Патенты автора Джанджгава Гиви Ивлианович (RU)

Изобретение относится к информационно измерительным комплексам и системам управления боевыми летательными аппаратами (ЛА). Технический результат - расширение функциональных возможностей прицельных систем путем синтеза автоматической процедуры прицеливания по подвижной наземной цели для обеспечения эффективного применения неуправляемых авиационных средств поражения (АСП). Для этого в режиме оптимальной привязки к цели по измерениям обзорно-прицельной и инерциально-доплеровской систем определяют относительные координаты и параметры ее движения в осях географического сопровождающего трехгранника (ГСТ) ONHE. По ее окончании оптимальный фильтр переводят в режим прогноза параметров цели. Параллельно с процедурой привязки и прогноза рассчитывают компоненты скорости ветра и воздушной скорости объекта и цели в проекциях на оси связанной системы координат. По ним определяют угловые поправки на стрельбу и потребные для прицельной сопроводительной стрельбы углы ориентации объекта, используя которые формируют входные сигналы оптимального фильтра-идентификатора, оценивающего необходимые для управления текущие значения углов ориентации объекта относительно постоянно изменяющегося направления прицельной стрельбы и ошибки расчета угловой скорости вращения объекта. Оценки последних используют для коррекции составляющих угловой скорости объекта, а оценки углов отклонения объекта относительно направления прицельной стрельбы - для формирования сигналов управления объектом. За летчиком остается выполнение функции контроля качества управления объектом и нажатие боевой кнопки (БК). 4 ил.

Изобретение относится к области измерительных систем и комплексов боевых летательных аппаратов (ЛА). Технический результат - повышение точности оценивания и краткосрочного прогноза параметров движения цели на основе субоптимальной процедуры ее углового сопровождения в обеспечение эффективного применения неуправляемых авиационных средств поражения (АСП). Для этого оценивание и прогноз параметров цели осуществляют в проекциях на оси лучевой системы координат. Выбор указанной системы координат не случаен, так как позволяет эффективно реализовать и привязку к цели, и модифицированный прогноз ее параметров на основе углового сопровождения цели. Для этого по окончании режима привязки, ее фильтр-идентификатор редуцируют, выделяя из него дальномерный канал и канал углового сопровождения цели. Фильтр-идентификатор канала углового сопровождения по измерениям углов визирования цели формирует перечень оценок характерных для него параметров, а дальномерный канал, на основе оценок собственных параметров, полученных в режиме привязки, и текущих оценок составляющих скорости канала углового сопровождения реализует прогноз своих параметров, которые используют в процедуре углового сопровождения. 5 ил.

