Патенты автора Бойко Андрей Юрьевич (RU)

Изобретение относится к аналитической химии. Способ определения содержания ортохлорбензилиденмалонодинитрила (CS), хлорацетофенона (CN), дибензоксазепина (CR), морфолида пеларгоновой кислоты (МПК) в спиртовых экстрактах методом обращенно-фазовой высокоэффективной жидкостной хроматографии включает пробоподготовку путем жидкостной экстракции и последующее разделение на хроматографической колонке, заполненной обращенно-фазовым носителем, содержащим привитую фазу С18, детектирование с использованием диодно-матричного детектора при длине волны 230 нм. Одновременное количественное определение CS, ХАФ, CR, МПК проводится в ходе одного анализа по градуировочному графику вещества CS, с применением рассчитанных значений относительных массовых градуировочных коэффициентов для каждого вещества, с использованием хроматографической колонки длиной 150 мм и внутренним диаметром 4,6 мм с зернением частиц 5,0 мкм, используя в качестве элюента бинарную смесь ацетонитрила и дистиллированной воды в соотношении 80/20 об.%, при температуре термостата колонки 26°С. Техническим результатом является разработка универсального способа одновременного определения ортохлорбензилиденмалонодинитрила, хлорацетофенона, дибензоксазепина и морфолида пеларгоновой кислоты в спиртовых экстрактах методом высокоэффективной жидкостной хроматографии с расширением диапазона определяемых массовых концентраций и уменьшением общего времени анализа. 1 ил., 4 табл.

Изобретение относится к области исследований или анализа дисперсного состава аэрозольных частиц загрязняющих веществ в воздухе при проведении пробоотбора с использованием импакторов. Способ адаптирования каскадных струйных импакторов к различным условиям отбора проб аэрозоля, характеризующихся изменением плотности вещества отбираемых частиц и(или) объемной скорости аспирации, заключается в корректировке скорости воздуха на входе в каждый каскад и(или) длины пробега частиц до улавливающей подложки путем использования комплектов сменных элементов конструкции каскадов импактора, при этом обеспечение функциональности одного и того же импактора при различных условиях отбора проб аэрозоля достигается комбинированием величины сечения сопел и(или) расстояния от входного канала каскада до улавливающей подложки за счет использования комплекта сменных мембран с отверстиями разного количества и диаметра и(или) комплекта сменных элементов стоек различной длины, удерживающих улавливающие подложки, либо стоек, конструктивно позволяющих изменять и фиксировать их длину за счет резьбового соединения. Техническим результатом является приобретение импакторами свойства универсальности к условиям отбора проб, а также расширение их функциональных возможностей по выбору необходимого диапазона дисперсности отбираемого аэрозоля на различных каскадах. 2 ил.

Изобретение относится к исследованию паров веществ путем измерения их физических свойств с использованием метода масс-спектрометрии в сочетании с методом хроматографии. Способ идентификации фосфорорганических соединений методом хромато-масс-спектрометрии с цилиндрической ионной ловушкой заключается в разделении веществ на хроматографической колонке с последующим детектированием в масс-детекторе, при этом в условиях одного анализа выделяют масс-спектры электронной ионизации в сканах на спаде, вершине и подъеме одного хроматографического пика, отличающиеся набором пиков-ионов как по массовым значениям, так и по их интенсивности; проводят групповую идентификацию путем сравнения с масс-спектрами базы данных NIST; определяют вероятную молекулярную массу; вычисляют количество углеродных атомов в О-алкильных радикалах, при этом разница между значением псевдомолекулярного иона и иона, образующегося вследствие элиминирования алкенового фрагмента, должна быть кратна 14; по совокупности полученных данных производят идентификацию фосфорорганического соединения. Техническим результатом изобретения является повышение достоверности и надежности идентификации фосфорорганических соединений в пробах неизвестного состава, а также расширение функциональных возможностей масс-спектрометрического метода на основе цилиндрической ионной ловушки. 5 ил., 1 табл.

Изобретение относится к области испытания оптической аппаратуры и предназначено для экспериментальной оценки технических характеристик Фурье-спектрорадиометров в полевых условиях. Технический эффект, заключающийся в возможности проведения экспериментов по оценке уровня технических характеристик Фурье-спектрорадиометров или диагностированию их технического состояния без ограничения временных параметров, зависящих от метеорологических условий и законов распространения паров токсикантов в турбулентной атмосфере, в обеспечении постоянства спектральных характеристик моделируемого облака заражённого воздуха, а также в расширении диапазона доступных дальностей до тестового объекта индикации, достигается за счёт того, что применяется газонаполненная закрытая оболочка как компактный герметичный объём, которая предотвращает свободное распространение газа-наполнителя в турбулентной атмосфере приземного слоя, при этом используется постоянство оптических свойств газонаполненной закрытой аэростатической оболочки для формирования заданного спектрального состава оптического излучения моделируемого тестового объекта индикации при одновременном исключении воздействия негативных факторов турбулентной приземной атмосферы на изменение геометрических параметров моделируемого объекта индикации. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области контроля состояния окружающей среды и касается способа дистанционного контроля степени зараженности подстилающей поверхности аэрозолями стойких токсичных химических веществ. Способ заключается в зондировании зараженной поверхности излучением с частотой 2,45 ГГц, регистрации характерных спектров осажденных на поверхности аэрозольных частиц в диапазоне 7-14 мкм и математической обработке зарегистрированных инфракрасных спектров. Математическая обработка осуществляется путем корреляционного анализа для идентификации аэрозольных частиц токсичных веществ по базе спектральных данных с последующим вычислением показателей плотности заражения по интенсивности характерных для идентифицированных веществ спектральных полос. Облучение зараженной поверхности осуществляют при помощи антенны с узкой диаграммой направленности, в результате чего возбуждают индуцированное инфракрасное излучение осажденных на анализируемой поверхности аэрозольных частиц. Регистрацию спектров индуцированного излучения осуществляют с помощью Фурье-спектрорадиометра. Технический результат заключается в исключении негативного влияния наложения паразитных спектров на анализируемые спектры.

Изобретение относится к области экологического контроля и касается способа определения возможности применения спектрорадиометра для экологического мониторинга атмосферы. При осуществлении способа выбирают трассу зондирования, на одном конце которой находится видеоаппаратура регистрации изображений и спектрорадиометр. На другом конце трассы находится расположенный на фоне неба тестовый объект черного цвета. Периодически убеждаются, что его контраст на фоне неба близок к 1. Внеочередную фиксацию изображения осуществляют после аварийного выброса, когда облако выброса попадает в поле зрения видеоаппаратуры и спектрорадиометра. Решают задачу распространения света в газо-аэрозольной среде и задачу идентификации газовой примеси на основе регистрации инфракрасного спектра. Определяют критическую величину контраста в видимом диапазоне тестового объекта, при которой невозможно распознавание инфракрасного спектра газообразного вещества, сравнивают величину контраста тестового объекта при прохождении газо-аэрозольного облака и критическую величину контраста и делают вывод о возможности срабатывания спектрорадиометра при наличии в воздухе токсичного химиката. Технический результат заключается в повышении достоверности получаемых результатов. 1 ил., 1 табл.

Изобретение относится к способам дистанционного зондирования атмосферы и может быть использовано для определения траектории распространения облаков токсичных газообразных веществ в атмосфере, например, в целях прогнозирования последствий аварий на химически опасных объектах. Сущность: проводят непрерывное круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта по наклонным трассам не менее чем двумя Фурье-спектрорадиометрами. Используя результаты срабатывания спектрорадиометров, экспериментально устанавливают законы углового перемещения индицируемого облака относительно каждого из приборов и для каждого направления и момента времени, когда сработал один из приборов. Прогнозируют направление оси поля зрения для остальных приборов, в котором они предположительно могли бы индицировать облако в тот же момент времени. Определяют координаты точек пересечения проекций осей полей зрения приборов, спроецированных на топографическую карту. Находят уравнения, описывающие изменение с течением времени координат облака, которые дают возможность прогнозировать направление и динамику его распространения. Последовательность найденных координат во времени аппроксимируют линией, являющейся искомой траекторией распространения индицируемого облака токсичного газообразного вещества. Технический результат: обеспечение возможности определения траектории и прогнозирования направления распространения облаков токсичных газообразных веществ.

Изобретение относится к области исследований показателей качества материалов и изделий, в частности - к оценке защитных свойств воздухопроницаемых материалов на основе активированных углеродсодержащих сорбентов при воздействии паров химических веществ. Заявленный способ экспрессного определения защитных свойств воздухопроницаемых защитных фильтрующе-сорбирующих материалов по парам химических веществ при различных условиях массообмена заключается в установлении интервала времени от начала воздействия потока химического вещества через фильтрующе-сорбирующий материал с объемной скоростью, равной величине воздухопроницаемости исследуемого образца, до достижения за образцом критериального значения концентрации пара и при этом определение концентрации паров осуществляют в режиме реального времени без пробоотбора и пробоподготовки путем последовательных циклов регистрации и обработки спектров поглощения в воздушном потоке методом ИК-спектрометрии в интервале от 0,1 ppm до концентрации насыщенных паров, рассчитывают значения коэффициента массопередачи βдин на каждом цикле измерений, а полученные данные используют для аппроксимации результатов на любые другие условия массообмена с погрешностью в пределах 10% по формулеτ=τдин⋅β*,где τ - время достижения заданной концентрации химического вещества для определяемых условий массообмена, мин;τдин _ время достижения заданной концентрации химического вещества в условиях конвективного массообмена, мин;β* - коэффициент массопередачи, нормированный к требуемым условиям массообмена, отн. ед. Техническим результатом является разработка способа, обеспечивающего экспрессность оценки защитных свойств воздухопроницаемых материалов, исключение из цикла анализа операций пробоотбора и пробоподготовки, объективность и высокую достоверность результатов определения паров химического вещества, возможность прогнозирования защитных свойств материалов на другие условия массообмена с погрешностью, не превышающей 10%. 2 ил., 3 табл.

Изобретение относится к средствам дегазации объектов по уничтожению химического оружия (ОУХО). Предложена рецептура, при заблаговременном нанесении которой на наружные и внутренние поверхности технологических помещений ОУХО позволяет создать на них защитный слой для обеспечения безопасной эксплуатации объектов. Рецептура самодегазирующего покрытия включает в качестве пленкообразователя уретан-алкидный лак и в качестве наполнителя - интерполиэлектролитный комплекс, представляющий собой продукт взаимодействия 4,0 мас.% раствора катионного полиоснования - хитозана в 6,0 мас.% водном растворе уксусной кислоты с 0,1 мас.% водным раствором порошка СФ-2У. Покрытие обеспечивает быстрое впитывание жидкой фазы физиологически активных веществ (ФАВ), исключая возможность заражения средств индивидуальной защиты при контакте личного состава с зараженными поверхностями, тем самым обеспечивает безопасную эксплуатацию ОУХО, зараженных не только ФАВ фосфорорганического ряда, но и галогенированными тиоэфирами. 1 табл.

Изобретение относится к области оптических методов измерения физико-химических характеристик аэрозольных сред и может быть использовано при разработке лидарных комплексов для дистанционного контроля дисперсного состава аэрозольных облаков стойких токсичных химикатов (ТХ) при возникновении запроектных аварий в местах хранения и уничтожения химического оружия (УХО) и на других химически опасных объектах. В способе проводится зондирование полидисперсного аэрозольного облака ТХ многочастотным лазерным излучением ультрафиолетового, видимого и инфракрасного диапазонов спектра и регистрируются интенсивности сигналов обратного упругого аэрозольного рассеяния. В процессе хранения ТХ осуществляется контроль их оптических констант (коэффициента преломления и показателя поглощения). По результатам спектральных измерений создается база данных характеристик аэрозольного рассеяния ТХ на основе многопараметрических рядов, включающих относительные характеристики обратного аэрозольного рассеяния с использованием инструментально измеренных значений мнимой и действительной частей комплексного показателя преломления ТХ, а также медианного диаметра и дисперсии распределения логарифмически нормального закона распределения аэрозоля ТХ по дисперсному составу. При этом контроль дисперсного состава аэрозолей ТХ осуществляют в рамках теории распознавания образов по минимальному значению меры близости сигналов аэрозольного рассеяния, полученных в эксперименте с помощью дистанционного средства, и данных многопараметрических рядов в составе базы данных средства локации. Изобретение обеспечивает дистанционный контроль размеров тонкодисперсных аэрозолей стойких ТХ с логарифмически нормальным законом распределения частиц по дисперсному составу для оценки масштабов и последствий аварийных выбросов ТХ на объектах УХО. 3 табл.

Изобретение относится к области мониторинга радиационной обстановки и установления факта появления в атмосфере облака радиоактивных веществ. С помощью спектрорадиометра инфракрасного излучения определение присутствия в воздухе радиоактивных газов и аэрозолей осуществляется путем установления повышения в воздухе содержания озона, образующегося из кислорода под действием ионизирующих излучений радионуклидов. Изобретение позволяет снизить дозовые нагрузки за счет принятия защитных мер, обеспечивающих исключение ингаляционного поступления радионуклидов внутрь организмов, до подхода радиоактивного облака в район расположения людей. 5 ил.

Изобретение относится к улучшенному способу получения 2-хлор-5-гидроксиметилпиридина, который включает активацию карбоксильной группы 6-хлорникотиновой кислоты и восстановление 6-хлорникотиноилхлорида. Способ характеризуется тем, что реакцию активации карбоксильной группы проводят цианурхлоридом при температуре реакционной смеси 20°C в присутствии N-метилморфолина, в качестве растворителя используют диметоксиэтан, а восстановление сложного активированного эфира осуществляют раствором боргидрида натрия в воде в течение 10 минут. Технический результат - получение 2-хлор-5-гидроксиметилпиридина с выходом не менее 87%, повышение безопасности проведения процесса, активацию карбоксильной группы осуществляют при температуре реакционной смеси 20°C, а восстановление сложного активированного эфира сокращают до 10 минут. Полученное соединение находит применение в органическом синтезе биологически активных веществ, моделирующих активность протеинкиназ и иохимбановых алкалоидов. 1 пр.
Изобретение относится к электрохимии, а именно к утилизации литийсодержащих отходов, в частности отработанных литиевых химических источников тока. Данный способ предназначен для применения в специализированных производствах по утилизации литиевых источников тока (ЛИТ). Сущность способа заключается в применении фракции C4-C6 жирных спиртов, не смешивающихся с водой в качестве рабочей среды для химически активного лития и литийсодержащих соединений на стадиях вскрытия, разгерметизации, измельчения и использования их в качестве исходного материала для получения алкоголятов лития. Сонолитическое воздействие на реакционную массу и поддержание температурного режима (до 80°C) обеспечивается использованием ультразвуковой ванны типа УЗВ-3/100-ТН. Введение в реакционную смесь катализатора межфазного переноса (тетрабутиламмония хлорида) способствует интенсификации процесса алкоголиза литийсодержащих отходов в условиях гетерофазной системы. Сочетание применения сонолиза и катализатора межфазного переноса позволяет проводить утилизацию литийсодержащих отходов со степенью измельчения литийсодержащих отходов до 20 мм. Практическое применение данного способа позволит повысить эффективность мероприятий по утилизации ЛИТ и обеспечить безопасность проведения работ. 1 пр.

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров. Способ заключается в беспробоотборном определении мгновенных значений концентрации вещества по данным контроля оптической плотности модельного облака на характеристических спектральных линиях в момент регистрации его спектра с использованием лабораторного стенда для создания и контроля концентраций газообразных веществ путем регистрации спектра пропускания модельного облака и расчетом по закону Бугера-Ламберта-Бера на основании значений молярной массы и молекулярного сечения поглощения вещества. Регистрация спектров для базы данных производится при достижении значения оптической плотности облака порядка 1,105÷1,112. Технический результат заключается в обеспечении возможности снижения погрешности при определении спектральных коэффициентов поглощения излучения для веществ из перечня формируемой базы спектральных данных для Фурье-спектрорадиометра. 2 ил.
Изобретение относится к области безопасной эксплуатации химически опасных объектов (ХОО), а именно к разработке состава рецептуры, обеспечивающей дегазацию летучих токсичных фосфорорганических веществ внутри технологических помещений не только на поверхностях, но и в воздухе в виде паровой фазы

Изобретение относится к области исследования или анализа небиологических материалов путем определения их химических или физических свойств, конкретно, исследования фазовых изменений путем удаления какого-либо компонента, например, испарением, и взвешивания остатка

Изобретение относится к дистанционному зондированию атмосферы, в частности к способам исследования ее газового состава

Изобретение относится к области организации и проведения выявления радиационной обстановки после аварийного выброса в атмосферу радиоактивных веществ

Изобретение относится к области мониторинга, в частности к мониторингу химически опасных объектов, и предназначено для оперативного определения координат источника возможной чрезвычайной ситуации в любой из зон влияния химически опасного объекта, подтверждения достоверности возможного события и определения параметров поражающих факторов химического и физического воздействия с целью улучшения качества принятия решения о чрезвычайной ситуации

Изобретение относится к области исследований веществ с помощью оптических средств

Изобретение относится к области исследований и анализа веществ с помощью оптических средств, а именно к разработке лидарного способа дистанционного мониторинга радиоактивного загрязнения местности (РЗМ), основанного на регистрации эффекта возбуждения молекул воздуха под действием ионизирующих излучений (ИИ), с использованием источников когерентного электромагнитного излучения оптического диапазона - лазеров

Изобретение относится к области исследований или анализа веществ с помощью оптических средств, а именно к дистанционному мониторингу и идентификации загрязняющих веществ (ЗВ) при ведении разведки с использованием многочастотных источников когерентного электромагнитного излучения оптического диапазона

Изобретение относится к области исследования или анализа материалов путем определения их химических или физических свойств и может быть использовано при подготовке образцов в газообразном состоянии
Изобретение относится к области анализа материалов

Изобретение относится к области аналитической химии, а именно к количественному определению тиодигликоля (,'-дигидроксидиэтилсульфида) в водных матрицах

 


Наверх