет оптимальную структуру без присутствия охрупчивающих ТПУ-фаз и α-фаз на основе вольфрама, молибдена, рения и хрома. Его характеризует высокая структурная стабильность, что позволяет использовать этот сплав при температурах 1100°С и выше. 2 табл.

Изобретение относится к области эксплуатации газотурбинных установок, а именно к диагностике температурного состояния деталей для принятия решения по их обслуживанию и дальнейшей эксплуатации. Способ эксплуатации газотурбинной установки включает диагностику температурного состояния деталей. Измеряют температуру масла на сливе из каждой опоры роторов газотурбинной установки на неизменном режиме по частотам вращения роторов на базе времени не менее 2-х минут, предшествующих текущему измерению, вычисляют среднее значение температуры масла на сливе и сравнивают его с текущим значением при тех же частотах вращения. При отклонении текущего значения температуры масла на сливе более чем на 2°С формируют сигнал об изменении технического состояния деталей в конкретной опоре ротора. При снижении текущего значения температуры масла на сливе формируют сигнал о разрушении коллектора подвода масла к подшипнику в опоре. При повышении температуры масла на сливе формируют сигнал о разрушении подшипника в опоре. Способ позволяет определить детали в конкретной опоре двигателя, в которых происходит изменение технического состояния на стадии допустимого времени эксплуатации без разрушения деталей двигателя, что повышает эксплуатационную экономичность газотурбинного двигателя. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области эксплуатации газотурбинных установок, а именно к оценке технического состояния установок или ее отдельных узлов для принятия решения по их обслуживанию и дальнейшей эксплуатации установки. Способ эксплуатации газотурбинной установки включает оценку ее технического состояния по изменению характеристик рабочих режимов. На по крайней мере одной из исправных газотурбинных установок фиксируют в заданном диапазоне частот вращения роторов зависимости изменения частоты вращения n от времени τ на выбеге роторов при не менее двух остановах газотурбинной установки, по усредненным значениям формируют типовые зависимости изменения частот вращения роторов n от времени τ, фиксируют текущие зависимости этих параметров для конкретной газотурбинной установки, сравнивают с типовыми зависимостями, при отклонении текущих зависимостей по конкретному ротору от типовых более чем на 5% формируют сигнал об изменении технического состояния конкретного ротора. Типовую зависимость изменения частот вращения роторов от времени формируют для конкретной газотурбинной установки на начальном этапе ее эксплуатации. Дополнительно типовую зависимость изменения частоты вращения от времени разбивают на 2-3 участка, на которых определяют значения Δn/Δτ, фиксируют на этих участках текущие значения Δn/Δτ, при отклонении текущих значений от типовых более чем на 5% хотя бы на одном участке формируют сигнал об изменении технического состояния конкретного ротора. Ожидаемый технический результат - определение узлов в газотурбинной установке, в которых происходит изменение технического состояния на стадии допустимого времени эксплуатации без разрушения деталей газотурбинной установки, что повышает ее эксплуатационную экономичность. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопловых лопаток турбины газотурбинного двигателя (ГТД). Сопловая лопатка турбины ГТД содержит наружный аэродинамический профиль, выполненный из керамического материала, полый металлический дефлектор и установленный между ними промежуточный дефлектор, снабженный выступами на наружной и внутренней поверхностях, образующими с противолежащими поверхностями каналы для охлаждающего воздуха. Промежуточный дефлектор выполнен из керамического или композиционного материала. Внутренняя полость металлического дефлектора сообщена с полостью подвода охлаждающего воздуха к ротору турбины. Изобретение обеспечивает снижение расхода воздуха на охлаждение сопловой лопатки турбины, снижение газодинамических и тепловых потерь в сопловом аппарате турбины ГТД, а также возможность увеличения температуры газа перед турбиной до стехиометрических значений, что приводит к увеличению параметров цикла ГТД и повышению эффективности узла турбины и ГТД как тепловой машины в целом. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения и касается устройства маслосистемы авиационного газотурбинного двигателя. Масляная система авиационного газотурбинного двигателя содержит маслобак, нагнетающий насос с перепускным клапаном и напорной магистралью, подключенной к магистралям подачи масла в масляные полости подшипниковых опор ротора и коробки привода агрегатов. Напорная магистраль нагнетающего насоса через дополнительную магистраль с дозирующим дроссельным устройством подключена к маслобаку. Дозирующее дроссельное устройство выполнено в виде встроенного в дополнительную магистраль корпуса, внутри которого расположено седло с конусной иглой, установленной с возможностью осевого перемещения вдоль продольной оси дроссельного устройства, и снабжено регулируемым фиксатором положения иглы. Изобретение позволяет осуществлять бесступенчатое регулирование давления подачи масла в двигатель и повысить надежность работы двигателя за счет поддержания оптимальной величины давления подачи масла во всем диапазоне режимов работы. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к конструкции фронтового устройства камер сгорания газотурбинных установок и способу его работы. Фронтовое устройство кольцевой камеры сгорания включает наружную, внутреннюю стенки, переднюю, разделительную и огневую стенки, горелочные устройства, закрепленные на передней, разделительной и огневой стенках, наружный и внутренние кольцевые каналы. Огневая стенка выполнена в форме усеченного конуса, а в наружной и внутренней стенках закреплены втулки в количестве не менее 1 ряда на каждой стенке. Горелочные устройства расположены на наружном и внутреннем ярусах. Каждое горелочное устройство включает воздушный канал с завихрителем и соплом на выходе. Внутри воздушного канала коаксиально размещена топливная форсунка, а снаружи расположен топливовоздушный канал с завихрителем на входе, на втулке которого выполнены радиальные топливоподводящие отверстия. Снаружи топливовоздушного канала расположен наружный канал, снабженный осевыми топливопитающими отверстиями и отверстиями для подвода воздуха на входе в наружный канал, при этом выход наружного канала соединен с выходом топливовоздушного канала отверстиями. Имеются три топливных коллектора, два из которых расположены на входе во внутренний кольцевой канал, закреплены к передней стенке и соединены трубками с топливными форсунками. К разделительной и наружной стенкам фронтового устройства прикреплены обечайки, полость между которыми образует третий топливный коллектор, сообщенный с полостью между передней и разделительными стенками через радиальные отверстия в разделительной стенке. Полость между передней и разделительной стенками сообщена с радиальными топливоподводящими отверстиями на втулке осевого воздушного лопаточного завихрителя топливовоздушного канала и осевыми топливопитающими отверстиями наружного канала. Изобретения позволяют снизить содержание вредных выбросов оксидов азота и окиси углерода. 2 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к силовой установке двухмоторного летательного аппарата и способу управления ей. Силовая установка включает два комбинированных двигателя, каждый из которых содержит трехконтурный турбореактивный двигатель с форсажной полостью и прямоточный воздушно-реактивный двигатель, и имеет два независимых воздушных канала, один из которых связан с входом турбореактивного двигателя, а второй с входом прямоточного воздушно-реактивного двигателя. Воздухозаборники имеют две управляемые створки, соединены с входами турбореактивных двигателей. Выходы третьих контуров связаны с входами прямоточных двигателей. Прямоточные двигатели имеют кольцевые непрерывно-детонационные камеры сгорания, размещенные вокруг наружных поверхностей форсажных полостей, каждая из которых содержит проницаемые матричные форсунки в виде полуколец. Полукольца в одном двигателе размещены в горизонтальной плоскости, а в другом - в вертикальной плоскости, при этом вертикальная и горизонтальная оси симметрии между полукольцами взаимно перпендикулярны. Способ управления силовой установкой использует традиционное управление турбореактивными двигателями со скоростями Маха М≤3. При достижении скорости полета М>3 выключают турбореактивные двигатели и включают прямоточные воздушно-реактивные двигатели, которые увеличивают скорость полета летательного аппарата до М>5. Для управления вектором тяги в одном полукольце проницаемой матричной форсунки увеличивают массовый расход топлива, а в другом полукольце уменьшают, разность значений тяг на выходе используют для формирования момента, обеспечивающего поворот летательного аппарата. Силовая установка сочетает в себе возможности и преимущества различных типов воздушно-реактивных двигателей и способ управления для обеспечения при малых весах и габаритах оптимальных характеристик по тяге и экономичности в широком диапазоне скоростей и высот полета. 2 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к неразрушающему контролю технического состояния газотурбинных двигателей. Способ диагностики технического состояния газотурбинного двигателя, заключающийся в том, что выбирают параметры, подлежащие диагностическому контролю, текущее значение которых регистрируют на диагностируемом газотурбинном двигателе. Для диагностики газотурбинного двигателя по его любому узлу для последнего выбирают по меньшей мере два параметра, характеризующие его работоспособность и экспериментально определяют их предельно допустимые значения отклонений для данного типа двигателя. После чего в ходе работы двигателя в текущий момент времени вычисляют среднее значение для каждого выбранного параметра за предшествующий короткий и длинный временной периоды, при отношении короткого временного периода к длинному в интервале 0,002-0,1, и определяют их разность. Далее вычисляют отношение полученных разностей к соответствующим предельно допустимым значениям отклонений параметров, а затем суммируют их, и если полученная сумма отношений превышает единицу, то делают вывод о неисправности диагностируемого двигателя. Для диагностики газотурбинного двигателя по узлу компрессора низкого давления в качестве параметров, характеризующих его работоспособность, выбирают разницу между значением температуры слива масла из опоры турбины и значением температуры масла на входе в двигатель за фильтром, а также значение перепада давления масла на фильтре в магистрали общей откачки масла из двигателя и значение вибрации промежуточного корпуса газогенератора. Газотурбинный двигатель подвергают диагностике не менее 1 раза в минуту. Технический результат - расширение технологических возможностей способа по определению дефектов, влияющих на работоспособность узлов газотурбинного двигателя процессе его эксплуатации, выявление неисправностей на ранних стадиях и возможность отслеживания технического состояния двигателя в динамике. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области машиностроения, в частности к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей. Нагнетающий центробежно-шестеренный насос содержит корпус 1 с каналом входа 20 в насос, установленные в расточках корпуса 1 и находящиеся в зацеплении шестерни 2 и 3, в ступицах которых выполнены каналы 11, 12 для прохода рабочей жидкости в межзубовые полости 13, и полость нагнетания 19. В центральных расточках шестерен 2, 3 образованы полости всасывания 7, 8, в которых установлены соосно шестерням 2, 3 направляющие конусы 9, 10. Каждая из полостей 7, 8 снабжена индивидуальным каналом подвода 14, 15 рабочей жидкости. Вход канала 14 сообщен с полостью 19 через встроенный в корпус 1 перепускной клапан 17. Вход канала 15 сообщен с каналом 20. Выходы каналов 14, 15 расположены соосно центральным расточкам в шестернях 2, 3 и сообщены с полостями 7, 8 через смесительную камеру 16. Изобретение направлено на улучшение высотных характеристик нагнетающего центробежно-шестеренного насоса. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области газотурбинного двигателестроения. Изобретение позволяет повысить надежность и ресурс работы, увеличить продолжительность жизненного цикла газотурбинной установки. Газотурбинная установка содержит газотурбинный двигатель и газодинамически связанную с ним силовую осевую турбину, роторы которых механически не связаны друг с другом. На статоре силовой турбины напротив полотна диска первой и последней ступеней силовой турбины образованы кольцевые полости, отделенные от проточной части силовой турбины подвижными уплотнениями. Кольцевая воздушная полость на статоре силовой турбины за последней ступенью пневматически сообщена с проточной частью одной из ступеней компрессора газотурбинного двигателя по меньшей мере одним трубопроводом с проточным краном на нем. На стенке каждой кольцевой полости статора силовой турбины установлен приемник давления среды в этой полости, соединенный с датчиком давления, а проточный кран снабжен электроприводом. Датчики давления воздуха в кольцевой воздушной полости и электропривод проточного крана связаны с системой управления установки. При сообщении кольцевой воздушной полости с проточной частью одной из ступеней компрессора газотурбинного двигателя двумя и более трубопроводами их выходные отверстия в кольцевую воздушную полость равноудалены друг от друга и от оси силовой осевой турбины. 2 з.п. ф-лы, 3 ил.

Изобретение относится к двигателестроению, в частности к выходным устройствам двухконтурного турбореактивного двигателя. Известный двухконтурный турбореактивный двигатель, содержащий компрессор низкого давления, компрессор высокого давления, камеру сгорания, турбину высокого давления и турбину низкого давления, канал наружного контура, канал внутреннего контура, смеситель и общие для обоих контуров форсажную камеру и сопло, по предложению выполнен в виде чередующихся по периметру каналов, образующих выходную полость наружного контура и выходную полость внутреннего контура, установлен за турбиной низкого давления, при этом выходная полость наружного контура сообщена с каналом наружного контура, а выходная полость внутреннего контура сообщена с каналом внутреннего контура, причем отношение их площадей в поперечной плоскости равно: где - площадь выходной полости наружного контура; - площадь выходной полости внутреннего контура. Применение данного изобретения позволяет при сохранении конструкции и параметров основных узлов двигателя, используя оптимальное соотношение площадей выходных сечений смесителя, уменьшить потери полного давления при смешении потоков, что, в свою очередь, увеличивает степень расширения сопла, а следовательно, и скорость истечения потока из сопла и тягу двигателя. Это приводит к возможности выхода двигателя на более высокие потребные режимы без значительной добавки топлива, что повышает его экономичность, а также позволяет увеличить скорость полета самолета, его тяговооруженность, что для некоторых типов самолетов является определяющим фактором. 2 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей и используется для оценки их остаточного ресурса. Способ эксплуатации двигателя по его техническому состоянию включает определение фактической наработки двигателя, сравнение ее с допустимыми значениями и определение остаточного ресурса двигателя. При эксплуатации газотурбинного двигателя фиксируют рабочий диапазон двигателя по температуре газа за турбиной и разбивают его на не менее чем два поддиапазона по значению температуры газа за турбиной при номинальном значении мощности, в каждом из которых при граничных значениях температуры газа и соответствующих этим значениям тепловым и газодинамическим нагрузкам на деталь при заданном значении ресурса на основе характеристик материала детали определяют коэффициенты запаса статической прочности Kmi с учетом предела ползучести материала, выбирают наиболее нагруженную деталь с минимальным значением Kmi, для каждого поддиапазона определяют среднее значение коэффициента Kmi ср., в первом поддиапазоне от значения температуры газа за турбиной при номинальном значении мощности; среднее значение коэффициентов запаса принимают за базовое значение Кmi ср. баз., затем определяют для каждого поддиапазона отношения bi=Km ср. баз./ Kmi ср., а интервал времени Тэ, в течение которого сохраняется работоспособное состояние двигателя, определяют по формуле: Тэ=Σbi* τi, где τi - фактическая наработка двигателя при работе в каждом поддиапазоне; bi - коэффициент пересчета фактической наработки к более нагруженным режимам. Предложенный способ позволяет увеличить ресурс и продолжительность жизненного цикла двигателя за счет учета реальной нагрузки на его детали в ходе эксплуатации. 3 табл.

Изобретение относится к области двигателестроения, в частности к маслосистеме энергетической газотурбинной установки (ЭГТУ), применяемой на газоперекачивающих и электрических станциях для привода разнообразных агрегатов (насосов, газовых и воздушных компрессоров, электрогенераторов и т.п.). Маслосистема ЭГТУ содержит два нагнетающих насоса с приводом одного из них от ротора турбокомпрессора, а другого - с электроприводом, всасывающие магистрали которых подключены параллельно к маслобаку, а напорные магистрали сообщены между собой через автоматическое запорное устройство и соединены с масляными полостями опорных подшипников роторов компрессора и свободной турбины, причем в магистрали подачи масла к упорному подшипнику турбокомпрессора установлен датчик давления. Согласно изобретению автоматическое запорное устройство выполнено в виде обратного клапана, установленного между напорными магистралями нагнетающих насосов и подпружиненного в сторону выхода нагнетающего насоса с электроприводом, а датчик давления соединен с последним. Такое выполнение устройства позволит упростить процесс подачи масла в масляные полости турбокомпрессора и свободной системы и таким образом повысить надежность работы ЭГТУ. 1 ил.

Изобретение относится к способам исследования и совершенствования непрерывно-детонационных камер сгорания для использования их в авиационном двигателестроении. Техническим результатом, достигаемым при использовании заявленного способа, является выявление зоны совместной работы ДФКС и ТРД с требуемыми параметрами. Заявленный технический эффект достигается тем, что способ стендовых совместных испытаний непрерывно-детонационной камеры сгорания, интегрированной в контур турбореактивного двигателя, заключается в снятии выходных характеристик детонационной камеры сгорания и двигателя в целом при изменении параметров на входе в детонационную камеру сгорания, при этом при подаче газового потока с выхода турбореактивного двигателя на вход детонационной форсажной камеры в него добавляют кислород или воздух, в процессе испытаний изменяют температуру керосина, поступающего на вход в детонационную камеру сгорания, осуществляют барботирование керосина инертным газом, изменяют температуру внутренних стенок камеры сгорания, изменяют расход подачи кислорода или воздуха в детонационную камеру сгорания, при этом определяют условие наличия непрерывно-детонационного и продольно-пульсирующего режимов работы детонационной камеры сгорания и фиксируют величину создаваемой дополнительной реактивной тяги турбореактивного двигателя с детонационной камерой сгорания в целом, а по результатам испытаний судят о зоне надежной работы детонационной камеры сгорания в составе турбореактивного двигателя. 12 ил.

Изобретение относится к двигателестроению, в частности к выходным устройствам двухконтурного двигателя. Известный двухконтурный двигатель, содержащий вентилятор, компрессор высокого давления, камеру сгорания, тракт наружного контура, многоступенчатую охлаждаемую турбину с рабочим колесом турбины низкого давления с охлаждаемыми рабочими лопатками, охлаждающие каналы которых своими выходами сообщены с газовым трактом турбины, а входами - с магистралью подвода, проходящей через внутренние полости расположенных за турбиной радиальных стоек, при этом магистраль подвода через воздухозаборники, повернутые своими входами к входу двигателя, сообщена с трактом наружного контура, согласно изобретению снабжен смесителем, расположенным за радиальными стойками за турбиной и выполненным в виде чередующихся по периметру каналов, образующих выходную полость наружного контура и выходную полость внутреннего контура, при этом выходная полость наружного контура сообщена с трактом наружного контура, а выходная полость внутреннего контура сообщена с газовым трактом турбины, при этом воздухозаборники размещены по тракту наружного контура перед смесителем. Кроме того, отношение площади выходной полости наружного контура к площади выходной полости внутреннего контура в радиальной плоскости может быть равно где FвыхНК - площадь выходной полости наружного контура; FвыхВК - площадь выходной полости внутреннего контура. Реализация изобретения позволяет повысить надежность рабочей лопатки турбины и снизить эксплуатационные затраты за счет повышения эффективности охлаждения турбины на режимах с максимальной температурой газа, а следовательно, повысить ресурс как самой рабочей лопатки, так и двигателя в целом. 1 з.п. ф-лы, 3 ил.

Изобретение относится к удаленному мониторингу. Система удаленного мониторинга газотурбинной установки содержит датчики, передающие информацию об эксплуатационных параметрах установки на сервер нижнего уровня, который хранит и передает информацию на сервер верхнего уровня. Сервер нижнего уровня включает блок математической обработки, базу данных истории эксплуатации, блок сравнения, блок автоматики, блок журнала предупреждений. Сервер верхнего уровня представляет собой графический интерфейс, в котором содержатся логический блок трендового контроля эксплуатационных параметров; логический блок оценки технического состояния; логический блок трендов зависимостей; логический блок анализа трендов; логический блок карты параметров; логический блок журнала предупреждений; логический блок мнемосхемы газотурбинной установки; логический блок показателей газотурбинной установки. Повышается оперативность контроля. 3 ил.

Изобретение относится к способу восстановления и упрочнения антивибрационных полок титановых лопаток компрессора ГТД и может быть использовано в отрасли авиастроения для ремонта и упрочения как бывших в эксплуатации, так и новых титановых лопаток компрессора ГТД. Методом лазерной наплавки осуществляют нанесение порошкового материала на основе титана. В качестве порошкового материала используют композитную смесь порошков титанового сплава и карбида титана с фракцией 20-200 мкм и 10-70 мкм соответственно в пропорциях 3/17-1/4. Техническим результатом изобретения является достигаемая экономическая выгода за счет повышения стойкости и межремонтного интервала рабочих лопаток компрессора ГТД, а также увеличение технологичности с минимизацией влияния человеческого фактора на производстве. 2 ил., 1 пр.

Способ организации периодической работы непрерывно-детонационной камеры сгорания включает подачу окислителя и жидкого топлива в виде струй и пристеночных пленок и инициирование горения. Для камеры сгорания определяют усталостную прочность ее стенок и критическую температуру, при которой она разрушается. Уменьшают значение критической температуры до заданного рабочего значения температуры стенок, принимают это значение в качестве критерия, с которым сравнивают текущие значения температуры стенок и при достижении хотя бы одной из них значения рабочей температуры, прекращают подачу топлива. Обеспечивают прохождение воздуха через камеру сгорания для охлаждения поверхности ее внутренних стенок и в момент достижения стенками заданной начальной температуры осуществляют очередную подачу топлива и включение инициатора детонации. Многократно автоматически повторяют процессы непрерывно-детонационного горения и охлаждения. Время непрерывной работы камеры сгорания увеличивается до величины, равной сумме периодов работы камеры сгорания. Устройство включает проточную кольцевую камеру сгорания, инициаторы детонации с клапанами, узел подачи окислителя, узлы подачи жидкого топлива в виде струй и пристеночных пленок с клапанами, выходное сопло. Устройство снабжено системой автоматического управления с усилительно-преобразовательным устройством, на наружных поверхностях стенок камеры сгорания установлены датчики температуры. Датчики температуры связаны с входом усилительно-преобразовательного устройства, а выходы соединены с клапанами. Изобретения позволяют увеличить время непрерывной работы непрерывно-детонационной камеры сгорания. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано при создании реактивных двигателей, предназначенных для полета летательных аппаратов в атмосфере за счет реализации детонационного термодинамического цикла с высокой частотой повторений импульсов и самоподдержания процесса детонации топлива. В известном турбореактивном авиационном двигателе, содержащем воздухозаборник, газогенератор, сопло и детонационное устройство, примыкающее к корпусу наружного контура двигателя, по предложению, детонационное устройство выполнено в виде продольной кольцевой камеры сгорания с входным воздушным каналом из воздухозаборника двигателя и осевым завихрителем на ее входе, проточная часть камеры отделена от проточной части газогенератора, а на внутренней стороне наружной стенки кольцевой камеры сгорания последовательно размещены вдоль продольной оси двигателя пояса смесителей топлива и воздуха с запальными устройствами в них, при этом по периметру каждого пояса установлено не менее трех смесителей воздуха и топлива с запальными устройствами, выполненных в виде отрезков трубок, входы и выходы которых направлены вдоль направления потока воздуха, поступающего от осевого завихрителя, а оси топливных форсунок в смесителе направлены под углом к направлению потока воздуха в нем, причем каждый отдельный пояс смесителей настроен на свой нормированный режим импульсной детонации. Применение двигателя позволяет повысить топливную экономичность до 30%, качественно увеличить скорость полета до 5 М, обеспечить постоянный удельный импульс по топливу 2000-2500 с при работе на углеводородном топливе без существенного увеличения габаритов и веса, увеличить КПД, снизить стоимости за счет упрощения конструкции. 5 з.п. ф-лы, 3 ил.

Изобретение относится к способу работы прямоточного воздушно-реактивного двигателя на основе непрерывно-детонационных камер сгорания и устройству для его реализации. Используют две кольцевые непрерывно-детонационные камеры сгорания, для которых задают начальную температуру их стенок и рабочую температуру, не превышающую критическую температуру разрушения стенок камер сгорания. Обеспечивают параллельную работу камер сгорания в периодическом режиме таким образом, что при достижении текущего значения температуры хотя бы одной из стенок камеры сгорания значения, равного величине заданной рабочей температуры, прекращают подачу топлива и осуществляют прохождение через камеру сгорания воздуха для ее охлаждения до достижения начальной температуры. После этого осуществляют подачу топлива и обеспечивают детонационное горение. В каждом периоде работы детонационное горение одной камеры сгорания выполняют во время охлаждения другой камеры сгорания. Количество периодов работы обеих камер сгорания соответствует числу усталостной прочности материала камер сгорания. Прямоточный воздушно-реактивный двигатель включает две непрерывно-детонационные камеры сгорания, концентрически размещенные одна в другой с образованием между ними кольцевой охлаждающей воздушной полости. Каждая камера сгорания включает топливную форсунку и инициатор детонации, снабженные клапанами, а также датчики температуры. Двигатель снабжен системой автоматического управления, включающей усилительно-преобразовательное устройство, при этом чувствительными элементами системы автоматического управления являются датчики температуры, а исполнительными элементами - клапаны топливных форсунок и инициаторов детонации, а система автоматического управления выполнена таким образом, чтобы обеспечивать одновременную периодическую работу камер сгорания. Изобретения позволяют повысить тягу двигателя. 2 н. и 1 з.п. ф-лы, 9 ил.

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным силовым установкам широкофюзеляжных самолетов с высокой скоростью полета. Установка состоит из осесимметричного корпуса (1), прикрепленного к торцевой поверхности фюзеляжа (2) центральной и обтекаемыми пластинами (3, 4) соответственно, включающего две кольцевые обечайки (5, 6) контура основного потока воздуха (7) и тракта пограничного слоя фюзеляжа (8). В тракте (8) установлены воздухозаборник (9), вентилятор (10) и сопло (11). В контуре (7) установлены кольцевой воздухозаборник (12), вентилятор (13) и сопло (14). Газогенераторный контур (15) расположен за корневыми частями лопаток вентилятора (13) и включает турбокомпрессор (16), четырехтактные поршневые газогенераторы (17), каждый снабжен двумя оппозитными рабочими поршнями. Каждые несколько пар газогенераторов (17) взаимодействуют с гидравлическими двигателями (18) и радиальными валами (19), газогенераторы (17) и гидравлические двигатели (18) осесимметрично расположены на наружной поверхности контура основного потока воздуха (7). За вентилятором (13) расположены полые лопатки (20), через которые воздух от турбокомпрессора (16) и горячий газ от поршневых газогенераторов (17) поступает туда и обратно к турбине (21) и далее к соплу (22). Центральный вал (23) вентиляторов (10, 13) тракта пограничного слоя фюзеляжа (8) и контура основного потока (7) воздуха соответственно и турбины (20) связан планетарным редуктором (24) и коническим редуктором (25) с радиальными валами (19) гидравлических двигателей (18). Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в увеличении дальности, скорости полета самолета и увеличении полезной нагрузки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к квантовой электронике, конкретно к способам формирования световых пятен от излучения концентрических излучателей, и может быть использовано при создании технологических устройств, в частности, интегрированных в конструкцию газотурбинного двигателя, для адаптивного управления размерами световых пятен на динамическом объекте. Предложенные способ и устройство для его реализации за счет дополнительного резонатора усиления лазерного луча и системы фокусировки светового пятна на динамическом объекте с помощью полупрозрачного деформируемого зеркала позволяют повысить мощность излучения, формирующего на объекте световое пятно (изображение), позволяют компенсировать угол расходимости светового излучения в зависимости от расстояния до динамического объекта, тем самым улучшить качество изображения на динамическом объекте. Использование в предлагаемом устройстве дополнительного линейного резонатора дает возможность интегрировать устройство в конструкцию газотурбинного двигателя. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к авиадвигателестроению и касается устройства системы суфлирования воздуха авиационного газотурбинного двигателя (далее ГТД). Задачей изобретения является снижение расхода масла в ГТД за счет рациональной организации подвода воздуха и отвода масла от суфлера. Указанная задача решается тем, что в системе суфлирования воздуха в авиационном ГТД, содержащей полости подшипниковых опор ротора и коробку привода агрегатов с приводным центробежным суфлером с каналами подвода воздха и отвода масла, согласно настоящему изобретению полости подшипниковых опор ротора подключены системой суфлирующих магистралей к подводящему каналу установленного внутри замкнутой емкости циклонного воздухоотделителя, воздухоотводящий канал которого сообщен с замкнутой полостью, которая сообщена с каналом подвода воздуха в центробежный суфлер, а в подводящий канал циклонного воздухоотделителя встроен эжектор, низконапорное сопло которого сообщено с каналом отвода масла центробежного суфлера. 1 ил.

Изобретение относится к камерам сгорания газотурбинных установок, работающим на газообразном углеводородном топливе и использующим в своей работе каталитические средства. Способ подготовки и сжигания топлива в камере сгорания газотурбинной установки включает подачу воздуха из-за компрессора в камеру сгорания, подачу в одну часть форсунок камеры сгорания газообразного углеводородного топлива, подачу в другую часть форсунок камеры сгорания газовой смеси, содержащей по меньшей мере СО и Н2, полученной путем смешения упомянутого газообразного углеводородного топлива с воздухом и пропусканием данной топливовоздушной смеси через предварительно нагретый катализатор. Газовую смесь на форсунки камеры сгорания подают с обеспечением перепада давления на указанных форсунках не менее 0,5 кгс/см посредством изменения давления воздуха и газообразного углеводородного топлива, формирующих топливовоздушную смесь, пропускаемую через катализатор. Коэффициент избытка воздуха топливовоздушной смеси находится в интервале от 0,25 до 0,32. Воздух для топливовоздушной смеси получают от стороннего источника воздуха, а предварительный нагрев катализатора осуществляют от независимого источника тепла. Изобретение позволяет упростить настройку газотурбинной установки под изменяемые режимы работы с сохранением экологических характеристик. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей в промышленности в качестве привода газоперекачивающих агрегатов, в частности, к способам, связанным с необходимостью очистки проточных частей и внутренних каналов газотурбинных двигателей от загрязнений и топливных осаждений в трубопроводах. В известном способе очистки газотурбинного двигателя, включающем последовательную подачу моющего раствора и воды с нормированным давлением и расходом на вход в двигатель при работе на режиме «холодной прокрутки», очистку проточной части, наружных поверхностей форсунок камеры сгорания и уплотнений предмасляных полостей двигателя, слив моющего раствора и воды из проточной части двигателя через дренажную систему, по предложению, до подачи моющего раствора и воды, в форсунки камеры сгорания и в систему наддува опор через дополнительные воздуховоды подают воздух от автономного источника питания, при этом на рабочих режимах воздуховоды, используемые для подачи воздуха в систему наддува опор, перекрывают установленными на них дополнительными заслонками, а воздух прекращают подавать после завершения подачи моющего раствора и воды. Моющий раствор и воду на вход в двигатель можно подавать через коллектор подачи. Реализация данного изобретения позволяет снизить затраты на эксплуатацию газотурбинного двигателя за счет исключения слива масла после каждой промывки двигателя и сокращения времени простоя двигателя при заливе нового масла, а также за счет исключения разборки двигателя и механической очистки форсунок камеры сгорания. Также повышается ресурс и надежность двигателя за счет повышения ресурса элементов маслосистемы и камеры сгорания, уменьшения потребляемой мощности компрессора, повышение его КПД и смещение границы помпажа компрессора в сторону его рабочей зоны. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей. Способ ресурсных испытаний газотурбинного двигателя включает разбиение рабочей области частоты вращения ротора с рабочими лопатками на несколько диапазонов и наработку в каждом диапазоне времени нагружения Т, по прохождении которой при отсутствии повреждений на рабочих лопатках делают вывод о подтверждении ресурса. Для всех рабочих лопаток определяют частоту их собственных колебаний по первой изгибной форме f1, и по наименьшему значению собственной частоты колебаний f1min определяют время нагружения Т по зависимости: , где N - нормативная база нагружения, равная 20⋅106 циклов, затем рабочую область частоты вращения ротора для испытуемого двигателя разбивают на площадки шириной 0,4-0,5% от минимального значения частоты рабочей области, после чего на каждой площадке производят наработку по времени нагружения Т при средней частоте вращения ротора для данной площадки. Изобретение позволяет повысить достоверность подтверждения динамической прочности рабочих лопаток ротора. 1 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей (ГТД), а именно к контролю их технического состояния во время эксплуатации для принятия решения по их обслуживанию и дальнейшей эксплуатации. Способ контроля технического состояния ГТД во время его эксплуатации включает измерение температуры газа в потоке за турбиной низкого давления - Т4 термопарами не менее, чем в восьми точках, равномерно размещенных по окружности в характерном сечении, в начале и во время эксплуатации. При осуществлении способа периодически вычисляют разность ΔT4i между каждыми двумя соседними термопарами, фиксируют наработку ГТД в момент измерения времени τ, определяют зависимости ΔT4i=f(τ), при этом предварительно устанавливают предельно допустимую величину отклонения ΔT4i пред. от значений, определенных по измерению в начале эксплуатации, сравнивают ΔT4i=f(τ) с ΔT4i пред., и по выходу текущих значений ΔT4i за границу предельно допустимых отклонений ΔT4i пред. судят об изменении технического состояния двигателя. Технический результат от использования изобретения заключается в том, что по изменению разности между термопарами, измеряющими температуру газа в потоке за турбиной низкого давления - Т4, можно сделать выводы о техническом состоянии камеры сгорания газотурбинного двигателя, а также точно определить место, в котором происходит ухудшение технического состояния, благодаря чему можно предотвратить развитие дефекта и минимизировать затраты на ремонт двигателя путем принятия своевременного решения. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к машиностроению, в том числе к газотурбиностроению, а именно к испытательной технике, в частности к стендам полунатурного моделирования испытаний агрегатов и систем, и может быть использовано при ресурсных испытаниях с имитацией эксплуатационных режимов нагружения комплекта агрегатов и узлов газотурбинного двигателя. Стенд содержит корпус газотурбинного двигателя с установленными на нем коробками двигательных и самолетных агрегатов с приводными агрегатами и размещенными штатно на корпусе газотурбинного двигателя неприводными агрегатами. При этом трубопроводы и электрические кабели, соединяющие агрегаты в системы, и закрепление их на корпусе газотурбинного двигателя выполнены идентичными трубопроводам и электрическим кабелям и их закреплению на газотурбинном двигателе, системы и агрегаты подключены к стендовым системам обеспечения рабочими жидкостями и электроэнергией и гидравлическим и электрическим системам загрузки. Коробки двигательных и самолетных агрегатов сообщены с маслосистемой и кинематически через центральную коническую передачу соединены с приводом вращения в виде электродвигателя, установленного и закрепленного внутри корпуса, газотурбинного двигателя, причем центральная коническая передача, неприводные и приводные агрегаты, коробки двигательных и самолетных агрегатов с агрегатами на коробках и маслосистема выполнены штатными или технологическими (стендовыми) идентичными штатным. Обеспечивают испытания агрегатов и систем газотурбинного двигателя, а по меньшей мере один агрегат является испытуемым и выполнен штатным. Технический результат заключается в возможности воспроизводства реальных течений в коммуникациях и агрегатах систем ГТД и воспроизведении реальных нагрузочных циклов узлов ГДТ при проведении испытаний. 1 ил.

Изобретение относится к области машиностроения и касается устройства маслосистемы авиационного газотурбинного двигателя (далее ГТД) с форсажной камерой, устанавливаемого на сверхзвуковые маневренные самолеты. Технический результат изобретения - повышение надежности работы ГТД путем упрощения настройки дросселя и обеспечения стабильности давления подачи масла при запуске. Указанный технический результат решается тем, что известная маслосистема авиационного ГТД с форсажной камерой содержит сифонный затвор, установленный в магистрали подачи масла, восходящая ветвь которого через второй выход управляемого двухпозиционного клапана сообщена с масляной полостью секции двухсекционного топливомасляного теплообменника, топливная полость которой сообщена с магистралью подачи топлива в основную камеру сгорания, а ниспадающая ветвь сообщена с масляной полостью секции двухсекционного топливомасляного теплообменника, топливная полость которой сообщена с магистралью подачи топлива в форсажную камеру сгорания. При этом регулируемый дроссель установлен в магистрали, сообщающей петлю сифонного затвора с маслобаком. 1 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике и может быть использовано при создании технологических лазерных систем, интегрированных в конструкцию газотурбинного двигателя. Способ генерации излучения газодинамического лазера интегрированного в единую конструкцию газотурбинного двигателя включает подачу воздуха и горючего в камеру сгорания двигателя, организацию сверхзвукового потока газа в критических сечениях, создание в этом потоке инверсии населенности, ее использование для образования когерентного излучения, формирование структуры лазерного луча. При этом воздух и горючее подают в дополнительную кольцевую секционную камеру сгорания, образующую сверхзвуковые потоки газа в критических сечениях расположенных вокруг камеры сгорания двигателя, а для создания инверсии населенности в сверхзвуковые потоки газа в критических сечениях дополнительно подают балластировочные газы, температуру и давление которых регулируют для достижения эффекта Джоуля-Томсона, при этом расход балластировочных газов устанавливают в зависимости от режима работы газотурбинного двигателя. Технический результат заключается в обеспечении возможности повышения КПД и удельной мощности лазера. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей в промышленности в качестве привода газоперекачивающих агрегатов, в частности к дополнительным устройствам, обеспечивающим очистки проточных частей и внутренних каналов газотурбинных двигателей от загрязнений и топливных осаждений в трубопроводах. Газотурбинный двигатель содержит камеру сгорания с форсунками, автономный источник питания, источник высокого давления, источник низкого давления, клапан переключения наддува, единую централизованную систему наддува опор, каждая из которых включает полость наддува и предмасляную полость. Полости наддува сообщены питающими воздуховодами через клапан переключения наддува с источником высокого давления и с источником низкого давления, а через воздуховоды - друг с другом. По предложению, для очистки от загрязнений он снабжен дренажной системой и установленным на входе в двигатель коллектором подачи с форсунками. Коллектор подачи соединен с системами подачи моющего раствора и воды и с нагнетающим компрессором, а дренажная система сообщена с проточной частью газотурбинного двигателя. При этом автономный источник питания через дополнительные трубопроводы сообщен с клапаном переключения наддува и с форсунками камеры сгорания, а на питающих воздуховодах, сообщенных с источником высокого давления и с источником низкого давления, установлены дополнительные заслонки. Коллектор подачи на входе в газотурбинный двигатель может быть установлен с возможностью поворота из рабочего в нейтральное положение. Реализация данного изобретения позволяет сохранить термодинамические параметры двигателя (КПД, мощность) на всем протяжении его эксплуатации за счет периодически проводимой очистки проточной части двигателя от загрязнений, при этом снизить затраты на эксплуатацию двигателя за счет исключения слива масла после каждой промывки двигателя и сокращения времени простоя двигателя при заливе нового масла, а также за счет исключения разборки двигателя и механической очистки форсунок камеры сгорания. Также реализация данного изобретения позволяет повысить ресурс и надежность двигателя за счет повышения ресурса элементов маслосистемы и камеры сгорания. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области газотурбинного двигателестроения, а именно к системам наддува опор газотурбинных двигателей. Газотурбинный двигатель, содержащий компрессор низкого давления с опорами, компрессор высокого давления с опорой, турбину высокого давления и турбину низкого давления с опорами и дисками, образующими между собой междисковую полость турбин, источник высокого давления, источник низкого давления, клапан переключения наддува, единую централизованную систему наддува опор, каждая из которых включает полость наддува и предмасляную полость. Полости наддува через клапан переключения наддува сообщены питающими воздуховодами и с источником высокого давления, и с источником низкого давления, а воздуховодами друг с другом. Междисковая полость турбин через подвижные уплотнения сообщена и с газовоздушным трактом двигателя, и с предмасляными полостями турбин. По предложению газотурбинный двигатель снабжен теплообменником, оснащенным трактом охлаждающего воздуха и трактом охлаждаемого воздуха, при этом тракт охлаждающего воздуха своим входом сообщен с источником низкого давления, а выходом с газовоздушным трактом за турбиной низкого давления. Тракт охлаждаемого воздуха своим входом сообщен с источником высокого давления, а выходом через подводящие воздуховоды сообщен и с клапаном переключения наддува и/или с междисковой полостью турбин. Реализация данного изобретения за счет снижения температуры масла обеспечивает стабильность его свойств и дальнейшее многократное использование в линии подвода масла к подшипникам опоры, улучшение условий работы подшипников турбины высокого и низкого давления и, как следствие, повышение их ресурса и долговечности, а также исключение образования кокса на элементах конструкции опоры турбины. 2 з.п. ф-лы, 1 ил.

Изобретение относится к газотурбинным двигателям, а именно к системам наддува опор. Известный двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость наддува опор и предмасляные полости турбины, клапан суфлирования компрессора, клапан суфлирования турбины, питающий воздуховод, выполненный единым для всей системы наддува опор двигателя, сообщенный с клапаном переключения и, по меньшей мере, с двумя входами, разнесенными вдоль газовоздушного тракта, один из входов которого сообщен с одной из ступеней компрессора высокого давления, а другой установлен в газовоздушном тракте за компрессором низкого давления, полости наддува опор компрессора низкого давления и компрессора высокого давления и полость наддува опор турбины воздуховодами сообщены друг с другом и через подвижные уплотнения с газовоздушным трактом двигателя, воздуховод, сообщающий полость наддува компрессора высокого давления и полость наддува турбины, расположен в межвальной зоне, образованной валами высокого и низкого давления, предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, предмасляные полости компрессоров низкого и высокого давления сообщены воздуховодами с клапаном суфлирования компрессора, а предмасляные полости турбины сообщены воздуховодами с клапаном суфлирования турбины, по предложению, в межвальной зоне полость наддува турбины объединена с предмасляной полостью турбины, клапан суфлирования компрессора и клапан суфлирования турбины своими выходами сообщены с областью низкого давления, при этом отношение газодинамической площади проходного сечения клапана суфлирования компрессора μКFК к газодинамической площади проходного сечения клапана суфлирования турбины μTFT равно 0,4…0,7, где μК - коэффициент расхода клапана суфлирования компрессора; FК - геометрическая площадь проходного сечения клапана суфлирования компрессора; μT - коэффициент расхода клапана суфлирования турбины; FT - геометрическая площадь проходного сечения клапана суфлирования турбины. Для двигателей авиационного назначения клапан суфлирования компрессора и клапан суфлирования турбины своими выходами могут быть сообщены в качестве области низкого давления с окружающей средой, а для двигателей наземного назначения клапан суфлирования компрессора и клапан суфлирования турбины своими выходами могут быть сообщены в качестве области низкого давления с пространством шахты наземной установки (градирни) или с пространством устройства очистки отходящих газов или с пространством устройства с регулируемым уровнем давления. Реализация данного изобретения позволяет повысить ресурс и надежность элементов конструкции двигателя за счет исключения попадания масла в газовоздушный тракт двигателя, исключения образования кокса на горячих элементах конструкции ротора, а также за счет стабильного охлаждения валов роторов холодным воздухом. Также данное изобретение обеспечивает отсутствие паров масла в системе кондиционирования самолета и в системе жизнеобеспечения летчика. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок, и может быть использовано при разработке энергоустановок с охлаждением масла в замкнутой циркуляционной системе и для модернизации нагревательных систем для поддержания рабочей температуры масла в маслобаках газотурбинных двигателей. Известная охлаждаемая турбина двухконтурного газотурбинного двигателя, содержащая раздаточный коллектор с узлом для соединения с источником высокотемпературного воздуха, коллектор с узлом для соединения с источником низкотемпературного воздуха, междисковую полость, сообщенную с источником высокотемпературного воздуха, рабочие колеса турбин высокого и низкого давления с рабочими лопатками и дисками, цапфы дисков турбин высокого и низкого давления, лопатки соплового аппарата, задние опоры турбин высокого и низкого давления с подшипниками, масляные полости турбин высокого и низкого давления, сообщенные между собой через систему отверстий, выполненных в цапфе диска турбины низкого давления, полости наддува и предмасляные полости турбины высокого и низкого давления, причем предмасляная полость турбины низкого давления посредством воздуховодов, размещенных в задней опоре турбины низкого давления, сообщена с атмосферой, а предмасляная полость турбины высокого давления сообщена с источником низкотемпературного воздуха, при этом предмасляные полости турбины высокого и низкого давления сообщены друг с другом и через масляные подвижные уплотнения с одноименными масляными полостями, по предложению снабжена дополнительными воздуховодами и каналами, выполненными в задней опоре турбины высокого давления, при этом каналы сообщены, с одной стороны, с предмасляными полостями турбины высокого и низкого давления, а, с другой стороны, через дополнительные воздуховоды на выходе с областью давления ниже, чем в предмасляных полостях. Кроме того, возможно, что областью давления ниже, чем в предмасляных полостях, является газовоздушный тракт за турбиной или атмосфера. Охлаждаемая турбина двухконтурного газотурбинного двигателя может содержать одно или более дросселирующее устройство, размещенное на выходе из дополнительных воздуховодов, а сами дополнительные воздуховоды могут быть размещены в полостях лопаток соплового аппарата. Применение изобретения обеспечивает снижение температуры масла в 2 раза, обеспечивает стабильность его свойств и дальнейшее многократное использование в линии подвода масла к подшипникам опоры, улучшение условий работы подшипников турбины высокого и низкого давления и, как следствие, повышение их ресурса и долговечности, а также исключение образования кокса на элементах конструкции опоры турбины. 4 з.п. ф-лы, 2 ил.

Изобретение относится к уплотнительной технике. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала, внутри которого расположен кольцевой постоянный магнит, две полюсные приставки, имеющие кольцевые магнитопроводящие монолитные основания, у которых на поверхности, обращенной к валу, установлены магнитопроводящие щетки, магнитную втулку вала и магнитную жидкость в зазоре между магнитной втулкой вала и концами щетинок. Кольцевой постоянный магнит установлен между двух полюсных приставок, причем к его внутренней и внешней сторонам примыкают соответственно внутренняя и внешняя кольцевые немагнитные втулки, при этом между внешней кольцевой немагнитной втулкой и корпусом образована кольцевая заправочная емкость, имеющая сообщение с полостью зазора поперечными относительно оси вала каналами. Имеется термоэлектрический модуль, примыкающий холодной стороной к корпусу над заправочной емкостью и связанный с источником питания, при этом горячая сторона термоэлектрического модуля направлена в воздушное пространство. К наружным боковым сторонам обоих полюсных приставок примыкают кольцевые немагнитные проставки. Между каждой кольцевой немагнитной проставкой и крышкой немагнитного корпуса размещены магнитопроводящие кольца с радиальными сквозными отверстиям, в каждом из которых размещена немагнитная трубка, внутри которой в свою очередь расположен полый трубчатый магнит с осевой намагниченностью. Для трубчатых магнитов, расположенных со стороны южного полюса кольцевого постоянного магнита, их северные полюсы направлены в сторону зазора с магнитной жидкостью, а южные в сторону заправочной емкости, а для трубчатых магнитов, расположенных со стороны северного полюса кольцевого постоянного магнита, их южные полюсы направлены в сторону зазора с магнитной жидкостью, а северные в сторону заправочной емкости. Изобретение обеспечивает повышение качества и ресурса уплотнения, уменьшение трения между вращающимся валом и щетками. 2 ил.

Изобретение к лазерной технике. Кольцевой объемный оптический резонатор содержит ограниченную наружной и внутренней стенками кольцевую замкнутую полость с впускным отверстием для активной среды и отводным отверстием, образующую коаксиальные поверхности, систему зеркал, установленных вдоль поверхностей полости и образующих оптическую ось в виде замкнутой ломаной линии, выпускное отверстие для излучения. Замкнутая полость выполнена между наружной и внутренней стенками в виде тороидальных коаксиальных поверхностей или наружной и внутренней стенками в виде коаксиальных многогранников. Зеркала системы установлены с нечетным количеством отражающих граней зеркал и расположены относительно друг друга с образованием верхнего и нижнего односторонних световодов с конечными глухими зеркалами, направленными на выпускное отверстие для излучения. Технический результат заключается в обеспечении возможности получения резонатора наибольшего объема с максимальным коэффициентом усиления и минимальным весом. 6 з.п. ф-лы, 5 ил.

Группа изобретений относится к области авиадвигателестроения. Ротор ТВД двигателя содержит рабочее колесо ТВД, включающее диск и лопаточный венец с системой рабочих лопаток. Лопатка ТВД включает каждая хвостовик и перо с выпукло-вогнутым профилем стенок. Диск рабочего колеса выполнен в виде моноэлемента, включающего ступицу и полотно с ободом. Вал РВД образован сочетанием выполненных за одно целое с диском консольных кольцевых элементов для соединения с валом КВД и носком ТВД. Ротор ТВД включает напорный диск, образующий совместно с диском ротора кольцевой канал для подвода потока охлаждающего воздуха из аппарата закрутки воздуха к тракту воздушного охлаждения лопаток ТВД. В ободе диска выполнен диффузорный канал тракта, продолженный в замке, ножке и полке хвостовика лопатки ротора ТВД с выходом в охлаждаемую полость лопатки. Раздаточный коллектор распределения охлаждающего воздуха в полости лопатки сообщен с каналом циклонного охлаждения лопатки. Для чего циклонный канал снабжен двумя рядами отверстий - входным рядом отверстий в разделительной стенке и выходным рядом отверстия в спинке лопатки. Большая часть пера лопатки снабжена вихревой матрицей, дополненной на выходе из полости пера турбулизатором. Аппарат закрутки воздуха наделен системой конфузорных цилиндроконических сопел. Изобретение направлено на повышение эффективности охлаждения теплонапряженных элементов ТВД, надежности и ресурса ТВД и двигателя в целом. 3 н. и 6 з.п. ф-лы, 8 ил.

Группа изобретений относится к области авиадвигателестроения. Лопатка рабочего колеса ротора ТНД включает хвостовик и перо с выпукло-вогнутым профилем. Полость лопатки выполнена на полную высоту пера лопатки Полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью стержней, наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки. Стержни выполнены за одно целое с оболочкой пера лопатки со смещением в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов. В способ охлаждения лопатки рабочего колеса ротора ТНД лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД. В полость лопатки охлаждающий воздух поступает через канал в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины. Полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера. Стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту удельного аэродинамического затенения повторяемой ячейки решетки К1уд.з.≤0,40. В диагональных рядах - пропорционально коэффициенту К2уд.з.≤0,35. Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=≥0,86×103 [м2/м3]. Изобретение направлено на повышение эффективности охлаждения лопаток ротора ТНД. 2 н.п. ф-лы, 1 илл.

Способ регулирования авиационного двухроторного турбореактивного двигателя относится к области авиационного двигателестроения, а именно к системам регулирования, чувствительным к параметрам двигателя и окружающей среды, и позволяет повысить тяговые характеристики двигателя за счет оптимизации частоты вращения ротора низкого давления при исключении работы двигателя на режимах с повышенными напряжениями в лопатках входного и направляющего аппарата первой ступени компрессора низкого давления. Способ регулирования авиационного турбореактивного двигателя включает поддержание заданных частот вращения роторов и температуры газов за турбиной в зависимости от температуры воздуха на входе в двигатель, а при достижении заданной температуры воздуха на входе в двигатель увеличивают настройку регулятора частоты вращения ротора низкого давления до предельно допустимого значения и одновременно изменяют положение регулируемых входного и направляющего аппарата первой ступени компрессора низкого давления на прикрытие до величины, обеспечивающей достижение частоты вращения ротора низкого давления предельно допустимого значения. 2 ил.

Изобретение относится к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. Центробежно-шестеренный насос содержит шестерни 2, размещенные в расточках корпуса 1 и установленные на валах 3, расположенных в опорных подшипниках 4, каналы 9, выполненные в ступицах шестерен 2 с заборными отверстиями 16 для подвода жидкости в межзубовые полости 10, дросселирующие иглы 13, установленные перед отверстиями 16 с возможностью осевого перемещения и снабженные устройством для ограничения хода иглы 13. Насос снабжен стержнем 12, установленным соосно центральной расточке 11, выполненной внутри каждой из шестерен 2. Игла 13 установлена на стержне 12, подпружинена со стороны шестерни 2 и соединена со стержнем 12 с возможностью свободного осевого хода. Конец стержня 12 пропущен через шестерню 2 внутрь вала 3 и зафиксирован в нем штифтом 18, запрессованным в совместно обработанные радиальные отверстия в стержне 12 и валу 3, расположенные под ближайшим к шестерне 3 подшипником 4. На противоположном конце стержня 12 расположено устройство для ограничения хода иглы 13. Изобретение направленно на упрощение конструкции нагнетающего центробежно-шестеренного насоса и повышение точности настройки его производительности. 1 з.п. ф-лы, 1 ил.

 


Наверх