Изобретение относится к области комплексных навигационных систем, систем управления и наведения летательных аппаратов (ЛА). Технический результат изобретения - повышение точности и быстродействия оптимального оценивания и коррекции всех измеряемых инерциальной навигационной системой (ИНС) навигационных и пилотажных параметров в обеспечение эффективного решения навигационных, боевых и специальных задач. Способ оценивания ошибок инерциальной информации и ее коррекции по измерениям спутниковой навигационной системы заключается в том, что используют традиционную процедуру оптимальной фильтрации и идентификации Калмана, для чего сигналы измерения оптимального фильтра-идентификатора формируют посредством сравнения одноименных географических координат местоположения и горизонтальных составляющих абсолютной линейной скорости в проекциях на оси опорного трехгранника гироплатформы (ГП) ИНС, сформированных по измерениям спутниковой навигационной системы (СНС), а его структуру синтезируют в соответствии с традиционной для ИНС моделью ошибок, при этом характер полета методически организуют таким образом, что после 270 секунд прямолинейного горизонтального полета, на котором реализуют точное «горизонтирование» гироплатформы и оценивают хорошо наблюдаемые параметры горизонтальных каналов ИНС, осуществляют маневр, типа «змейки», координированного или боевого разворотов, после чего активную фазу процедуры оптимальной фильтрации и идентификации приостанавливают и фильтр-идентификатор переводят в режим долгосрочного - до следующего сеанса коррекции, прогноза, для реализации которого сигналы измерения обнуляют, а значения оценок на момент завершения активной фазы процедуры оценивания используют в качестве начальных условий в процедуре прогноза, при этом сам прогноз осуществляют в соответствии с дискретными уравнениями расчета априорных оценок ошибок ИНС, а коррекцию выходных параметров ИНС - географических координат местоположения и составляющих абсолютной линейной скорости, реализуют в разомкнутой схеме ИНС, для чего используют текущие прогнозируемые значения оценок параметров состояния ИНС. При этом модель ошибок ИНС расширяют за счет включения в нее математического описания координат ее местоположения относительно антенного блока (АБ) СНС и представляют их в виде системы трех взаимосвязанных дифференциальных уравнений первого порядка в проекциях на оси опорного трехгранника ГП ИНС, которые одновременно описывают аддитивно входящие в скоростные сигналы измерения кинематические составляющие относительной скорости движения ИНС, а при формировании сигналов измерения и матрицы наблюдения используют кинематические соотношения, связывающие ошибки Δϕ, Δλ, Δχ счисления географических координат местоположения и угла азимутальной ориентации опорного трехгранника ГП ИНС с погрешностями выдерживания вертикали αx, αy и углом αz азимутального ухода ГП ИНС с точностью до величин второго порядка малости относительно таких параметров, как Δϕ, Δλ, αх, αy, αz, обеспечивают определение текущих значений элементов матриц сообщения и наблюдения. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов (ЛА). Технический результат – расширение функциональных возможностей. Для этого оценивание и «прогноз» параметров движения цели осуществляют в проекциях на оси инерциальной системы координат, что приводит к поканальной декомпозиции уравнений относительного движения цели, вследствие чего, вместо модели 9-го порядка, получают три структурно идентичных и несвязанных между собой канала. Синтезированные на их основе три фильтра-идентификатора формируют полный массив оптимальных оценок, которые используют в качестве начальных условий, в более эффективной по сравнению с прогнозом процедуре оптимального оценивания на основе модифицированного угломестного метода расчета дальности. В результате обеспечиваются упрощение используемой в режиме привязки процедуры оптимального оценивания и прогноза и реализация альтернативной прогнозу и унифицированной с режимом привязки процедуры оптимального оценивания на основе модифицированного угломестного метода расчета дальности для обеспечения повышения точности и эффективности решения боевой задачи. 6 ил.

Изобретение относится к области комплексных навигационных систем, систем управления и наведения летательных аппаратов (ЛА). Технический результат – расширение функциональных возможностей. Указанный результат достигается за счет: - расширения традиционной модели ошибок инерциальной навигационной системы (ИНС) и включения в нее системы из трех взаимосвязанных дифференциальных уравнений 1-го порядка, описывающих изменение координат местоположения ИНС относительно доплеровского измерителя скорости (ДИСС) в проекциях на оси опорного трехгранника гироплатформы (ГП); - корректного формирования сигналов измерения, матрицы наблюдения и модели сообщения с использованием соотношений, связывающих ошибки счисления основной тройки навигационных параметров с малыми углами рассогласования реального и опорного трехгранников ГП ИНС. Высокая точность оценивания скоростных ошибок и углов ухода реальной ГП ИНС позволяет реализовать эффективную коррекцию навигационной и пилотажной информации и из двух потенциально равноточных ИНС определить ту, угловая информация которой наиболее приемлема для пилотирования и решения боевых и специальных задач. 4 ил.

Изобретение относится к области приборостроения и может найти применение в составе комплексов навигационно-пилотажного оборудования летательных аппаратов (ЛА). Технический результат - расширение функциональных возможностей. Для этого унифицированный навигационный комплекс ЛА содержит взаимосоединенные по цифровым каналам информационного обмена (КИО) комплект навигационно-пилотажных систем (НПС) и бортовую цифровую вычислительную систему (БЦВС), причем комплект НПС включает навигационно-пилотажные системы (НПС) различных физических принципов действия, такие как инерциальные навигационные системы и курсовертикали, системы воздушных сигналов, спутниковые навигационные системы, радиотехнические системы ближней и дальней навигации, доплеровские измерители путевой скорости, радиовысотомеры, системы визуальной коррекции, корреляционно-экстремальные навигационные системы и радиотехнические системы посадки, а БЦВС включает вычислительно-логические функциональные модули (ФМ) ввода-вывода информации, подготовки комплекса, первичной обработки информации, комплексной обработки информации, определения параметров Земли, определения навигационных параметров, расчета параметров ортодромии, преобразования координат, определения управляющих параметров, контроля комплекса, управления режимами работы комплекса, информационного обеспечения принятия решений и формирования выходных параметров, дополнен введенными в состав БЦВС ФМ сканирования и идентификации подключенных к КИО НПС, ФМ базы данных протоколов информационного взаимодействия НПС и ФМ унификации входной информации от НПС. 3 ил.

Изобретение относится к авиационному приборостроению. Предложенный навигационный комплекс предназначен для обеспечения высокоточной навигации на основе комплексной обработки информации (КОИ) систем навигации по искусственным полям Земли (СНИПЗ) и нескольких физических полей Земли (ФПЗ). Навигационный комплекс построен по интегрально-модульной архитектуре (ИМА), для чего входящие в его состав инерциальная система (ИС), баровысотомер, датчики полей (ДП), бортовая цифровая вычислительная машина (БЦВМ) и СНИПЗ выполняются в виде отдельных модулей с соответствующими чувствительными элементами и устанавливаются в едином корпусе. Данный навигационный комплекс позволяет за счет КОИ СНИПЗ и нескольких ФПЗ повысить точностные характеристики навигационного комплекса, а также надежность его работы в условиях постановки радиопомех или выведения из строя спутниковой группировки; за счет перехода с федеративной структуры комплекса на ИМА устранить асинхронность и задержку потоков данных от ИС, ДП и баровысотомера в БЦВМ и тем самым повысить его точностные характеристики, а также снизить массу, габариты, стоимость и упростить кабельную систему на борту летательного аппарата. 1 ил.

Изобретение относится к авиационному приборостроению. Предложенная комплексная корреляционно-экстремальная навигационная система (КЭНС) предназначена для обеспечения автономной высокоточной коррекции на основе использования информации о нескольких поверхностных физических полях Земли, полученной датчиками технического зрения. В состав комплексной КЭНС входят инерциальная навигационная система, инфракрасный (ИК) радиометр, радиолокационная станция (РЛС), преобразователь сигналов, бортовая цифровая вычислительная машина, Блок формирования комплексного текущего изображения (ТИ), Блок пороговой обработки ТИ, Блок хранения данных и Блок формирования эталонного изображения. Данная комплексная КЭНС позволяет снизить объем хранения эталонной информации, снять ограничения на выбор участков кадровой коррекции и сократить время расчетов, что в целом обеспечивает возможность проведения непрерывной коррекции и повышение точности навигации. Предложенные в комплексной КЭНС подходы позволяют использовать помимо ИК-радиометра и РЛС датчики технического зрения, работающие в любом спектральном диапазоне, в том числе оптико-электронные системы и лазерные локаторы (лидары).

Многофункциональный тяжелый транспортный вертолет круглосуточного действия содержит фюзеляж с силовой установкой, общевертолетное оборудование, средства механизации вертолета, органы оперативного управления. Кабина выполнена разделенной перегородкой с дверью на две части - кабину экипажа, рассчитанную на двух членов экипажа, в передней части которой расположена панель для установки радиоэлектронного оборудования, а в задней - дополнительное откидное кресло, и кабину сопровождающих. Внутрикабинная перегородка выполнена в виде закрытой этажерки с технологическими лючками, в которой располагаются блоки приборного оборудования. Комплекс бортового радиоэлектронного оборудования включает комплекс навигационно-пилотажных средств, систему управления вертолетом и силовой установкой, комплекс средств радиосвязи, аппаратуру государственного опознавания, блок коммутации, бортовой комплекс обороны, бортовую метеорадиолокационную станцию, систему раннего предупреждения близости земли, бортовую телевизионную установку, бортовую систему контроля, систему резервных приборов, пять многофункциональных индикаторов, многофункциональный пульт, внешнее запоминающее устройство и бортовую вычислительную систему. Обеспечивается снижение эксплуатационных расходов и существенное расширение функциональных возможностей вертолета. 2 н. и 1 з.п ф-лы, 1 ил.

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки. Способ управления ЛА при заходе на посадку включает измерение параметров движения ЛА, коррекцию, с помощью любого из известных методов комплексной обработки информации, погрешностей параметров движения по данным от спутниковой навигационной системы, формирование, на основе откорректированных координат ЛА и координат торцов взлетно-посадочной полосы (ВПП), курса ВПП, длины ВПП, дальности до ближнего торца ВПП, высоты ЛА относительно ВПП, автоматическое или ручное управление угловым положением ЛА по крену и тангажу с учетом сигналов углов отклонения по курсу и глиссаде, дополнен операциями, в соответствии с которыми для формирования заданной траектории посадки задают угол наклона траектории посадки, размещают под точкой стандартного размещения курсового радиомаяка на продолжении заданной траектории посадки виртуальный курсо-глиссадный радиомаяк (ВКГРМ) и формируют его пеленг и угол места, а углы отклонения по курсу и глиссаде от траектории посадки формируют соответственно как рассогласование пеленга ВКГРМ и курса ВПП и как рассогласование угла места ВКГРМ и заданного экипажем угла наклона траектории посадки. 5 ил.

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки. Способ управления ЛА при заходе на посадку включает измерение параметров движения ЛА, коррекцию, с помощью любого из известных методов комплексной обработки информации, погрешностей параметров движения по данным от спутниковой навигационной системы, формирование, на основе откорректированных координат ЛА и координат торцов взлетно-посадочной полосы (ВПП), курса ВПП, длины ВПП, дальности до ближнего торца ВПП, высоты ЛА относительно ВПП, автоматическое или ручное управление угловым положением ЛА по крену и тангажу с учетом сигналов углов отклонения по курсу и глиссаде, дополнен операциями, в соответствии с которыми для формирования заданной траектории посадки задают угол наклона траектории посадки, размещают под точкой стандартного размещения курсового радиомаяка на продолжении заданной траектории посадки виртуальный курсо-глиссадный радиомаяк (ВКГРМ) и формируют его пеленг и угол места, а углы отклонения по курсу и глиссаде от траектории посадки формируют соответственно как рассогласование пеленга ВКГРМ и курса ВПП и как рассогласование угла места ВКГРМ и заданного экипажем угла наклона траектории посадки. 5 ил.

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки. Способ управления ЛА при заходе на посадку включает измерение параметров движения ЛА, коррекцию, с помощью любого из известных методов комплексной обработки информации, погрешностей параметров движения по данным от спутниковой навигационной системы, формирование, на основе откорректированных координат ЛА и координат торцов взлетно-посадочной полосы (ВПП), курса ВПП, длины ВПП, дальности до ближнего торца ВПП, высоты ЛА относительно ВПП, автоматическое или ручное управление угловым положением ЛА по крену и тангажу с учетом сигналов углов отклонения по курсу и глиссаде, дополнен операциями, в соответствии с которыми для формирования заданной траектории посадки задают угол наклона траектории посадки, размещают под точкой стандартного размещения курсового радиомаяка на продолжении заданной траектории посадки виртуальный курсо-глиссадный радиомаяк (ВКГРМ) и формируют его пеленг и угол места, а углы отклонения по курсу и глиссаде от траектории посадки формируют соответственно как рассогласование пеленга ВКГРМ и курса ВПП и как рассогласование угла места ВКГРМ и заданного экипажем угла наклона траектории посадки. 5 ил.

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки. Способ управления ЛА при заходе на посадку включает измерение параметров движения ЛА, коррекцию, с помощью любого из известных методов комплексной обработки информации, погрешностей параметров движения по данным от спутниковой навигационной системы, формирование, на основе откорректированных координат ЛА и координат торцов взлетно-посадочной полосы (ВПП), курса ВПП, длины ВПП, дальности до ближнего торца ВПП, высоты ЛА относительно ВПП, автоматическое или ручное управление угловым положением ЛА по крену и тангажу с учетом сигналов углов отклонения по курсу и глиссаде, дополнен операциями, в соответствии с которыми для формирования заданной траектории посадки задают угол наклона траектории посадки, размещают под точкой стандартного размещения курсового радиомаяка на продолжении заданной траектории посадки виртуальный курсо-глиссадный радиомаяк (ВКГРМ) и формируют его пеленг и угол места, а углы отклонения по курсу и глиссаде от траектории посадки формируют соответственно как рассогласование пеленга ВКГРМ и курса ВПП и как рассогласование угла места ВКГРМ и заданного экипажем угла наклона траектории посадки. 5 ил.

Изобретение относится к области авиационного приборостроения и может быть использовано при разработке навигационного оборудования летательных аппаратов

Изобретение относится к измерительной технике, в частности к радиоэлектронным системам повышения безопасности полета летательных аппаратов (ЛА)

Изобретение относится к области приборостроения и может найти применение в составе комплексов навигационного оборудования летательных аппаратов (ЛА) корабельного и наземного базирования

Изобретение относится к средствам отображения параметров состояния летательного аппарата и символов текущего и заданного движения в режимах навигации, обзора закабинного пространства и применения средств противодействия

Изобретение относится к области авиационного приборостроения, а именно к комплексам бортового оборудования, вычислительным машинам, системам, приборам и устройствам, обеспечивающим проведение вычислительных процессов, взаимосвязь, управление оборудованием и индикационное обеспечение экипажей летательных аппаратов

Изобретение относится к измерительным комплексам и системам летательных аппаратов

Изобретение относится к авиационной технике и предназначено для использования при реализации бортового комплекса навигации, управления и наведения многофункциональных маневренных летательных аппаратов (ЛА)

Изобретение относится к навигационным приборам и предназначено для использования при измерении углов ориентации любых подвижных летательных аппаратов, кораблей, наземных транспортных средств

Изобретение относится к авиации и предназначено для автоматического решения задачи прицеливания по наземным и воздушным, программным и оперативным целям

Изобретение относится к области авиастроения и авиационного приборостроения, в частности к выполняющим обнаружение и поражение наземных, надводных и воздушных целей вертолетам непосредственной поддержки сухопутных войск и комплексам бортового радиоэлектронного оборудования, оснащающим вертолеты для обеспечения навигации, наведения, обнаружения заданных целей и их поражения

Изобретение относится к оптическому приборостроению, конкретнее к авиационным оптико-электроннным приборам - к коллиматорным авиационным индикаторам - КАИ (или иначе индикаторы на лобовом стекле - ИЛС) и предназначено для использования в коллиматорных прицелах самолетов и вертолетов

Изобретение относится к получению неразъемных соединений деталей и узлов из жаропрочных сплавов между собой и с другими сталями и сплавами и может быть использовано в авиационно-космической промышленности при изготовлении, прежде всего, ротора турбины газотурбинных двигателей, а также в газовой отрасли промышленности

Гироскоп // 2298151
Изобретение относится к области измерительной техники, а именно к гироскопическим преобразователям угловой скорости с двухстепенным упругим подвесом чувствительного элемента

Изобретение относится к области авиационного приборостроения, а именно к бортовым цифровым вычислительно-преобразующим устройствам, обеспечивающим проведение вычислительных процессов и взаимосвязи управляющих и информационных систем и датчиков со средствами отображения и хранения информации о параметрах состояния самолета, его агрегатов и систем

Изобретение относится к области автоматики и вычислительной техники, а именно к устройствам для преобразования кода угла в два напряжения переменного тока, одно из которых является функцией синуса угла, а второе - функцией косинуса угла

Изобретение относится к технологическому лазерному оборудованию и может быть использовано для прецизионной обработки изделий

Изобретение относится к автоматике и вычислительной технике, а именно к преобразователям функционально связанных аналоговых сигналов в цифровой код

Изобретение относится к области приборостроения и может быть использовано при выставке бортовых приборов на объектах различного назначения с целью обеспечения точности навигации объекта и работы его систем

Изобретение относится к комплексам бортового оборудования, обеспечивающим навигацию, управление и наведение двухместных многофункциональных самолетов тактического назначения, а также применение средств активного и пассивного противодействия

Изобретение относится к области измерительной техники, а именно к испытательному оборудованию для аттестации преобразователей инерциальной информации

Изобретение относится к области измерительной техники, а именно к преобразователям угловой скорости в электрический сигнал

Изобретение относится к области измерительной техники, а именно к преобразователям угловой скорости в электрический сигнал

Изобретение относится к бортовому радиоэлектронному оборудованию самолетов, обеспечивающему навигацию и наведение, а также применение средств противодействия

Изобретение относится к области измерительной техники, а именно к испытательному оборудованию для аттестации преобразователей инерциальной информации

Изобретение относится к области точного приборостроения, преимущественно гироскопического, и может быть использовано при создании гирокомпасов аналитического типа

Изобретение относится к области точного приборостроения, преимущественно гироскопического, и может быть использовано при создании гирокомпасов аналитического типа
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх