Патенты автора Болтенко Эдуард Алексеевич (RU)

Изобретение относится к энергетике и может быть использовано, например в тепловыделяющих сборках (ТВС) ядерных энергетических установок. Способ работы тепловыделяющей сборки (ТВС) со стержневыми твэлами заключается в том, что подают теплоноситель на вход ТВС, пропускают теплоноситель вдоль выпуклых теплоотдающих поверхностей твэл, выделяют тепло в твэлах, осуществляют массообмен между ячейками ТВС, отводят выделяемое тепло за счет теплосъема с выпуклых теплоотдающих поверхностей твэл. Массообмен между ячейками ТВС осуществляют путем перетоков теплоносителя через отверстия в необогреваемых вставках. Изобретение позволяет выравнить температуру теплоносителя по сечению ТВС, устранить подкипание теплоносителя в ячейках. 1 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике и может быть использовано в теплопередающих устройствах, например в ядерных энергетических установках. Изобретение заключается в том, что в устройстве для повышения теплосъема на выпуклых теплоотдающих поверхностях, содержащем верхнее закручивающее устройство, размещенное относительно выпуклой поверхности с зазором δ, разделенным продольными ребрами на ряд каналов, число продольных ребер n, размещенных на выпуклой поверхности, выбирается из условия 0,1πdвп/δ≥n≥0, где δ - высота зазора, dвп - диаметр выпуклой теплоотдающей поверхности. К изобретению относится также и способ повышения теплосъема на выпуклых теплоотдающих поверхностях путем разделения потока, поданного на выпуклую теплоотдающую поверхность, на нижний и верхний потоки и вырианты их закрутки. Технический результат - повышение интенсивности теплосъема. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники, предназначено для определения расхода среды в круглых трубопроводах при стабилизированном течении. Способ определения расхода в трубопроводах включает измерение скорости потока в двух характерных точках по сечению трубы и определение расхода по результатам этих измерений. Отличительной особенностью способа является то, что дополнительно измеряют скорость среды в какой-либо точке потока по сечению трубы, определяют на основе единого универсального логарифмического профиля U=Аkln(х)+Вk значения коэффициентов Аk и Вk для каждой пары известных значений координат (расстояний от стенки трубы) точек измерения скорости и измеренных значений скорости в этих точках (, ) и (, ), вычисляют относительные разности значений коэффициентов Ak и Bk и (верхние индексы обозначают значения коэффициентов Ak и Bk, вычисленные для различных пар значений координата-скорость), при условии, что величины и для каждой пары значений Ak и Bk не превышают наперед заданного значения ε, определяют расход теплоносителя по зависимости: где r=r0-х - расстояние от центра трубы; r0 - радиус трубы; х - расстояние от стенки трубы; - среднее значение коэффициентов Ak; - среднее значение коэффициентов Bk; n=3; κ - постоянная Кармана; ν - кинематическая вязкость среды; δв - толщина вязкого подслоя. Технический результат - повышение точности. 1 ил., 1 табл.

Изобретение относится к области измерительной техники, предназначено для определения расхода теплоносителя. Отличительной особенностью способа определения расхода теплоносителя датчиками скорости является то, что дополнительно устанавливают по крайней мере один датчик скорости, определяют расход теплоносителя на основе частного вида профиля скорости где Dтр - диаметр трубопровода, W(r, φ) - частный вид профиля скорости, а частный вид профиля скорости определяют на основе измеренных датчиками скорости значений скоростей и общего вида профиля скорости, а общий вид профиля скорости определяют на основе теоретических представлений и предварительных модельных опытов. Технический результат - повышение точности определения расхода. 2 ил.

Изобретение относится к ядерной технике, в частности к конструкциям стержневых тепловыделяющих элементов (твэлов), предполагающих наличие в своем составе устройств и средств для интенсификации теплообмена с поверхности твэла, и может быть использовано, в частности, в действующих реакторах водо-водяного типа с тепловой мощностью более 2600 МВт (например, ВВЭР-1000) или в реакторах с аналогичными особенностями в конструкции твэлов. Технический результат - повышение теплоотдачи с поверхности твэлов при минимальном увеличении гидравлического сопротивления, характерного для гладкой поверхности твэлов. Для целей перемешивания и турбулизации потока теплоносителя интенсификатор теплоотдачи выполнен в виде спиральной навивки металлической ленты на внешнюю поверхность стержневого тепловыделяющего элемента. При этом металлическая лента закручена относительно собственной продольной оси. 2 ил.

Изобретение относится к электротехнике и позволяет повысить ресурс и эксплуатационную надежность трубчатого нагревателя. Трубчатый электронагреватель содержит тепловыделяющий элемент 1, например, в виде токопроводящей спирали, расположенный внутри защитной металлической оболочки 2, имеющей внешнее поперечное оребрение 3, на концах металлической оболочки 2 выполнены герметизированные токоподводы 4, присоединенные к выводам токопроводящей спирали, пористые керамические шайбы 5, имеющие каплевидную форму, во внутреннем отверстии которых размещен тепловыделяющий элемент 1, а по внешнему обводу шайбы заключены в защитную металлическую оболочку 2, пористые керамические шайбы имеют переменную по высоте толщину, от полностью закрывающей тепловыделяющий элемент 1 до минимальной в верхней части, внутренняя полость трубчатого электронагревателя, включая поры керамических шайб, частично заполнена жидкостью. При подаче напряжения на токоподводы 4, присоединенные к выводам токопроводящей спирали, ее температура повышается, поскольку теплопроводность пористых керамических шайб 5 невелика, нагрев спирали тепловыделяющего элемента 1 происходит быстро, однако температура защитной оболочки 2 и оребрения 3 определяется температурой внешнего теплоносителя. Так как внутренняя полость нагревателя и поры шайб заполнены жидкостью, то при определенной температуре эта жидкость закипает, пар через поры попадает в пространство между пористыми шайбами 5, где конденсируется на внутренней поверхности защитной оболочки 2, отдавая ей запасенную теплоту парообразования. Сконденсировавшийся пар в виде жидкости попадает на поверхность пористых шайб 5 и за счет эффекта капиллярности впитывается внутрь шайб 5, опускаясь к нагретой спирали, где вновь закипает, запасая теплоту парообразования и замыкая тем самым цикл теплопереноса и контур циркуляции. 2 ил.

Изобретение относится к электротехнике, в частности к устройствам преобразования электрической энергии в тепловую, и позволяет повысить ресурс и эксплуатационную надежность трубчатого нагревателя за счет увеличения теплопроводности в направлении от тепловыделяющего элемента к поверхности теплообмена с внешним теплоносителем. Трубчатый электронагреватель содержит защитную металлическую оболочку 1 с фланцевым уплотнением 2 и подсоединительный элемент 3 для подвода питающего напряжения, диэлектрические шайбы 4, внутренняя и внешняя цилиндрические поверхности 5 и 6 металлизированы, а плоские цилиндрические поверхности покрыты резистивным слоем 7 с возрастающим сопротивлением в радиальном направлении, резистивный слой 7 имеет электрический контакт с металлизацией на внутренней цилиндрической поверхности 5 и внешней цилиндрической поверхности 6 шайб 4, металлизация на внутренней цилиндрической поверхности 5 шайб имеет электрический контакт с внутренним трубчатым токоподводом 8, металлизация на внешней цилиндрической поверхности 6 шайб имеет электрический контакт с оболочкой 1. Электронагреватель монтируется в емкость с нагреваемой жидкостью таким образом, чтобы защитная металлическая оболочка 1 и сама емкость были заземлены, что соответствует требованиям Правил устройства электроустановок (ПУЭ). При подаче питающего напряжения на подсоединительный элемент 3 от сети, выполненной по схеме «с глухозаземленной нейтралью», это напряжение через внутренний трубчатый токоподвод 8 оказывается приложенным к резистивному слою 7 всех диэлектрических шайб, где происходит тепловыделение. 3 ил.

Изобретение относится к измерительной технике и может быть использовано при определении раздела фаз в парогенерирующих установках. Способ заключается в том, что устанавливают датчик, выполненный, например, в виде электропроводной проволоки, в канале по направлению силы тяжести нагревают датчик путем пропускания тока через датчик, измеряют электрическое сопротивление датчика R, отличающийся тем, что измеряют ток I, проходящий через датчик, определяют приращение температуры датчика на участках датчика, контактирующих с паровой и жидкой фазами Δtп=I2R/πdLαп, Δtж=I2R/πdLαж, определяют удельное электрическое сопротивление датчика, контактирующего с паровой и жидкой фазами ρп=ρ0(1+βΔtп), ρж=ρ0(1+βΔtж), определяют толщину парового hп и жидкостного слоя hж:hп=(RS-ρжL)/(ρп-ρж), hж=L-hп, где ρж и ρп - удельное электрическое сопротивление датчика, находящегося в жидкой ρж и паровой фазе соответственно; R - электрическое сопротивление датчика; I - ток через датчик; L - длина датчика; S - поперечное сечение датчика, β - термический коэффициент сопротивления, d - диаметр датчика, ρ0 - удельное электрическое сопротивление материала датчика при t=20°C, αп, αж - коэффициенты теплоотдачи на поверхности датчика при взаимодействии с паровой и жидкой фазами. В случае наличия в канале двухфазного слоя, дополнительно устанавливается дополнительный датчик в виде электропроводной проволоки в сечении канала, где отсутствует двухфазный слой. Технический результат - повышение точности определения уровней раздела паровой, жидкой фаз и двухфазного слоя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике и может быть использовано в теплогенерирующих устройствах, например в ядерных энергетических установках. В способе теплосъема с поверхности тепловыделяющих элементов, заключающемся в том, что теплоноситель подают на теплоотдающую поверхность теплопередающего устройства и закручивают его, теплоноситель дополнительно закручивают относительно оси, лежащей под углом к продольной оси основного закрученного потока. Технический результат заключается в повышении интенсивности теплосъема за счет взаимодействия вихрей с теплоотдающей поверхностью, что приводит к интенсивному тепломассообмену между ядром потока и пристенным слоем. 1 ил.

Изобретение относится к ядерной технике, а более конкретно к технологическим испарительно-пароперегревательным каналам прямоточного водо-водяного ядерного реактора, и позволяет расширить функциональные возможности путем интенсификации теплообмена и повысить стабильность работы канала

Изобретение относится к области ядерной техники

Изобретение относится к области расходометрии и может быть использовано для определения расхода жидкости, например, в ядерных энергетических установках

Изобретение относится к энергетике и может быть использовано в устройствах для нагрева воды, например в ядерных энергетических установках

Изобретение относится к области измерительной техники, предназначено для определения величины и направления скорости в потоках теплоносителя, например закрученных

Изобретение относится к области измерительной техники, предназначено для определения теплогидравлических характеристик (ТГХ) по сечению сборки и может быть использовано при определении параметров одно-двухфазных потоков в тепловыделяющих сборках различного назначения

Изобретение относится к области измерительной техники, предназначено для определения величины и направления скорости в потоках теплоносителя, например, закрученных

Изобретение относится к энергетике и может быть использовано в устройствах для нагрева воды, например в ядерных энергетических установках

Изобретение относится к расходоизмерительной технике паро-газожидкостных смесей и может использоваться при определении расхода двухфазной смеси при исследовании аварийных режимов на крупномасштабных стендах

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике и может использоваться для определения скорости однофазного потока жидкости в стационарных и переходных режимах

Изобретение относится к энергетике и может быть использовано в теплогенерирующих устройствах, например в ядерных энергетических установках

Изобретение относится к измерительной технике и может использоваться для определения скорости однофазного потока жидкости в стационарных и переходных режимах

ТЕРМОПАРА // 2289107
Изобретение относится к измерительной технике, в частности к схемам, использующим нагрев спая термопары

Изобретение относится к области теплофизических исследований и может быть использовано для охлаждения имитаторов твэл в процессе работы их в составе сборки

Изобретение относится к области измерительной техники и предназначено для определения скоростей фаз в двухфазных потоках

 


Наверх