Патенты автора Денисламов Ильдар Зафирович (RU)

Изобретение относится к технологиям снижения выбросов попутного нефтяного газа из нефтедобывающих скважин. Технический результат - исключение попадания попутного нефтяного газа в атмосферу. По способу попутный нефтяной газ из нефтедобывающих скважин куста эксплуатационных скважин собирают в горизонтальную емкость объемом 20-200 м3 до повышения давления до предельно допустимой величины, превышающей давление в системе нефтесбора. Транспортировку газа в систему нефтесбора осуществляют путем подачи в емкость воды системы поддержания пластового давления под давлением, превышающим давление в системе нефтесбора. Дальнейшее освобождение емкости от воды осуществляют с помощью передвижного насосного агрегата путем отбора воды из емкости и ее закачки в ближайшую нагнетательную скважину куста. При этом емкость соединяют с системой нефтесбора через выкидную линию - ВЛ той нефтедобывающей скважины куста, где имеется наиболее низкое давление ВЛ среди прочих скважин куста. 1 ил.

Изобретение относится к способам дистанционного мониторинга нефтяного пятна, образовавшегося подо льдом при аварийной утечке нефти из подводного нефтепровода. Сущность: в место (3) утечки нефти из подводного нефтепровода (2) подают магнитный материал в мелкодисперсном состоянии. Вместе с нефтью магнитный материал растекается подо льдом (7), образуя пятно (6) определенной толщины и размеров. О границах распространения нефтяного пятна судят по напряженности магнитного поля, измеряемой магнитометрами над поверхностью льда. При невозможности определения местоположения места утечки нефти из подводного нефтепровода (2) мелкодисперсный магнитный материал подают непосредственно в скважину (1) или в подводный нефтепровод (2) до места утечки (3). Технический результат: определение местоположения и размеров нефтяного пятна подо льдом. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения. При осуществлении способа в колонну лифтовых труб скважины закачивают растворитель и ожидают определенное время для растворения отложений. Предварительно нижнюю часть колонны НКТ над глубинным электроцентробежным насосом (ЭЦН) снабжают обратным клапаном, перепускным клапаном в межтрубное пространство и датчиком давления. Второй датчик давления устанавливают также внутри колонны НКТ на устье скважины. Данные по давлению с обоих датчиков выводят по линии электропитания ЭЦН на станцию управления скважиной. Растворитель закачивают с устья скважины в колонну НКТ с понижающейся во времени объемной скоростью и одновременно наблюдают по датчикам давления за изменением давления в нижней и верхней точках колонны НКТ. О заполнении колонны лифтовых труб растворителем судят по моменту стабилизации гидростатической составляющей давления столба жидкости в зоне нижнего датчика. Степень удаления отложений путем их растворения оценивают по росту плотности растворителя и гидростатической составляющей давления в зоне нижнего датчика до максимального значения при поддержке уровня растворителя на отметке устья скважины или выше. Оценку первой и второй стабилизации гидростатического давления столба растворителя в колонне НКТ производят при отсутствии движения растворителя и скважинной продукции по колонне НКТ, то есть в статическом положении флюидов. Циклическую закачку растворителя в колонну НКТ производят до полного удаления отложений из колонны труб. Повышается эффективность удаления отложений за счет обеспечения возможности контроля за процессом и рационального использования реагентов. 2 ил.

Изобретение относится к области эксплуатации пробоотборных устройств для оценки степени загрязнения нефтепродуктами природных водоемов. Устройство состоит из двух частей: отсекателя с положительной плавучестью со съемной пробкой в головной части и делительной воронки значительного объема. Положительная плавучесть отсекателя обеспечивается поплавком по окружности отсекателя, который в разрезе имеет лепестковую форму. Пробка отсекателя содержит завихритель в виде винта Архимеда для организации движения растворителя сверху вниз по спирали и повышения степени отмыва нефти с внутренней стороны отсекателя. Перевод смеси растворителя с отсеченной нефтью в делительную воронку производится путем создания вакуума в делительной воронке с помощью аспиратора АМ-5. Изобретение обеспечивает повышение точности определения толщины слоя нефти над водой за счет двухстадийной подачи растворителя в слой нефти над водой и герметичного перевода их смеси в делительную воронку. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к технике измерения обводненности скважинной нефти, то есть оценки доли нефти и воды в добываемой пластовой жидкости. Техническим результатом является отсечение пробы в трубке. Устройство включает вертикальную тонкостенную отсекающую трубку и узел герметизации нижнего отверстия трубки в соответствующем приемном гнезде днища емкости для сбора скважинной продукции. При этом нижняя часть отсекающей трубки снабжена со своей внешней стороны ободком, кромка которого по периметру имеет закругленный профиль, приемное отверстие в днище емкости соответствует внешнему диаметру трубки, днище емкости снабжено вокруг отверстия герметизирующим кольцом из маслостойкой резины, по периметру резинового кольца на высоту, превышающую высоту налива жидкости в емкость, расположены направляющие стержни для удобного и вертикального спуска отсекающей трубки сквозь набранную в емкость жидкость, причем в верхней части направляющих стержней расположена внутренняя резьба с крупным шагом, а в верхней части отсекающей трубки расположена ответная внешняя резьба с аналогичным шагом для осуществления соединения трубки и днища емкости и прижатия закругленной кромки ободка трубки к резиновому кольцу, верхняя часть трубка также снабжена поворотным штурвалом для вращения трубки вокруг своей оси. 2 ил.

Изобретение относится к технологиям разработки нефтяных пластов с помощью добывающих и нагнетательных скважин и может быть использовано на нефтяных месторождениях, где добыча высоковязкой нефти из пластов ведется тепловым методом вытеснения нефти горячей водой или паром высокой температуры. Технический результат - организация в нефтяной залежи плоскопараллельной фильтрации пластовой жидкости с помощью системы многофункциональных скважин, исключение возможности образования застойных зон в объеме всей залежи с одновременным уменьшением количества скважин и расстояния между участками закачки вытесняющего агента и отбора пластовой нефти. В способе разработки залежи высоковязкой нефти, заключающемся в закачке в пласт вытесняющего агента через горизонтальный участок многофункциональной скважины и отборе пластовой нефти из перфорированного участка этой же скважины, расположенного горизонтально и параллельно зоне закачки агента, по длине полосообразного элемента ПЭ нефтяной залежи или выбранному направлению залежи располагают многофункциональные скважины последовательно друг за другом так, чтобы в зоне пласта между участками закачки агента и отбора нефти каждой скважины были расположены еще два участка двух соседних многофункциональных скважин: ближе к участку отбора нефти скважины располагают участок закачки агента соседней скважины с левой стороны, а ближе к участку закачки агента рассматриваемой скважины располагают участок отбора нефти второй соседней скважины с правой стороны по длине ПЭ или выбранного направления. Причем рассматриваемые горизонтальные участки всех скважин расположены между собой параллельно на одинаковом расстоянии друг от друга и поперек длины полосообразного элемента. Разработка нефтяной залежи осуществляется путем деления залежи на полосообразные элементы по всей своей площади, каждый из которых разрабатывается с помощью системы многофункциональных скважин, расположенных в границах ПЭ по вышеописанному принципу. 1 ил.

Изобретение относится к технологиям разработки нефтяных пластов. Технический результат - обеспечение воздействия на нефть как в вертикальном, так и в горизонтальном направлениях, достижение более полной выработки пласта. В способе разработки залежи высоковязкой нефти, заключающемся в закачке в пласт вытесняющего агента, например пара, через вышележащий горизонтальный ствол многофункциональной скважины и отборе пластовой нефти из нижележащего также горизонтального ствола скважины, расположенного параллельно верхнему стволу, по длине полосообразного элемента нефтяной залежи или выбранному направлению залежи располагают многофункциональные скважины с двумя горизонтальными стволами последовательно друг за другом так, чтобы в зоне пласта расстояния по горизонтали между стволами по закачке вытесняющего агента и отбору нефти были одинаковыми. Причем стволы по закачке вытесняющего агента должны располагаться со смещением на половину расстояния между стволами относительно нижележащих стволов по отбору нефти, благодаря чему вертикальная проекция каждого ствола по закачке вытесняющего агента на плоскость со стволами по отбору нефти окажется на равном расстоянии от стволов по отбору нефти. 2 ил.

Изобретение относится к технике измерения обводненности скважинной нефти, то есть оценки доли нефти и воды в добываемой пластовой жидкости. Техническим результатом является отсечение пробы в трубке. Устройство включает вертикальную тонкостенную отсекающую трубку и узел герметизации нижнего отверстия трубки в соответствующем приемном гнезде днища емкости для сбора скважинной продукции. При этом нижняя часть отсекающей трубки снабжена со своей внешней стороны ободком, кромка которого по периметру имеет закругленный профиль, приемное отверстие в днище емкости соответствует внешнему диаметру трубки, днище емкости снабжено вокруг отверстия герметизирующим кольцом из маслостойкой резины, по периметру резинового кольца на высоту, превышающую высоту налива жидкости в емкость, расположены направляющие стержни для удобного и вертикального спуска отсекающей трубки сквозь набранную в емкость жидкость, причем в верхней части направляющих стержней расположена внутренняя резьба с крупным шагом, а в верхней части отсекающей трубки расположена ответная внешняя резьба с аналогичным шагом для осуществления соединения трубки и днища емкости и прижатия закругленной кромки ободка трубки к резиновому кольцу, верхняя часть трубка также снабжена поворотным штурвалом для вращения трубки вокруг своей оси. 2 ил.

Изобретение относится к технологиям разработки нефтяных пластов с помощью добывающих и нагнетательных скважин и может быть использовано на нефтяных месторождениях, где добыча высоковязкой нефти из пластов ведется тепловым методом вытеснения нефти горячей водой или паром высокой температуры. Технический результат - организация в нефтяной залежи плоскопараллельной фильтрации пластовой жидкости с помощью системы многофункциональных скважин, исключение возможности образования застойных зон в объеме всей залежи с одновременным уменьшением количества скважин и расстояния между участками закачки вытесняющего агента и отбора пластовой нефти. В способе разработки залежи высоковязкой нефти, заключающемся в закачке в пласт вытесняющего агента через горизонтальный участок многофункциональной скважины и отборе пластовой нефти из перфорированного участка этой же скважины, расположенного горизонтально и параллельно зоне закачки агента, по длине полосообразного элемента ПЭ нефтяной залежи или выбранному направлению залежи располагают многофункциональные скважины последовательно друг за другом так, чтобы в зоне пласта между участками закачки агента и отбора нефти каждой скважины были расположены еще два участка двух соседних многофункциональных скважин: ближе к участку отбора нефти скважины располагают участок закачки агента соседней скважины с левой стороны, а ближе к участку закачки агента рассматриваемой скважины располагают участок отбора нефти второй соседней скважины с правой стороны по длине ПЭ или выбранного направления. Причем рассматриваемые горизонтальные участки всех скважин расположены между собой параллельно на одинаковом расстоянии друг от друга и поперек длины полосообразного элемента. Разработка нефтяной залежи осуществляется путем деления залежи на полосообразные элементы по всей своей площади, каждый из которых разрабатывается с помощью системы многофункциональных скважин, расположенных в границах ПЭ по вышеописанному принципу. 1 ил.

Изобретение относится к технологиям разработки нефтяных пластов. Технический результат - обеспечение воздействия на нефть как в вертикальном, так и в горизонтальном направлениях, достижение более полной выработки пласта. В способе разработки залежи высоковязкой нефти, заключающемся в закачке в пласт вытесняющего агента, например пара, через вышележащий горизонтальный ствол многофункциональной скважины и отборе пластовой нефти из нижележащего также горизонтального ствола скважины, расположенного параллельно верхнему стволу, по длине полосообразного элемента нефтяной залежи или выбранному направлению залежи располагают многофункциональные скважины с двумя горизонтальными стволами последовательно друг за другом так, чтобы в зоне пласта расстояния по горизонтали между стволами по закачке вытесняющего агента и отбору нефти были одинаковыми. Причем стволы по закачке вытесняющего агента должны располагаться со смещением на половину расстояния между стволами относительно нижележащих стволов по отбору нефти, благодаря чему вертикальная проекция каждого ствола по закачке вытесняющего агента на плоскость со стволами по отбору нефти окажется на равном расстоянии от стволов по отбору нефти. 2 ил.

Изобретение относится к технике измерения обводненности скважинной нефти, то есть оценки доли нефти и воды в добываемой пластовой жидкости. Техническим результатом является отсечение пробы в трубке. Устройство включает вертикальную тонкостенную отсекающую трубку и узел герметизации нижнего отверстия трубки в соответствующем приемном гнезде днища емкости для сбора скважинной продукции. При этом нижняя часть отсекающей трубки снабжена со своей внешней стороны ободком, кромка которого по периметру имеет закругленный профиль, приемное отверстие в днище емкости соответствует внешнему диаметру трубки, днище емкости снабжено вокруг отверстия герметизирующим кольцом из маслостойкой резины, по периметру резинового кольца на высоту, превышающую высоту налива жидкости в емкость, расположены направляющие стержни для удобного и вертикального спуска отсекающей трубки сквозь набранную в емкость жидкость, причем в верхней части направляющих стержней расположена внутренняя резьба с крупным шагом, а в верхней части отсекающей трубки расположена ответная внешняя резьба с аналогичным шагом для осуществления соединения трубки и днища емкости и прижатия закругленной кромки ободка трубки к резиновому кольцу, верхняя часть трубка также снабжена поворотным штурвалом для вращения трубки вокруг своей оси. 2 ил.

Изобретение относится к технологиям разработки нефтяных пластов с помощью добывающих и нагнетательных скважин и может быть использовано на нефтяных месторождениях, где добыча высоковязкой нефти из пластов ведется тепловым методом вытеснения нефти горячей водой или паром высокой температуры. Технический результат - организация в нефтяной залежи плоскопараллельной фильтрации пластовой жидкости с помощью системы многофункциональных скважин, исключение возможности образования застойных зон в объеме всей залежи с одновременным уменьшением количества скважин и расстояния между участками закачки вытесняющего агента и отбора пластовой нефти. В способе разработки залежи высоковязкой нефти, заключающемся в закачке в пласт вытесняющего агента через горизонтальный участок многофункциональной скважины и отборе пластовой нефти из перфорированного участка этой же скважины, расположенного горизонтально и параллельно зоне закачки агента, по длине полосообразного элемента ПЭ нефтяной залежи или выбранному направлению залежи располагают многофункциональные скважины последовательно друг за другом так, чтобы в зоне пласта между участками закачки агента и отбора нефти каждой скважины были расположены еще два участка двух соседних многофункциональных скважин: ближе к участку отбора нефти скважины располагают участок закачки агента соседней скважины с левой стороны, а ближе к участку закачки агента рассматриваемой скважины располагают участок отбора нефти второй соседней скважины с правой стороны по длине ПЭ или выбранного направления. Причем рассматриваемые горизонтальные участки всех скважин расположены между собой параллельно на одинаковом расстоянии друг от друга и поперек длины полосообразного элемента. Разработка нефтяной залежи осуществляется путем деления залежи на полосообразные элементы по всей своей площади, каждый из которых разрабатывается с помощью системы многофункциональных скважин, расположенных в границах ПЭ по вышеописанному принципу. 1 ил.

Изобретение относится к технологиям разработки нефтяных пластов. Технический результат - обеспечение воздействия на нефть как в вертикальном, так и в горизонтальном направлениях, достижение более полной выработки пласта. В способе разработки залежи высоковязкой нефти, заключающемся в закачке в пласт вытесняющего агента, например пара, через вышележащий горизонтальный ствол многофункциональной скважины и отборе пластовой нефти из нижележащего также горизонтального ствола скважины, расположенного параллельно верхнему стволу, по длине полосообразного элемента нефтяной залежи или выбранному направлению залежи располагают многофункциональные скважины с двумя горизонтальными стволами последовательно друг за другом так, чтобы в зоне пласта расстояния по горизонтали между стволами по закачке вытесняющего агента и отбору нефти были одинаковыми. Причем стволы по закачке вытесняющего агента должны располагаться со смещением на половину расстояния между стволами относительно нижележащих стволов по отбору нефти, благодаря чему вертикальная проекция каждого ствола по закачке вытесняющего агента на плоскость со стволами по отбору нефти окажется на равном расстоянии от стволов по отбору нефти. 2 ил.

Изобретение относится к технологиям разработки нефтяных пластов. Технический результат - обеспечение воздействия на нефть как в вертикальном, так и в горизонтальном направлениях, достижение более полной выработки пласта. В способе разработки залежи высоковязкой нефти, заключающемся в закачке в пласт вытесняющего агента, например пара, через вышележащий горизонтальный ствол многофункциональной скважины и отборе пластовой нефти из нижележащего также горизонтального ствола скважины, расположенного параллельно верхнему стволу, по длине полосообразного элемента нефтяной залежи или выбранному направлению залежи располагают многофункциональные скважины с двумя горизонтальными стволами последовательно друг за другом так, чтобы в зоне пласта расстояния по горизонтали между стволами по закачке вытесняющего агента и отбору нефти были одинаковыми. Причем стволы по закачке вытесняющего агента должны располагаться со смещением на половину расстояния между стволами относительно нижележащих стволов по отбору нефти, благодаря чему вертикальная проекция каждого ствола по закачке вытесняющего агента на плоскость со стволами по отбору нефти окажется на равном расстоянии от стволов по отбору нефти. 2 ил.

Изобретение предназначено для использования в нефтедобывающей промышленности при эксплуатации скважин с обводненными пластами. Технический результат – повышение эффективности эксплуатации скважин за счет обеспечения возможности постоянного режима их эксплуатации при максимально возможной производительности. По способу предусматривают использование электропакера. За счет него обеспечивают поступление на прием электроцентробежного насоса нефти и воды. С помощью электропакера открывают и закрывают проход в обсадной колоне для пластовой жидкости. При закрытом электропакере на прием насоса обеспечивают поступление малообводненной нефти из межтрубного пространства. Одновременно обеспечивают разделение подпакерной жидкости на нефть и воду. При открытии электропакера на прием насоса и в межтрубное пространство обеспечивают поступление нефти и следом - воды. В состав дополнительного оборудования включают влагомер и уровнемер. С помощью них оптимизируют работу электропакера и насоса. Влагомер устанавливают ниже электропакера, а уровнемер - на устье скважины в межтрубном пространстве. При поступлении в зону влагомера эмульсионной пластовой жидкости электропакер закрывают. На прием насоса обеспечивают поступление нефти из межтрубного пространства. По показаниям уровнемера обеспечивают нахождение динамического уровня жидкости в заданных величинах с помощью открытия и закрытия электропакера. 1 ил.

Изобретение относится к способам измерения обводненности скважинной нефти. Технический результат заключается в обеспечении более качественного расслоения скважинной продукции на нефть и воду без долговременной остановки работы глубинного насоса. Способ определения обводненности скважинной нефти заключается в фиксации скважинной продукции в емкости с постоянным сечением по ее высоте, выдержке скважинной продукции в емкости для обеспечения гравитационного разделения на нефть и воду и определении обводненности скважинной продукции по высоте водной части относительно всей высоты жидкости в емкости. Предварительно над глубинным скважинным насосом устанавливают обратный клапан. После остановки работы глубинного насоса из колонны лифтовых труб выпускают попутный нефтяной газ при снижении давления до атмосферного. Несколько раз замеряют статический уровень жидкости в колонне лифтовых труб до постоянства его величины и определяют объем жидкости в колонне лифтовых труб. Путем пуска глубинного насоса в работу скважинную продукцию известного объема из колонны лифтовых труб переводят в емкость на поверхности земли. Давление в трубопроводной линии путем штуцирования поддерживают на уровне величины, равной давлению на выкидной линии скважины при ее штатной эксплуатации. 1 ил.

Изобретение относится к способам измерения обводненности скважинной нефти. Технический результат заключается в обеспечении более качественного расслоения скважинной продукции на нефть и воду без долговременной остановки работы глубинного насоса. Способ определения обводненности скважинной нефти заключается в фиксации скважинной продукции в емкости с постоянным сечением по ее высоте, выдержке скважинной продукции в емкости для обеспечения гравитационного разделения на нефть и воду и определении обводненности скважинной продукции по высоте водной части относительно всей высоты жидкости в емкости. Предварительно над глубинным скважинным насосом устанавливают обратный клапан. После остановки работы глубинного насоса из колонны лифтовых труб выпускают попутный нефтяной газ при снижении давления до атмосферного. Несколько раз замеряют статический уровень жидкости в колонне лифтовых труб до постоянства его величины и определяют объем жидкости в колонне лифтовых труб. Путем пуска глубинного насоса в работу скважинную продукцию известного объема из колонны лифтовых труб переводят в емкость на поверхности земли. Давление в трубопроводной линии путем штуцирования поддерживают на уровне величины, равной давлению на выкидной линии скважины при ее штатной эксплуатации. 1 ил.

Изобретение относится к способам измерения обводненности скважинной нефти. Технический результат заключается в обеспечении более качественного расслоения скважинной продукции на нефть и воду без долговременной остановки работы глубинного насоса. Способ определения обводненности скважинной нефти заключается в фиксации скважинной продукции в емкости с постоянным сечением по ее высоте, выдержке скважинной продукции в емкости для обеспечения гравитационного разделения на нефть и воду и определении обводненности скважинной продукции по высоте водной части относительно всей высоты жидкости в емкости. Предварительно над глубинным скважинным насосом устанавливают обратный клапан. После остановки работы глубинного насоса из колонны лифтовых труб выпускают попутный нефтяной газ при снижении давления до атмосферного. Несколько раз замеряют статический уровень жидкости в колонне лифтовых труб до постоянства его величины и определяют объем жидкости в колонне лифтовых труб. Путем пуска глубинного насоса в работу скважинную продукцию известного объема из колонны лифтовых труб переводят в емкость на поверхности земли. Давление в трубопроводной линии путем штуцирования поддерживают на уровне величины, равной давлению на выкидной линии скважины при ее штатной эксплуатации. 1 ил.

Предлагаемое изобретение относится к скважинной добыче нефти, может быть использовано на всех предприятиях нефтедобывающей промышленности. Способ заключается в том, что в межтрубном пространстве скважины на устье скважины устанавливают стационарный датчик давления с регистрацией его показаний в постоянном режиме времени. Расчет объема выделенного из скважины попутного нефтяного газа за отчетный промежуток времени ведут по участкам непрерывного снижения давления в межтрубном пространстве в зоне датчика, причем до атмосферного давления, по формуле: где Vпотерь - объем потерь легких углеводородов в виде выпущенного в атмосферу из скважины попутного нефтяного газа за отчетный период времени;D - внутренний диаметр обсадной колонны, м;d - внешний диаметр колонны лифтовых труб (насосно-компрессорных труб - НКТ), м;Ндин - динамический уровень жидкости в межтрубном пространстве на время i-гo выпуска попутного нефтяного газа (ПНГ) в атмосферу, м;Руст - показание устьевого датчика давления в межтрубном пространстве (МП) в начальный момент процесса снижения межтрубного давления газа до атмосферного, Па;Рдин - давление ПНГ в зоне динамического уровня жидкости в начальный момент процесса снижения межтрубного давления газа до атмосферного, Па (определяется расчетным путем, например по формуле Лапласа-Бабинэ);Ратм - атмосферное давление, равное 1,013⋅105 Па;n - количество кратковременных снижений устьевого давления до атмосферного давления за отчетный период времени. 3 ил.

Изобретение относится к области разработки нефтяных залежей с глубоким залеганием продуктивного пласта и может быть использовано для добычи нефти методом вытеснения закачиваемым агентом, в частности водой. Технический результат - повышение эффективности разработки участка нефтяного пласта с минимизацией эксплуатационных затрат на строительство и эксплуатацию скважин. Скважина для разработки нефтяного пласта состоит из вертикального и бокового стволов, колонны насосно-компрессорных труб (НКТ) для закачки вытесняющего агента в продуктивный нефтяной пласт и оборудования для подъема нефти до устья скважины. Скважина принята с h-образным профилем. Точка отхода бокового ствола от вертикальной части скважины принята на расстоянии 300-500 м от продуктивного нефтяного пласта. Расстояние от места вхождения бокового ствола в продуктивный нефтяной пласт до точки вхождения вертикальной части скважины в упомянутый пласт принято в 200-600 м с обеспечением возможности закачки вытесняющего агента в одну зону продуктивного нефтяного пласта и отбора нефти из другой зоны пласта. Верхняя часть колонны НКТ для закачки вытесняющего агента находится в вертикальном стволе скважины. Нижняя часть упомянутой колонны находится в боковом стволе скважины и запакерована выше продуктивного нефтяного пласта. Вторая колонна НКТ с глубинной насосной установкой находится в вертикальном стволе скважины. Насосная установка помещена на необходимой высоте над продуктивным нефтяным пластом из условия снижения забойного давления и увеличения отбора нефти. 1 ил.

Изобретение относится к скважинной добыче нефти, осложненной выпадением асфальтосмолопарафиновых веществ на поверхности глубинного оборудования скважин. Техническим результатом является повышение эффективности эксплуатации скважин, осложненных образованием отложений из тяжелых компонентов нефти внутри частей глубинного насоса и колонны НКТ. Способ определения массы растворителя в нефтедобывающей скважине заключается в измерении давления столба жидкости на площадь известной величины. Причем датчик давления располагают в межтрубном пространстве скважины в зоне глубинного насоса, информация с датчика давления с необходимой частотой поступает на станцию управления скважины, а масса растворителя после его подачи в межтрубное пространство скважины определяется как произведение величины кратковременного изменения (скачка) давления на площадь межтрубного пространства по математической формуле. 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения динамического или статического уровня жидкости в водозаборных скважинах. Техническим результатом является контроль состояния уровня жидкости в межтрубном пространстве в режиме реального времени, дистанционно без привлечения персонала предприятия к выездным работам. Способ оценки уровня жидкости в водозаборной скважине, включает создание акустической волны в полости скважины и измерение времени распространении волны в исследуемой среде. При этом в зоне глубинного электроцентробежного насоса скважины стационарно размещают генератор и приемник акустической волны (АВ), на уровне жидкости скважины размещают шарики карбомидные или из материала с аналогичными свойствами положительной плавучести в воде, акустическую волну создают в жидкой среде в зоне глубинного насоса и измеряют время прохождения АВ от глубинного насоса до карбомидных шариков, находящихся на уровне жидкости, и время прохождения отраженной АВ от уровня жидкости до приемника акустической волны в зоне глубинного насоса, а уровень жидкости определяют по математической формуле. 1 ил.

Группа изобретений относится к способам измерения толщины слоя нефти над водой и может быть использовано для оценки количества нефти в скважинной продукции с большой долей воды. Отсекают слой нефти вертикальным отсекателем от общей массы нефти над водой. Разбавляют слой нефти внутри отсекателя органическим разбавителем фиксированного объема и переводят полученный раствор в емкость для проведения измерений. Растворитель подают непосредственно в слой нефти с помощью отдельного прозрачного насосного устройства двухстороннего действия. Круговым движением подающей и всасывающей иглы насоса нефть с растворителем на глубину среза иглы перемешивают и затем переводят с помощью насоса из отсекателя в делительную воронку для разделения раствора нефти от попутно отобранной воды. Измеряют объем нефти как разницу между объемами полученной и измеренной смеси и растворителя по формуле: Vн=Vсм-Vр, где Vн - объем нефти, Vсм - объем полученной и измеренной смеси, Vр - объем растворителя. Определяют толщину слоя нефти над водой в исследуемой точке водоема как отношение объема нефти Vн к площади внутреннего сечения F отсекателя по формуле δ=(Vсм-Vр)/F. Подачу растворителя в слой нефти и обратный отбор раствора нефти организуют многократно при значительной величине слоя нефти над водой - в циклическом режиме до полного отсутствия в отсекателе раствора нефти. Насос и отсекатель выполнены как отдельные устройства. Отсекатель имеет с внешней стороны поплавок в форме тора, утяжеленную нижнюю кромку для вертикального вхождения отсекателя в слой нефти и придания устойчивости отсекателя на водной поверхности со слоем нефти. Насос содержит иглу, глубина среза которой выполнена в виде среза на 45° к вертикали. Обеспечивается повышение точности оценки толщины слоя нефти над водой. 2 н. и 1 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к разработке нефтяных пластов и может быть использовано на нефтяных месторождениях с глубоким залеганием продуктивного пласта и присутствием нижележащего водоносного горизонта. Технический результат – повышение эффективности способа за счет снижения затрат на разработку за счет использования особого профиля скважины. По способу предусматривают разрабатывать участок нефтяного пласта методом вытеснения нефти водой с помощью одной скважины, укомплектованной двумя колоннами труб: обычной колонной насосно-компрессорных труб (НКТ) и колонной гибких безмуфтовых колтюбинговых труб. Осуществляют бурение скважины L-образного профиля, для чего вертикальной скважиной вскрывают нефтяной пласт и нижележащий водоносный вертикально сверху вниз. Затем ствол скважины поворачивают на 90° и проходят ниже водоносного пласта в горной породе и вновь пересекают оба пласта во второй раз, но уже в направлении снизу вверх. Первую колонну труб в виде колтюбинговой колонны снабжают установкой электроцентробежного насоса. С помощью этой установки и благодаря двум пакерным устройствам отбирают воду из водоносного пласта и подают ее в продуктивный нефтяной горизонт. Вторую колонну труб - колонну НКТ - комплектуют глубинным насосом и спускают в скважину на необходимую глубину над пластом до первого пересечения скважины с пластом. Нефтяной пласт разрабатывают путем закачки воды из нижележащего водоносного пласта и отбора нефти с помощью второй насосной установки. 2 з.п. ф-лы, 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения динамического или статического уровня жидкости в нефтедобывающей или водозаборной скважинах. Техническим результатом является создание способа определения уровня жидкости в скважине в постоянном режиме без применения электромагнитной волны в качестве сигнала, инициирующего начало отсчета времени. Способ заключается в создании акустической волны на уровне жидкости в скважине и измерении времени распространения волны в скважинном пространстве. При этом акустическую волну одновременно создают в газовой и жидкой средах и фиксируют хронологическое время прихода акустической волны по газовой среде от уровня жидкости до приемника на устье скважины - tгаз и хронологическое время прихода второй акустической волны от уровня жидкости до приемника в зоне глубинной насосной установки - tжид, информация по этим хронологическим временам передается на станцию управления скважины, а уровень жидкости определяют по математической формуле. 1 ил.

Изобретение относится к скважинной добыче асфальтосмолопарафиновых нефтей с помощью глубинных электроцентробежных насосов (ЭЦН), в частности к способам оценки объема отложений в колонне лифтовых труб. Техническим результатом является продление безаварийной и эффективной эксплуатации лифтовых труб, за счёт определения объема отложений, находящихся в адгезионной форме на внутренние поверхности лифтовых труб скважин с УЭЦН, без подъема лифтовых труб на поверхность. Способ определения объема отложений в колонне лифтовых труб скважины заключается в изменении свойства жидкости, поступающей в колонну лифтовых труб скважины, и измерении объема этой жидкости. В данном способе меняют частоту электрического тока погружного электродвигателя установки электроцентробежного насоса скважины, одновременно обеспечивая постоянный расход скважинной жидкости по колонне лифтовых труб, и, как следствие, изменяют температуру жидкости в колонне лифтовых труб. Время прихода на устье скважины по колонне лифтовых труб жидкости с измененной температурой фиксируют с помощью двух датчиков температуры, один из которых находится в нижней части колонны лифтовых труб, второй - на устье скважины. Объем жидкости с измененной температурой в колонне лифтовых труб находят как произведение искомого времени на расход скважиной жидкости, а объем отложений определяют с помощью длины колонны лифтовых труб между двумя датчиками температуры, внутреннего диаметра чистых лифтовых труб, эмпирического коэффициента, учитывающего разницу в состоянии скважинной продукции в колонне лифтовых труб и в устройстве по измерению внутреннего объема колонны труб, производительности электроцентробежного насоса, времени изменения температуры скважинной продукции в зоне датчиков температуры, установленных в нижней и верхней части колонны лифтовых труб. Для скважин с большой длиной колонны НКТ внутреннюю поверхность труб покрывают теплоизоляционным материалом. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способу измерения обводненности скважинной продукции. В скважине, оборудованной глубинным электроцентробежным насосом (ЭЦН) и частотным регулятором тока электропитания погружного электродвигателя, в интервале от забоя скважины (зона нефтяного пласта) до глубинного насоса стационарно располагают не менее двух датчиков давления (манометров) с определенным расстоянием между ними по вертикали. Датчики с заданной периодичностью передают информацию по давлению на контроллер станции управления работы скважины, находящийся на поверхности земли. При этом выбирают такой режим работы ЭЦН, который обеспечивает давление в зоне измерительных датчиков (манометров) выше, чем давление насыщения нефти газом. Обводненность скважинной продукции определяется по математической формуле, в которой плотность нефти и воды закладываются как известные величины при давлении, равном средней величине давлений по двум ближайшим датчикам. Данные по плотностям пластовых флюидов получаются по предварительным исследованиям глубинных проб нефти и воды нефтедобывающих скважин. 1 ил., 2 табл.

Изобретение относится к скважинной добыче асфальтосмолопарафиновых нефтей с помощью глубинных насосов с электрическими приводами, снабженными частотными регуляторами электротока. Техническим результатом является продление безаварийной и эффективной эксплуатации скважин. Способ определения объема отложений в колонне подъемных труб скважины заключается в заполнении колонны подъемных труб скважины жидкостью со свойством, отличным от пластовой жидкости, измерении объема этой жидкости и вычитании этой величины от внутреннего объема колонны чистых подъемных труб. В данном способе меняют обводненность жидкости в колонне подъемных труб путем изменения производительности глубинного насоса благодаря изменению частоты электрического тока, питающего электропривод насоса. Объем жидкости с измененной обводненностью в колонне подъемных труб определяют как произведение измененной производительности насоса на время заполнения колонны труб жидкостью с измененной обводненностью. Исходя из математического выражения, объем отложений определяют с учетом длины колонны лифтовых труб от глубинного насоса до устья скважины, внутреннего диаметра чистых лифтовых труб, производительности электроцентробежного насоса после изменения частоты тока электропривода, времени изменения частоты тока электропривода и времени изменения обводненности скважинной продукции на устье скважины. 1 ил.

Изобретение относится в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения. Динамическое воздействие растворителем на отложения в трубах в виде разнонаправленного движения растворителя по полости колонны насосно-компрессорных труб (НКТ) оказывают с помощью попеременной работы двух источников энергии и давления. После заполнения колонны НКТ растворителем дальнейшее продвижение растворителя в сторону глубинного насоса организуется с помощью избыточного давления попутного нефтяного газа, взятого по трубопроводу из межтрубного пространства соседней скважины. Попутный нефтяной газ соседней скважины направляется в колонну НКТ обрабатываемой скважины, благодаря этому растворитель проникает далее вниз вплоть до глубинного насоса. Для обратного движения растворителя вверх глубинный насос пускают в работу до появления растворителя на устье скважины. Циклическое движение растворителя вверх и вниз повторяют до тех пор, пока не исчерпается его растворяющая способность, например, не стабилизируется его плотность. Повышается эффективность промывки растворителем в скважинах с глубоким динамическим уровнем жидкости в межтрубном пространстве, сокращается время удаления отложений. 3 з.п. ф-лы, 2 ил.

Изобретение относится к способам измерения количественного содержания растворенного газа, в частности сероводорода, в нефтепромысловой жидкости, находящейся под давлением в выкидной линии скважины, нефтесборном трубопроводе, емкостном оборудовании или водоводе. Способ определения концентрации сероводорода в трубопроводной нефти под давлением заключается в отборе пробы нефти при снижении давления до атмосферного, барботировании этой пробы или ее части с фиксацией выделенного сероводорода химическим методом. Выделяющийся при отборе жидкости ПНГ направляется в газосборную камеру с измерением объема. Массовое количество сероводорода в собранном объеме ПНГ определяется любым приемлемым способом, например колориметрическим способом, пропуская часть ПНГ через индикаторную трубку H2S - 0,0066 по ТУ 12.43.01.166-86. Концентрация сероводорода в отбираемой пробе нефти или иной сероводородсодержащей жидкости определяется по математической формуле путем суммирования массы H2S в жидкой и газообразной фазах пробы и отнесения полученной суммы к объему отобранной пробы жидкости в атмосферных условиях. Техническим результатом является повышение точности измерений количественного присутствия сероводорода в промысловой нефти или воде. 2 ил., 1 табл.

Изобретение относится к скважинной добыче асфальтосмолопарафиновых нефтей и их дальнейшей транспортировке по трубопроводной системе нефтесбора на территории нефтедобывающего предприятия. Техническим результатом является разработка технологии определения объема отложений, находящихся в адгезионной форме, на внутренние поверхности наземного трубопровода, а также оценки распределения этого объема отложений по длине исследуемого трубопровода. Объем отложений на осложненном участке нефтепровода определяется путем запуска в трубопровод разделителя жидкости с изменяющейся геометрией тела в местах сужений трубопровода. Разделитель по изобретению используется в качестве местного сопротивления, в зоне которого потери давления на трение будут тем большими, чем меньшим будет проходное сечение в трубопроводе. В начале и конце исследуемого трубопровода устанавливают два манометра для постоянной фиксации давления во время движения разделителя по трубопроводу. Закачку жидкости после разделителя ведут с постоянным расходом, благодаря этому по полученным временным характеристикам давлений с двух манометров можно определить не только объем отложений, но и их распределение по длине трубопровода. Объем отложений в трубопроводе находят по математической формуле, основанной на времени прохождения разделителя жидкости от первого манометра ко второму манометру. В свою очередь эти два хронологических времени определяются по скачку давления в сторону повышения из-за того, что разделитель несет функцию местного сопротивления подвижного характера. 2 ил.

Изобретение относится к технологии разработки нефтяных пластов с помощью нефтедобывающих и нагнетательных скважин. Способ может быть использован на нефтяных месторождениях, где добыча нефти из пластов ведется методом вытеснения нефти закачиваемым агентом, в частности - водой. Технический результат - повышение эффективности разработки за счет организации в ограниченной зоне пласта плоско-параллельной фильтрации пластовой жидкости с помощью одной скважины с исключением возможности образования застойных зон. По способу строят скважину, в которой горизонтальную часть обсадной колонны располагают непосредственно в участке нефтяного пласта с однородными свойствами. Обеспечивают С-образный вид скважины. Первый и третий участки обсадной колонны скважины имеют одинаковую длину, необходимую плотность перфорационных отверстий и параллельное друг другу расположение. Второй участок соединяет вышеупомянутые участки в единую обсадную колонну. Пространство между обсадной колонной второго участка и горной породой пласта заполняют цементным раствором. В скважину спускают колонну насосно-компрессорных - НКТ или колтюбинговых труб до границы второго и третьего участков обсадной колонны. Кольцевое пространство в граничной зоне между обсадной колонной и данной колонной труб герметизируют с помощью пакера. На участке нефтяного пласта организуют плоско-параллельную фильтрацию вытесняющего агента и пластовой нефти путем закачки вытесняющего агента в пласт с помощью колонны НКТ или колтюбинговых труб через перфорационные отверстия конечного - третьего горизонтального участка обсадной колонны. Отбор нефти из пласта производят через перфорационные отверстия первого горизонтального участка обсадной колонны с помощью фонтанной или механизированной эксплуатации скважины. Подъем нефти до устья осуществляют по кольцевому - межтрубному пространству скважины. Для организации наблюдения в режиме реального времени за закачкой вытесняющего агента и отбором пластовой нефти скважину в зонах первого и третьего участков обсадной колонны оборудуют датчиками давления и температуры. 1 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к технологиям удаления асфальтосмолопарафиновых отложений с внутренней поверхности насосно-компрессорных труб (НКТ) нефтедобывающих скважин, оборудованных электроцентробежными и другими глубинными насосами без привода с поверхности земли. Способ включает организацию движения скребка в полости колонны труб снизу вверх, срезание слоя отложений с внутренней поверхности. Скребок формируют из магнитной жидкости с помощью направленного электромагнитного поля, исходящего от электромагнитных активаторов, равномерно и дискретно расположенных по всей длине колонны НКТ. При необходимости магнитные свойства сформированного скребка могут быть сведены к нулю благодаря обратной работе электромагнитных активаторов в сторону размагничивания жидкости скребка. Решение о необходимости формирования или расформирования скребка принимает станция управления по показаниям датчика давления, расположенного в нижней части колонны НКТ, и датчиков электромагнитной активности, находящихся в комплекте каждого активатора. Обеспечивается возможность регулирования свойств скребка и безаварийная эксплуатация нефтедобывающих скважин. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области разработки нефтяных пластов с неколлекторской зоной путем вытеснения нефти с помощью нефтедобывающих и нагнетательных скважин. Технический результат - повышение эффективности разработки. По способу осуществляют закачку вытесняющего агента через скважину в пласт и отбор пластовой нефти из скважины. В зоне пласта, который выклинивается или замещается на не нефтенасыщенную породу, проводят вертикально скважину через нефтяной пласт, продолжают скважину под пластом и на необходимом расстоянии от первого пересечения вновь проводят скважину через пласт вертикально и в обратном направлении - снизу вверх. Построенную таким образом скважину обсаживают эксплуатационной колонной, цементируют по всей длине скважины и перфорируют в местах пересечения скважины с пластом. Освоение скважины осуществляют последовательно. На первом этапе осваивают отдаленную зону, а затем - ближнюю зону первого пересечения скважиной нефтяного пласта. Комплектуют скважину двумя колоннами насосно-компрессорных труб - НКТ. Первую НКТ доводят до подошвы пласта в зоне второго - отдаленного пересечения скважины с пластом и пакеруют в обсадной колонне ниже пласта. Вторую колонну НКТ комплектуют глубинным насосом. Спускают этот насос в скважину на необходимую глубину над пластом в зоне его первого пересечения. Разработку пласта ведут закачкой в пласт вытесняющего агента, в частности воды, через первую колонну НКТ, а отбор нефти из пласта ведут с помощью глубинного насоса и второй колонны НКТ. 1 ил.

Изобретение относится к теории и практике эксплуатации нефтедобывающих скважин с помощью установок электроцентробежных насосов (УЭЦН) и может использоваться в нефтедобывающей промышленности. Техническим результатом изобретения является повышение эффективности защиты установки электроцентробежного насоса. Способ защиты установки электроцентробежного глубинного насоса заключается в отключении электропитания погружного электродвигателя установки при показании датчика глубинной телеметрии, равном или ниже определенной заданной величины. Один датчик давления устанавливают на приеме электроцентробежного насоса (ЭЦН), второй датчик давления устанавливают в межтрубном пространстве на устье скважины. Величину Pмин - давления датчика, при котором и ниже которого отключается работа ПЭД, рассчитывают в постоянном режиме времени как сумму двух давлений: давления столба жидкости над датчиком Pгидро и давления газа над газожидкостным разделом (динамическим уровнем) PГЖР: Pмин=Pгидро+PГЖР, причем величина PГЖР определяется расчетным путем исходя их показаний второго - устьевого датчика давления, а давление Pгидро задается постоянной величиной исходя из скважинных условий и характеристик глубинного насоса. 1ил., 1 табл.

Изобретение относится к эксплуатации нефтедобывающих скважин с помощью глубинно-насосного оборудования и может использоваться в нефтедобывающей промышленности. Техническим результатом является повышение точности измерения уровня жидкости в скважине. Способ основан на известном законе Бойля-Мариотта, при котором произведение давления газа на его объем является величиной постоянной при изотермических процессах изменения давления и объема газа. По изобретению небольшой объем нефтяного газа, выпущенного из скважины, измеряется счетчиком газа и переводится в скважинные условия. Изменение объема газа ведет к изменению его давления в скважине, которое предложено оценивать как среднеарифметическое между устьевым давлением и давлением в зоне динамического уровня жидкости P(hдин). Последний параметр определяется по известной экспоненциальной формуле Лапласа-Бабинэ, в которой неизвестной величиной является динамический уровень жидкости в скважине (hдин). Динамический уровень жидкости в скважине определяется делением выпущенного объема газа в скважинных условиях на площадь межтрубного пространства скважины, в которой находится попутный нефтяной газ. Предложено техническую задачу решать в режиме итерации, для этого в первом приближении за hдин принимают максимально возможную ее величину при действующей насосной установке, а именно глубину насосной установки. Во втором цикле расчетов в расчетах P(hдин) используют величину динамического уровня, полученного в первом цикле итерации. Расчеты ведут до тех пор, пока величина динамического уровня жидкости не станет постоянной величиной. 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения динамического или статического уровня жидкости в нефтедобывающей или водозаборной скважинах. Техническим результатом является повышение точности определения динамического или статического уровня жидкости в нефтедобывающей или водозаборной скважинах. Предложено разместить в скважине от устья до глубинного насоса или до продуктивного пласта бронированный многожильный кабель с датчиками давления, равномерно расположенными друг от друга по вертикальной составляющей скважины. Информация по давлению с этих датчиков постоянно подается на контроллер станции управления скважиной и интерпретируется в следующем порядке: определяется по первым двум датчикам коэффициент корреляции прямолинейной зависимости давления от вертикальной глубины скважины. В эту базу добавляется информация по третьему и далее датчику до тех пор, пока не понизится коэффициент корреляции. На конечной стадии расчетов контроллер находит уравнения зависимости давления от вертикальной глубины скважины для двух разных фаз: газовой и жидкостной. Уровень жидкости в скважине определяется как точка пересечения этих двух полученных прямых зависимостей. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при расчетах технологических процессов, происходящих в наклонно-направленных скважинах. Техническим результатом является повышение точности определения степени кривизны и удлинения ствола скважины. Предложен способ тарировки скважины по удлинению ствола скважины относительно ее вертикальной составляющей, заключающийся в определении высоты гидростатического столба жидкости по давлению в его нижней точке. При этом скважину с обсадной колонной перекрывают пакером над продуктивным пластом или на необходимой глубине, заполняют пресной или минерализованной водой с известной плотностью, поддерживают уровень воды на устье скважины неизменным, замеряют давление и температуру в стволе скважины через равные промежутки длины спущенного кабеля или проволоки с манометром-термометром. А удлинение ствола скважины от ее вертикальной составляющей определяется по приведенному математическому выражению. 1 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к теории и практике эксплуатации нефтедобывающих скважин с помощью глубинно-насосного оборудования и может использоваться в нефтяной промышленности как способ определения плотности жидкости в межтрубном пространстве действующей скважины. Способ реализуется тем, что давление в зоне глубинного насоса определяют по стационарному датчику, а давление на газожидкостном разделе в межтрубном пространстве РГЖР определяют расчетным путем по формуле Лапласа-Бабинэ при наличии информации по температуре и коэффициенту сверхсжимаемости z. При отсутствии этих данных по скважине необходимое давление РГЖР рассчитывают по аналогии с жидкой фазой, а именно - как сумму устьевого давления и дополнительного давления, создаваемое столбом газа от устья до уровня жидкости. Искомую плотность жидкости определяют исходя из полученных значений давления в зоне насоса и газожидкостного раздела. Техническим результатом является обеспечение возможности получать информацию с необходимой частотой, а также снижение стоимости работ по получению информации о плотности жидкости в межтрубном пространстве. 1 ил.

Изобретение относится к устройству для замера толщины слоя нефти над водой и может быть использовано для оценки количества нефти в скважинной продукции с большой долей воды, а также для определения объема нефти на поверхности природного водоема при аварийных изливах нефти из трубопровода или резервуара. Пробоотборник для оценки толщины слоя нефти над водой содержит тонкостенный, прозрачный вертикальный корпус из материала, который не смачивается нефтью и нефтепродуктами. Корпус выполнен без дна и имеет постоянную по высоте площадь внутреннего сечения и острую кромку в нижней части. В верхней части корпус конусообразно сужен и соединен с отводом гибкой формы, к которому соединены два крана: боковой - для пропуска воздуха и центральный - для пропуска жидкостей. К центральному крану присоединена калиброванная пипетка, которая в свою очередь соединена с насосом двухстороннего действия. Пробоотборник обеспечивает измерение толщины слоя нефти в течение короткого периода времени с применимой точностью для технологий экспресс-анализа. 2 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является обеспечение определения остаточного содержания газа в жидкости после дегазации продукции группы скважин в газосепараторе перед дальнейшей откачкой в нефтепровод. Способ включает в себя процедуры нахождения начального содержания газа в жидкости и замера выделенного из жидкости объема газа. При этом начальное газосодержание в жидкости определяют по каждой из группы нефтедобывающих скважин, работающих на единый трубопровод. Остаточное содержание газа в трубопроводной жидкости после отвода газа в сепарационной емкости определяют по формуле: Г = ∑ i = 1 n ( Г i ⋅ Q i ) − Q г ∑ i = 1 n Q i где Гi - начальное газосодержание в жидкости i-ой скважины; Qi - дебит по жидкости i-ой скважины; n - количество скважин в группе, работающих на единый трубопровод; Qг - объем газа, выделившийся из трубопроводной жидкости в сепарационной емкости за единицу времени. 1 ил., 1 табл.

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента предложено использовать горячую нефть по технологии динамического воздействия. С этой целью выше и ниже глубинного насоса предварительно устанавливают камеры одинакового объема с электронагревательным элементом и датчиками температуры. Скважинную нефть после остановки ЭЦН нагревают до необходимой температуры в нижней камере и перемещают через полость насоса самим же насосом в верхнюю камеру нагрева. Для снижения скорости движения горячей нефти через полость насоса производительность последнего снижают с помощью частотного регулятора тока. При наличии клапана обратного трехпозиционного (КОТ) над верхней камерой нагрева горячую нефть возвращают обратно в нижнюю камеру с устья скважины с помощью передвижного насосного агрегата типа ЦА-320. При отсутствии выше насоса и верхней камеры нагрева обратного клапана типа КОТ горячая нефть самотеком под действием сил гравитации спускается в нижнюю камеру. Общее время циклического воздействия горячей нефти на отложения в полости глубинного электроцентробежного насоса должно быть равным времени, необходимому для полного растворения АСПО. Это время предварительно определяется в лабораторных условиях с моделированием скважинных условий. Периодическое применение способа на осложненных скважинах позволит повысить сроки их безаварийной эксплуатации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к нефтедобывающей промышленности и служит для повышения эффективности эксплуатации глубинных плунжерных насосов. В полость насоса и на приеме насоса помещают датчики измерения давления. Всасывающий клапан выполняют в виде электромагнитного клапана, конструкция которого обеспечивает прохождение скважинной жидкости в полость под плунжером без потери сплошности потока и без гидродинамического сопротивления. Электромагнит всасывающего клапана и датчики давления связаны информационной и исполнительной связью со станцией управления, расположенной на поверхности земли. Открытие-закрытие всасывающего клапана осуществляется синхронно ходу плунжера вверх-вниз благодаря постоянному сравнению станцией управления величин давления в полости насоса и на его приеме и своевременной подаче команд на электромагнит клапана. Организация принудительной работы всасывающего клапана обеспечивает полное заполнение полости насоса даже при повышенной вязкости скважинной жидкости и образовании асфальтосмолопарафиновых отложений на элементах всасывающего клапана. 1 ил.

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС). Способ реализуется на основании периодических измерений содержания сероводорода в поступающей на УПСВ или ДНС газожидкостной продукции и разделенных на этих объектах нефти, пластовой воды и ПНГ. По способу количественно замеряют содержание сероводорода в поступающей на УПСВ (ДНС) газожидкостной смеси, нефти и воде. По материальному балансу определяют массовый выход H2S в составе ПНГ. Учитывая массовую концентрацию сероводорода в ПНГ, определяют объем отсепарированного попутного нефтяного газа за единицу времени. Технический результат заключается в возможности измерения объема отсепарированного попутного нефтяного газа без применения счетчиков газа, что повышает точность измерений. 1 табл.

Изобретение относится к нефтедобывающей промышленности и используется для удаления асфальтосмолопарафиновых отложений (АСПО) механическим путем. Для спускоподьемных операций со скребком используют многожильный электрический бронированный кабель и мобильный подъемник с гидрофицированной лебедкой. Верх и низ скребка комплектуют электронагревательными элементами с тем, чтобы при остановке скребка во время спуска или подъема в пробке из АСПО имелась возможность прогрева отложений до текучего или жидкого состояния. При остановке скребка при подъеме снижают давление над скребком путем разрядки устьевого давления в лифтовых трубах до атмосферного. Для этого продукцию скважины направляют в открытую емкость или в межтрубное пространство скважины без избыточного давления. Создание дополнительной подъемной силы за счет разности давлений ниже и выше скребка в совокупности с электропрогревом пробки из АСПО позволяет освободить скребок от прихвата в колонне лифтовых труб. Повышается эффективность и надежность, расширяются технологические возможности. 2 ил.

Изобретение относится к нефтедобывающей промышленности и используется для удаления асфальтосмолопарафиновых отложений (АСПО) механическим путем. Для спускоподьемных операций со скребком используют многожильный электрический бронированный кабель и мобильный подъемник с гидрофицированной лебедкой. Верх и низ скребка комплектуют электронагревательными элементами с тем, чтобы при остановке скребка во время спуска или подъема в пробке из АСПО имелась возможность прогрева отложений до текучего или жидкого состояния. При остановке скребка при подъеме снижают давление над скребком путем разрядки устьевого давления в лифтовых трубах до атмосферного. Для этого продукцию скважины направляют в открытую емкость или в межтрубное пространство скважины без избыточного давления. Создание дополнительной подъемной силы за счет разности давлений ниже и выше скребка в совокупности с электропрогревом пробки из АСПО позволяет освободить скребок от прихвата в колонне лифтовых труб. Повышается эффективность и надежность, расширяются технологические возможности. 2 ил.

Изобретение относится к нефтедобывающей промышленности и используется для удаления асфальтосмолопарафиновых отложений (АСПО) механическим путем. Для спускоподьемных операций со скребком используют многожильный электрический бронированный кабель и мобильный подъемник с гидрофицированной лебедкой. Верх и низ скребка комплектуют электронагревательными элементами с тем, чтобы при остановке скребка во время спуска или подъема в пробке из АСПО имелась возможность прогрева отложений до текучего или жидкого состояния. При остановке скребка при подъеме снижают давление над скребком путем разрядки устьевого давления в лифтовых трубах до атмосферного. Для этого продукцию скважины направляют в открытую емкость или в межтрубное пространство скважины без избыточного давления. Создание дополнительной подъемной силы за счет разности давлений ниже и выше скребка в совокупности с электропрогревом пробки из АСПО позволяет освободить скребок от прихвата в колонне лифтовых труб. Повышается эффективность и надежность, расширяются технологические возможности. 2 ил.

Изобретение относится к нефтедобывающей промышленности и используется для удаления асфальтосмолопарафиновых отложений (АСПО) механическим путем. Для спускоподьемных операций со скребком используют многожильный электрический бронированный кабель и мобильный подъемник с гидрофицированной лебедкой. Верх и низ скребка комплектуют электронагревательными элементами с тем, чтобы при остановке скребка во время спуска или подъема в пробке из АСПО имелась возможность прогрева отложений до текучего или жидкого состояния. При остановке скребка при подъеме снижают давление над скребком путем разрядки устьевого давления в лифтовых трубах до атмосферного. Для этого продукцию скважины направляют в открытую емкость или в межтрубное пространство скважины без избыточного давления. Создание дополнительной подъемной силы за счет разности давлений ниже и выше скребка в совокупности с электропрогревом пробки из АСПО позволяет освободить скребок от прихвата в колонне лифтовых труб. Повышается эффективность и надежность, расширяются технологические возможности. 2 ил.

Изобретение относится к способам измерения количественного содержания растворенного газа в нефтепромысловой жидкости и может быть использовано при поиске, добыче, подготовке и транспортировке нефти и воды

Изобретение относится к горному делу и может быть использовано для перемешивания газожидкостной продукции в трубопроводе
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх