Патенты автора Дикарев Виктор Иванович (RU)

Изобретение относятся к области систем контроля потока транспортных средств. Устройство, реализующее предлагаемый способ, содержит аппаратуру и транспондеры, размещенные на транспортных средствах и наземном городском транспорте. Аппаратура, установленная на каждом контрольном пункте, содержит сканер, первый и второй блоки управления, первый и второй синтезаторы частот первого и второго радиодиапазонов, первый и второй синтезаторы частот первого и второго ультразвуковых диапазонов, сумматор, дуплексер, приемопередающую антенну, усилитель мощности, таймер, приемники излучения, блоки декодирования, интерфейс, цифровую вычислительную машину, блок отображения информации, систему средств задержания искомых автомобилей, сетевые каналы систем информации и блок отображения нарушения графика движения наземного городского транспорта. Транспондер, установленный на каждом транспортном средстве, содержит пьезокристалл, микрополосковую приемопередающую антенну, гребенчатую систему электродов, набор отражателей. Транспондер, установленный на каждом наземном городском транспорте, содержит пьезокристалл, микрополосковую приемопередающую антенну, гребенчатую систему электродов, шину, набор отражателей. Достигается повышение эффективности идентификации транспортных средств. 2 н.п. ф-лы, 3 ил.

Предлагаемые технические решения относятся к базирующейся на глобальной системе местоопределения системе управления транспортировкой твердых коммунальных отходов с использованием подвижных объектов, в качестве которых могут быть наземные транспортные средства. Технической задачей изобретения является повышение избирательности и помехоустойчивости приемников шумоподавления ложных сигналов (помех), принимаемых по дополнительным каналам. Система (1) материально-технического обеспечения, реализующая предлагаемый способ содержит глобальную систему (2) местоопределения, спутники (3.1-3.5), железнодорожный вагон (4), железнодорожный путь (5), источник (6) электропитания, панель (7) солнечной батареи, исполнительное устройство (8), приемник (9) GPS-сигналов, микропроцессор (10.1), модем (11.1). Модем (11.1) содержит микропроцессор (10.1), исполнительные устройства, задающий генератор, фазовый манипулятор, первый гетеродин, первый смеситель, усилитель мощности, дуплектор, приемопередающую антенну, второй усилитель мощности, второй гетеродин, второй смеситель, первый фильтр нижних частот, перемножитель, узкополосный фильтр, фазовый детектор, второй фильтр нижних частот и систему ФАПЧ. Приемник (9) GPS-сигналов содержит приемную антенну, усилитель мощности, гетеродин, смеситель, первый фильтр нижних частот, перемножитель, узкополосный фильтр, фазовый детектор, второй фильтр нижних частот и систему ФАПЧ. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области противопожарной техники, а более конкретно к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием. Техническим результатом является повышение достоверности приема сигналов тревоги. Технический результат заявляемого технического решения достигается тем, что в заявленном решении продетектированные амплитудными детекторами сигналы разнесены во времени и имеют разную полярность и схема работает как схема отбора по максимуму. Кроме того, в заявленном решении приемник снабжен четвертым, пятым и шестым сумматорами, четвертым фазоинвертором и двумя амплитудными детекторами, причем к выходу первого ключа последовательно подключены четвертый сумматор, второй вход которого соединен с выходом второй линии задержки, первый амплитудный детектор и шестой сумматор, выход которого подключен к блоку регистрации, к выходу второй линии задержки последовательно подключены четвертый фазоинвертор, пятый сумматор, второй вход которого соединен с выходом первого ключа, и второй амплитудный детектор, выход которого соединен с вторым входом шестого сумматора. 9 ил.

Изобретение относится к области регулирования движения транспортных средств. Устройство, реализующее предлагаемый способ содержит блок управления дорожным движением, дорожный знак, транспортное средство, светофор, учреждения МЧС, полицейские органы быстрого реагирования, другие ТС. Пункт управления дорожным движением содержит приемопередающую антенну, приемопередатчик, блок управления, задающий генератор, фазовый манипулятор, первый и второй гетеродины, первый и второй смесители, усилитель первой промежуточной частоты, первый и второй усилители мощности, дуплексер, усилитель второй промежуточной частоты, перемножитель, полосовой фильтр и фазовый детектор. Дорожный знак содержит солнечную батарею, приемопередающую антенну, приемопередатчик, передающую антенну, передатчик, блок управления, электронный индикатор, задающий генератор, фазовый манипулятор, первый и второй гетеродины, первый и второй смесители, усилитель первой промежуточной частоты, первый и второй усилители мощности, дуплексер, усилитель второй промежуточной частоты, перемножитель, голосовой фильтр и фазовый детектор. Достигается повышение эффективности организации движения транспортных средств. 2 н.п. ф-лы, 3 ил.

Изобретение относится к способу и устройству контроля транспортных средств. Способ контроля транспортных средств, при реализации которого размещают стационарный пункт контроля, оснащенный блоком дистанционной связи и связанным с ним компьютером, снабженным блоком ввода в него цифровой навигационной карты местности, монитором с экраном для визуализации цифровой информации, средствами управления изображениями на этом экране и средствами формирования файлов данных. Файлы данных создают в процессе контроля транспортного средства, визуализируют на экране монитора цифровую навигационную карту местности. Транспортное средство оснащают навигационным блоком, оснащенным спутниковым приемником, блоком дистанционной связи, процессором, энергонезависимой памятью, средством индикации, блоком датчиков и исполнительных устройств и определяющим параметры перемещения транспортного средства во времени, которые с помощью дистанционной связи запрашивают со стационарного пункта контроля и наносят на цифровую навигационную карту местности. В качестве базовой станции с известными координатами используют блок управления светофорами на регулируемом перекрестке, на пешеходном переходе и на стационарном посту, в котором размещают навигационный блок, оснащенный спутниковым приемником, блоком дистанционной связи, процессором, энергонезависимой памятью, блоком датчиков и исполнительных устройств. Навигационный блок с помощью блока датчиков и исполнительных устройств соединяют с коммутатором, осуществляющим управление работой светофоров, синхронизируют режимы работы светофоров со спутниковым навигационным приемником, запоминают переключение светофоров во времени в энергонезависимой памяти, а при необходимости изменяют режим работы светофоров со стационарного пункта контроля посредством блока дистанционной связи, выявляют неисправности в работе светофоров и информацию об этих неисправностях передают посредством блока дистанционной связи соответствующей службе. Достигается повышение помехоустойчивости приемников и достоверности обмена дискретной информацией между блоками дистанционной связи. 2 н.п. ф-лы, 11 ил.

Изобретение относится к медицинской технике. Устройство интерактивной оценки состояния сердечно-сосудистой системы человека на основе дистантной фотоплетизмографии (ФПГ) содержит оптоэлектронный детектор пульсовой волны потока крови в пальце пациента с двумя светодиодами и фотодиодом, соединенным с операционным усилителем, аналого-цифровым преобразователем (АЦП) и электронным блоком обработки электрического сигнала, а также оснащенный компьютером пульт управления. Корпус детектора выполнен с возможностью крепления на фаланге пальца пациента. Пульт управления дополнен радиопередатчиком, работающим на частоте ω1, и радиоприемником, настроенным на частоту ω2. В корпусе оптоэлектронного детектора размещены миниатюрный радиоприемник, настроенный на частоту ω1, и миниатюрный радиопередатчик, работающий на частоте ω2. Радиопередатчик на пульте управления выполнен в виде последовательно подключенных к выходу персонального компьютера фазового манипулятора, генератора несущей частоты, усилителя мощности и передающей антенны. Миниатюрный радиоприемник в корпусе оптоэлектронного детектора выполнен в виде последовательно включенных приемной антенны, усилителя высокой частоты, первого перемножителя, фильтра нижних частот, узкополосного фильтра, второго перемножителя, усилителя высокой частоты, фильтра нижних частот и усилителя низкой частоты. Миниатюрный радиопередатчик в корпусе оптоэлектронного детектора выполнен в виде последовательно подключенных к выходу АЦП фазового манипулятора, генератора несущей частоты, усилителя мощности и передающей антенны. Радиоприемник на пульте управления выполнен в виде последовательно включенных приемной антенны, усилителя высокой частоты, первого перемножителя, фильтра нижних частот, узкополосного фильтра, второго перемножителя, усилителя высокой частоты, фильтра нижних частот и усилителя низкой частоты, выход которого соединен с входом блока обработки электрического сигнала, входящего в состав персонального компьютера пульта управления. Достигается повышение надежности и достоверности ФПГ исследований путем применения дуплексной радиосвязи между пультом управления и оптоэлектронным детектором с использованием двух частот и сложных сигналов с фазовой манипуляцией. 4 ил., 1 табл.

Устройство контроля параметров движения транспортного средства, содержащее на транспортном средстве: аппарат магнитной записи, привод механизма транспортирования носителя магнитной записи, который кинематически связан с колесом транспортного средства, генератор стирания, подключенный к магнитной стирающей головке, универсальную магнитную головку, блок управления, блок воспроизведения, датчик меток носителя, выполненный в виде фотоэлектрического датчика, реле времени, распределительные блоки, датчик состояния тормозной системы, датчик состояния приборов сигнализации, датчик состояния фар, датчик усилия сжатия водителем рулевого колеса, задающий генератор, фазовый манипулятор, частотный манипулятор, амплитудный модулятор, усилитель мощности, передающую антенну, источник сигналов записи, выполненный в виде переключаемого генератора импульсов, частотные детекторы, триггеры, двойные балансные переключатели, узкополосный фильтр, сумматор, приемную антенну, приемник GPS-сигналов, фазометр. Достигается повышение достоверности приема информации о дорожно-транспортном происшествии путем обнаружения и устранения явления «обратной работы». 13 ил.

Группа изобретений относится к вычислительной технике. Техническим результатом является повышение помехоустойчивости и достоверности мониторинга состояния подземных сооружений метрополитена путем ослабления узкополосных помех. Для этого предложена система для мониторинга состояния подземных сооружений метрополитена, которая содержит идентификаторы 1, считыватель 2, передающий радиомодем 3, приемный радиомодем 5, подключенный к ЭВМ 4. Электронный идентификатор 1.i (i=1, 2, … n) содержит пьезокристалл 18. Передающий радиомодем 3 содержит перемножитель 14, сумматор 13, первый узкополосный фильтр 15, фазовый манипулятор 16, усилитель 17 мощности, первую линию задержки 11, генератор 12 псевдослучайной последовательности, фазометр 33, блок 30 формирования эталонного фазового сдвига, аналого-цифровой преобразователь 34, блок 36 сравнения кодов, первый 37, второй 38 и третий 39 ключи, вторую линию задержки 40, блок памяти 41, переключатель 42. Приемный радиомодем 5 содержит приемную антенну 23, усилитель 24 высокой частоты, демодуляторы 25 и 43 сложных ФМн сигналов, перемножители 26, 27, 44 и 45, узкополосные фильтры 28 и 46, фильтры 29 и 47 нижних частот, фазоинверторы 48 и 49, вычитатель 50. 2 н.п. ф-лы, 6 ил.

Предлагаемый комплекс относится к области радиоэлектроники и предназначен для подповерхностного зондирования с летательного аппарата. Техническим результатом является повышение помехоустойчивости и достоверности определения местоположения источников радиоизлучений. Многофункциональный вертолетный радиоэлектронный комплекс содержит блок подповерхностного зондирования и блок определения местоположения источника радиоизлучений (ИРИ). Блок подповерхностного зондирования содержит синхронизатор, передатчики, антенные переключатели, приемопередающие антенны, приемники, блоки обработки, переключатель сектора обзора, генератор строб-импульса, цветной индикатор, тепловизионный датчик, телевизионный датчик, блок приема, лазер. 7 ил.

Изобретение относится к области радиосвязи, к системам с использованием в их работе искусственно создаваемых радиопомех. Технический результат - повышение надежности защиты конфиденциальной дискретной информации от несанкционированного доступа. Результат достигается путем использования сложных сигналов с фазовой манипуляцией и псевдослучайной перестройкой рабочей частоты. Когерентная радиолиния содержит источник дискретных сообщений, кодирующее устройство, два модулятора, два передатчика, две передающие антенны, два генератора псевдослучайной последовательности, генератор высокой частоты, приемную антенну, приемник, три синхронных детектора, блок поиска по частоте, блок выделения опорного напряжения, фазовращатели на - 30°, на + 30°, два вычитателя, фазовращатель на + 90°, декодирующее устройство, блок регистрации и анализа сообщений, цифровой скремблер, цифровой дескремблер, синхронизатор, синтезатор несущих частот. 4 ил.

Предлагаемый способ относится к области диагностики площади и объемов распространения нефтяного пятна подо льдом при утечке нефти с подводной скважины или подводного нефтепровода при добыче нефти с месторождений арктического шельфа. Применение технологии при аварийном скапливании нефти подо льдом способствует быстрой оценке площади и объемов нефтяного пятна и своевременному принятию оперативных мероприятий по сбору излившейся нефти. Технической задачей изобретения является повышение точности и однозначности определения местоположения нефтяного пятна путем использования радиолокатора, пеленгатора и сложных сигналов с фазовой манипуляцией, а также определения дальности от вертолета до нефтяного пятна, его азимута α и угла места β. Система, реализующая предлагаемый способ, содержит скважину 1 на шельфе, подводный нефтепровод 2, зону 3 негерметичности подводного оборудования и одновременно точку подачи магнитного материала в истекающую нефть, точку 4 ввода магнитного материала в нефтедобывающую скважину, поднимающуюся на поверхность воды аварийно истекающую нефть 5, скопление нефти подо льдом 6, ледовое покрытие 7, вертолет 8 с магнитометром, радиолокатором 9 и пеленгатором на борту, задающий генератор 10, генератор 11 псевдослучайной последовательности (ПСП), фазовый манипулятор 12, усилитель 13 мощности, дуплексер 14, приемопередающую антенну 15, приемные антенны 16-19, усилители 20-24 высокой частоты, генератор 25 опорной частоты, двигатель 26, гетеродин 27, смеситель 28, усилитель 29 промежуточной частоты, коррелятор 30, блок 31 регулируемой задержки, перемножитель 32, фильтр 33 нижних частот, экстремальный регулятор 34, индикатор 35 дальности, блок 36 регистрации, перемножители 37-40, узкополосные фильтры 41-44, 51 и 52, перемножители 45, 46, линии задержки 47, 48, фазовые детекторы 49, 50, фазометры 53-56. 2 ил.

Изобретение относится к средствам получения информации с подвижных объектов железнодорожного транспорта. Техническое решение включает считывающее устройство, диспетчерский пункт и бортовую часть, включающую установленные на контейнерах пассивные кодовые датчики с возможностью перепрограммирования кодового сигнала, а на открывающихся частях контейнеров - пассивные приемоответчики идентификации объекта с постоянным кодом, на платформе и каждой колесной паре вагона также установлены пассивные приемоответчики идентификации объекта с постоянным кодом. При этом приемник диспетчерского пункта снабжен усилителем суммарной частоты, смесителем, амплитудным детектором, ключом, третьим и четвертым перемножителями, вторым фильтром нижних частот, вторым узкополосным фильтром, блоком вычитания и двумя фазоинверторами, причем к выходу смесителя последовательно подключены усилитель суммарной частоты, амплитудный детектор и ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к вторым входам первого и второго перемножителей, к выходу ключа последовательно подключены третий перемножитель, второй узкополосный фильтр, первый фазоинвертор, четвертый перемножитель, второй вход которого соединен с выходом ключа, второй фильтр нижних частот и второй фазоинвертор, выход которого соединен с вторым входом третьего перемножителя, выходы первого и второго фильтров нижних частот через блок вычитания подключены к входу компьютера. Достигается повышение помехоустойчивости приемника диспетчерского пункта. 9 ил.

Предлагаемая система относится к области дистанционного контроля и управления объектами жизнеобеспечения (теплоснабжения, водоснабжения, газоснабжения, электроснабжения, канализации, безопасности и т.д.) городской инфраструктуры, выполненными с возможностью перемещения, и может быть использована для принятия решений на всех уровнях контроля и управления технологическими процессами на указанных объектах с использованием компьютерной техники и радиочастотных меток. Техническим результатом изобретения является повышение избирательности, помехоустойчивости и надежности дуплексной радиосвязи между диспетчерским геодезическим пунктом и объектами жизнеобеспечения городской инфраструктуры путем подавления ложных сигналов (помех), принимаемых по каналам прямого прохождения и интермодуляционным каналам. Компьютерная система дистанционного контроля и управления объектами жизнеобеспечения городской инфраструктуры, выполненными с возможностью перемещения, содержит диспетчерский геодезический пункт 1, объекты 2 административного назначения, объекты 3 пожарной безопасности, объекты 4 специального назначения, объекты 5.i и 6.j коммунального хозяйства (i=1,2,…, n, j=1,2,…,m), устройства 7.l (l=1,2,…..,L) для управления робототехническим комплексами и систему 8 приема и передачи информации. Диспетчерский геодезический пункт 1 содержит дуплексную и передающую радиостанцию. Каждый объект жизнеобеспечения, выполненный с возможностью перемещения, содержит контейнер, снабженный радиочастотной меткой, выполненной с возможностью облучения ее считывателем для отражения номера контейнера, а также дуплексную радиостанцию, считыватель, первый и второй приемники. 7 ил.

Изобретение относится к области автоматизированного мониторинга окружающей среды в условиях Арктики, а именно состояния атмосферы и льда с одновременным определением координат собственного местонахождения навигационных комплексов и передачей полученной информации по радиоканалам, и может быть использовано в качестве средства мониторинга окружающей среды в зоне движения льда для безопасной проводки судов по северному морскому пути и обеспечения безопасности объектов нефтегазопромысловой и гидротехнической инфраструктуры на шельфе и в условиях ледяного покрова, в том числе и дрейфующего. Технический результат: повышение избирательности, помехоустойчивости и надежности дуплексной радиосвязи между диспетчерским пунктом и навигационными комплексами путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Сущность: система содержит диспетчерский пункт (ДП), навигационные комплексы (HКi, i=1, 2, …, n) и космические аппараты (КА) спутниковой системы связи. Каждое приемопередающее устройство 1 (1.i) содержит блок 2 (2.i) управления, компьютер 3 (3.i), задающий генератор 4 (4.i), формирователь 5 (5.i) модулирующего кода, фазовый манипулятор 6 (6.i), первый гетеродин 7 (7.i), первый смеситель 8 (8.i), усилитель 9 (9.i) первой промежуточной частоты, первый усилитель 10 (10.i) мощности, дуплексер 11 (11.i), приемопередающую антенну 12 (12.i), второй усилитель 13 (13.i) мощности, второй гетеродин 14 (14.i), второй смеситель 15 (15.i), усилитель 16 (16.i) второй промежуточной частоты, перемножитель 17 (17.i), полосовой фильтр 18 (18.i), фазовый детектор 19 (19.i), колебательный контур 25 (25.i), узкополосный фильтр 26 (26.i), амплитудный детектор 27 (27.i), пороговый блок 28 (28.i) и ключ 29 (29.i). Блок 2 (2.i) управления может быть выполнен на базе микропроцессора. Блок 21.i определения координат по системе спутниковой навигации может быть выполнен на базе систем спутниковой навигации GPS и ГЛОНАСС и представляет собой приемник 21.i GPS-сигналов с приемной антенной 20.i. Блок 22.i измерения толщины ледового покрова может быть выполнен на базе ультразвукового толщиномера. В качестве блока 23.i измерения состояния атмосферы может быть использован измерительный блок метеозонда. 4 ил.

Система для обнаружения и определения местоположения человека, терпящего бедствие на воде, содержит спасательный жилет с двумя источниками света, один из которых расположен в грудной области спасательного жилета, а другой - в наспинной, источник энергии, два размыкателя электрической цепи, две сообщающиеся герметичные области, каждая из которых отделена от окружающей среды мембраной, при этом одна из герметичных емкостей расположена в грудной области спасательного жилета, а другая - в наспинной, мембрана каждой емкости связана с размыкателем электрической цепи соответствующего ей источника света посредством рычага, а оба источника света через размыкатели соединены источником энергии параллельно, два миниатюрных передатчика с передающими антеннами, один из которых расположен в грудной области спасательного жилета, а другой - в наспинной, и приемник, установленный на пункте контроля, выполненный с возможностью приема сигнала бедствия. Обеспечивается точное и однозначное определение местоположения источника радиоизлучений, который размещен на человеке, терпящем бедствие на воде. 6 ил.

Изобретение относится к ледоведению и ледотехнике и служит для прогноза момента образования трещин или разлома ледяного поля. Система, реализующая способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, содержит четыре модульные полевые станции 1 (С1, С2, С3, С4), датчики 2 (Д1 - сейсмометры, Д2 - наклономеры, Д3 - деформометры, Д4 - датчики напряжения во льду, Д5 - приемники сигнала глобальной спутниковой системы позиционирования), радиоканалы 3, базовую станцию сбора и обработки данных 4, расположенную на судне 5, источник излучения ИИ (очаг трещинообразования и разрушения). Базовая станция 4 сбора и обработки данных содержит приемники 6-9, узкополосные фильтры 10-13, фазометры 14-19, компьютер 20, корреляторы 21.1-21.6, блоки 22.1-22.6 регулируемой задержки, перемножители 23.1-23.6, фильтры 24.1-24.6 нижних частот, экстремальные регуляторы 25.1-25.6, индикаторы 26-31 углов. Технический результат заключается в обеспечении возможности расширения функциональных возможностей способа и повышения точности определения местоположения очагов трещинообразования и разрушения. 2 ил.

Группа изобретений относится к животноводству, в частности к скотоводству, охоте, лесному и подсобному хозяйствам, и может быть использована для идентификации и соблюдения ветеринарно-санитарных правил содержания животных. Способ радиочастотной идентификации крупного и мелкого рогатого скота характеризуется использованием капсулы, размещаемой под кожей животного, в которую помещают датчик температуры. В капсулу помещают пьезокристалл с нанесенными на его поверхность алюминиевым встречно-штыревым преобразователем поверхностных акустических волн, внутренняя структура которого соответствует идентификационному коду животного, чувствительным элементом, который используют в качестве датчика температуры, и набором отражателей. Оператора снабжают считывателем, в котором формируют гармоническое колебание высокой частоты, усиливают его по мощности, направленно облучают животное в месте размещения капсулы, в которой улавливают гармоническое колебание высокой частоты, преобразуют его в акустическую волну, обеспечивают ее распространение по поверхности пьезокристалла и обратное отражение. Преобразуют отраженную акустическую волну в сложный сигнал с фазовой манипуляцией, излучают его в эфир, улавливают приемопередающей антенной считывателя, усиливают по мощности, умножают и делят по фазе на два. Затем выделяют гармоническое напряжение, используют его в качестве опорного напряжения для синхронного детектирования сложного сигнала с фазовой манипуляцией и для сравнения по фазе с гармоническим колебанием задающего генератора. Выделяют низкочастотное напряжение, пропорциональное идентификационному коду животного, и разность фаз, пропорциональную температуре животного, и регистрируют их. При этом считыватель 1 содержит задающий генератор 2, усилитель 3 мощности, дуплексер 4, направленную приемопередающую антенну 5, усилитель 6 высокой частоты, удвоитель 7 фазы, делитель 8 фазы на два, узкополосный фильтр 9, фазовый детектор 10, фазометр 11 и блок 12 регистрации. Капсула содержит пьезокристалл 13, микрополосковую приемопередающую антенну 14, электроды 15, шины 16 и 17, чувствительный элемент - датчик температуры 18 и набор отражателей 19. Изобретение обеспечивает повышение надежности радиочастотной идентификации крупного и мелкого рогатого скота. 2 н.п. ф-лы, 3 ил.

Группа изобретений относится к области сельского хозяйства. В способе проводят оценку состава почвы возделываемого угодья и ее продукционного потенциала по пробам почвы, контроль состояния развития сельскохозяйственных культур по их видеоизображениям, полученным с помощью модуля визуального контроля, и техногенные воздействия на технологические процессы. Взятие и доставку проб почвы и фрагментов с/х культур с депрессивных участков угодья выполняют с помощью роботизированных аппаратов, при функционировании которых исключается вредное воздействие на почву и с/х культуры. На первом этапе оценку состава почвы и ее продукционного потенциала осуществляют сравнением видеоизображений с/х культур, находящихся на угодье, по результатам сравнения видеоизображений угодье разбивают на участки, однородные по составу почвы и ее потенциалу. На втором этапе оценки выявляют депрессивные участки, на которых необходимы техногенные воздействия, увеличивающие потенциал почвы, и с этих депрессивных участков осуществляют доставку фрагментов с/х культур и проб почвы. После этого выполняют лабораторный анализ состава почвы и с/х культур для каждого депрессивного участка, вырабатывают и осуществляют воздействия на процессы возделывания, с/х культуры и почву. Первый и 2-й модемы устанавливают соответственно на лабораторно-управляющем комплексе и модуле доставки, в каждом из которых формируют гармоническое колебание на частоте ωс, манипулируют его по фазе модулирующим кодом. Сформированный сложный сигнал с фазовой манипуляцией преобразуют по частоте с использованием частоты ωг1 1-го гетеродина. Выделяют напряжение 1-й промежуточной частоты ωпр1=ωс+ωг1, усиливают его по мощности, излучают в эфир, принимают на другом объекте, усиливают по мощности, преобразуют по частоте с использованием частоты ωг1 2-го гетеродина. Выделяют напряжение 2-й промежуточной частоты ωпр2=ωпр1-ωг1=ωс, перемножают с напряжением 1-го гетеродина с частотой ωг2, выделяют сложный сигнал с фазовой манипуляцией на частоте ωг1 2-го гетеродина, осуществляют его синхронное детектирование с использованием напряжения 2-го гетеродина с частотой ωг1 в качестве опорного напряжения. Выделяют низкочастотное напряжение, пропорциональное модулирующему коду, и используют его. На лабораторно-управляющем комплексе сложные сигналы с фазовой манипуляцией излучают на частоте ω1=ωпр1=ωг2, а принимают на частоте ω2=ωпр3=ωг1, где ωпр3 - третья промежуточная частота, а на модуле доставки фрагментов с/х культур, наоборот, сложные сигналы с фазовой манипуляцией излучают на частоте ω2, а принимают - на частоте ω1. Частоты ωг1 и ωг2 гетеродинов разносят на значение второй промежуточной частоты ωг2-ωг1=ωпр2. В модулирующий код M1(t) на лабораторно-управляющем комплексе включают команды на управление бортовыми системами модуля доставки фрагментов, в модулирующий код M2(t) модуля доставки включают видеоизображения с/х культур. Устройство содержит лабораторно-управляющий комплекс, модуль визуального контроля, модуль доставки фрагментов с угодья в комплекс и модуль визуального контроля, при этом в качестве модуля доставки применен беспилотный летательный аппарат. Лабораторно-управляющий комплекс и модуль доставки связаны между собой инфокоммуникационной связью. Средства связи выполнены в виде двух модемов, 1-й из которых размещен на комплексе, а 2-й - на модуле доставки фрагментов. Каждый модем содержит последовательно включенные задающий генератор, фазовый манипулятор, 2-й вход которого соединен с выходом источника дискретных сообщений, 1-й смеситель, 2-й вход которого соединен с выходом 1-го гетеродина, усилитель 1-й промежуточной частоты, 1-й усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, 2-й усилитель мощности, 2-й смеситель, второй вход которого соединен с выходом 2-го гетеродина, усилитель 2-й промежуточной частоты, перемножитель, 2-й вход которого соединен с выходом 1-го гетеродина, полосовой фильтр и фазовый детектор, 2-й вход которого соединен с выходом 2-го гетеродина, а выход является выходом модема. На комплексе сигналы с фазовой манипуляцией излучаются на частоте ω1=ωпр1=ωг2, а принимаются - на частоте ω2=ωпр3=ωг1, а на модуле доставки сигналы с фазовой манипуляцией излучаются на частоте ω2, а принимаются на частоте ω1. Частоты ωг1 и ωг2 гетеродинов разнесены на значение 2-й промежуточной частоты ωг2-ωг1=ωпр2. Изобретения позволяют повысить эффективность управления процессами возделывания с/х культур. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области обеспечения безопасности дорожного движения. Система контроля соблюдения правил дорожного движения содержит сигнальные устройства и исполнительные устройства. Каждое сигнальное устройство содержит блок ввода дискретных сигналов, синхронизатор, передающее устройство, генератор кода, синтезатор частот первого гетеродина, усилитель и мощности, фазовый манипулятор, смеситель и синтезатор несущих частот, усилитель первой промежуточной частоты, дуплексер, внешнюю антенну, приемное устройство, синтезатор частотой второго гетеродина, усилитель второй промежуточной частоты, перемножитель, полосовой фильтр, фазовый детектор, блок регистрации, колебательную систему, узкополосный фильтр, амплитудный детектор, пороговый блок и ключ. Каждое исполнительное устройство содержит блок ввода аналоговых и дискретных сигналов, блок релейных выходов, жидкокристаллический монитор, контроллер, блок внешней памяти, трансивер, синхронизатор, генератор псевдослучайного кода, синхронизатор несущих частот, фазовый манипулятор, синтезатор частотой первого гетеродина, смеситель и усилитель первой промежуточной частоты, усилители и мощности, дуплексер, узкополосный фильтр, амплитудный детектор, пороговый блок и ключ. Достигается повышение помехоустойчивости и достоверности информации. 4 ил.

Дирижабль предназначен для ведения дистанционного экологического мониторинга линейно-протяженных техногенных транспортно-коммуникационных сооружений. Дирижабль содержит приемную антенну 1(19) приемник 2(20) GPS-сигналов, приборы 3(21) дистанционного зондирования земной поверхности и атмосферы, контроллер 21(22), задающий генератор 5(23), фазовый манипулятор 6(24), первый гетеродина 7(25), первый смеситель 8(26), усилитель 9(27) первый промежуточный частоты, первый усилитель 10(28) мощности, антенный переключатель 11(29), приёмопередающую антенну 12(30), второй усилитель 13(31) мощности, второй гетеродин 14(32), второй смеситель 15(33), фильтр 16(34) нижних частот, фазовый детектор 17(35), блок 18(36) регистрации, перемножитель 37(40), фазовращатель 38(41) на 90°, системы 39(42) ФАПЧ. Приемник 2(20) GPS-сигналов содержит усилитель 43.1(43.2) высокой частоты, гетеродин 44.1(44.2), смеситель 45.1(45.2), фильтр 46.1(46.2) нижних частот, перемножитель 47.1(47.2), фазовращатель 48.1(48.2) на 90°, фазовый детектор 49.1(49.2), системы 50.1(50.2) ФАПЧ. Изобретение направлено на повышение помехоустойчивости и достоверности определения местоположения путем подавления ложных сигналов. 4 ил.

Изобретение относится к базирующейся на глобальной системе местоопределения системе управления материально-техническим обеспечением. Система материально-технического обеспечения с управлением местоположением транспортного средства, реализующая предлагаемый способ, содержит глобальную систему местоопределения транспортного средства на железнодорожном полотне, спутники, источник электропитания, соединенный с панелью солнечной батареи из фотоэлектрических преобразователей, исполнительные устройства, приемник GPS-сигналов, микропроцессор и модем. Первый и второй модемы содержит микропроцессор, задающий генератор, фазовый манипулятор, первый гетеродин, первый смеситель, усилитель первой промежуточной частоты, первый усилитель мощности, дуплексер, приемопередающую антенну, второй усилитель мощности, второй гетероди, второй смеситель, усилитель второй промежуточной частоты, перемножитель, полосовой фильтр, фазовый детектор, колебательный контур, узкополосный фильтр, амплитудный детектор, пороговый блок и ключ. Достигается повышение помехоустойчивости дуплексной радиосвязи. 2 н.п. ф-лы, 4 ил.

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам для обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Технической задачей изобретения является повышение точности определения местоположения контролируемого объекта, на котором обнаружено взрывчатое или наркотическое вещество, путем использования производных корреляционных функций. Устройство, реализующее предлагаемый способ, содержит приемопередающую антенну 1, антенный переключатель 2, передатчик 3, приемник 4, первый 5, второй 21 и третий 29 усилители высокой частоты, аналого-цифровой преобразователь 6, измерительное средство 7, блок 8 памяти, блок 9 индикации, контролируемый объект 10, процессор 11, блок 12 сравнения, ключ 13, первый 14, второй 22, третий 30 и четвертый 36 корреляторы, первый 15, второй 23, третий 31 и четвертый 37 перемножители, первый 16, второй 24, третий 32 и четвертый 38 фильтры нижних частот, первый 17, второй 25, третий 33 и четвертый 39 усилители нижних частот, первый 18, второй 26, третий 34 и четвертый 40 блоки регулируемой задержки, первую 20 и вторую 28 приемные антенны, индикатор 19 дальности, индикатор 27 азимута, индикатор 35 угла места, индикатор 41 угла ориентации, первый 42, второй 43 и третий 44 дифференциаторы. 2 н.п. ф-лы, 3 ил.

Предлагаемая система относится к области автоматизированного мониторинга окружающей среды в условиях Арктики, а именно состояния атмосферы и льда с одновременным определением координат собственного местонахождения навигационных комплексов и передачи полученной информации по радиоканалам, и может быть использована в качестве средства мониторинга окружающей среды в зоне движения льда для безопасной проводки судов по северному морскому пути и обеспечения безопасности объектов нефтегазопромысловой и гидротехнической инфраструктуры на шельфе и в прибрежной зоне в ледовитых морях и в условиях ледяного покрова, в том числе и дрейфующего. Технической задачей изобретения является повышение избирательности, помехоустойчивости и достоверности дуплексной радиосвязи между диспетчерским пунктом и навигационными комплексами путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Компьютерная система дистанционного управления навигационными комплексами для автоматизированного мониторинга окружающей среды в условиях Арктики содержит диспетчерский пункт (ДП), навигационные комплексы (HKi, i=1, 2, …, n) и космические аппараты (КА) спутниковой системы связи. Каждое приемопередающее устройство 1 (1.i) содержит блок 2 (2.i) управления, компьютер 3 (3.i), задающий генератор 4 (4.i), формирователь 5 (5.i) модулирующего кода, фазовый манипулятор 6 (6.i), первый гетеродин 7 (7.i), первый смеситель 8 (8.i), усилитель 9 (9.i) первой промежуточной частоты, первый усилитель 10 (10.i) мощности, дуплексер 11 (11.i), приемопередающую антенну 12 (12.i), второй усилитель 13 (13.i) мощности, второй гетеродин 14 (14.i), второй смеситель 15 (15.i), усилитель 16 (16.i) второй промежуточной частоты, перемножитель 17 (17.i), полосовой фильтр 18 (18.i), фазовый детектор 19 (19.i), приемную антенну 20.i, приемник 21.i GPS сигналов, блок 22.i измерения толщины ледового покрова, блок 23.i измерения состояния атмосферы, подводный навигационный маяк 24.i, колебательный контур 25 (25.i), узкополосный фильтр 26 (26.i), амплитудный детектор 27 (27.i), пороговый блок 28 (28.i) и ключ 29 (29.i). 4 ил.

Изобретение относится к спутниковым системам для определения местоположения аварийных радиобуев (АРБ), предающих радиосигналы бедствия. Техническим результатом является повышение помехоустойчивости и достоверности принимаемых сложных сигналов с фазовой манипуляцией путем подавления ложных сигналов(помех), принимаемых по дополнительным каналам, и узкополосных помех, принимаемых по основному каналу. Система содержит первый 1 и второй 2 аварийный радиобуй(АРБ), искусственный спутник земли(ИСЗ) 3 и пункт 16 приема информации. ИСЗ 3 содержит антенны 4-8, приемные устройства 9-11, запоминающие устройства 12 и 13, передатчик 14 с антенной 15. Пункт 16 приема информации содержит приемную антенну 17, приемное устройство 18, первое 19 и второе 20 устройство обработки информации, устройство 21 сопряжения с сетями связи, устройство 22 контроля и управления, устройство 23 связи поисково-спасательных организаций. Третье приемное устройство 11 содержит измерительный и четыре пеленгационных канала. Измерительный канал содержит приемную антенну 4, смесители, гетеродины, усилитель первой промежуточной частоты, блок поиска, обнаружитель ФМн сигналов, удвоитель фазы, измерители ширины спектра, блок сравнения, пороговый блок, линию задержки, ключи, усилитель второй промежуточной частоты, демодулятор ФМн сигналов, перемножитель, узкополосные фильтры, фильтры нижних частот, усилитель суммарной частоты, амплитудный детектор, фазоинверторы, блок вычитания. Пеленгационные каналы содержат приемные антенны 4-8, смесители, усилители первой промежуточной частоты, перемножители, узкополосные фильтры, фазометры, сумматоры, вычитатели. 4 ил.

Предлагаемые способ и система относятся к информационно-измерительной системе и могут быть использованы в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Техническим результатом изобретения является повышение помехоустойчивости и точности определения параметров морских ледовых полей путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Радиолокационная система (РЛС), реализующая предлагаемый способ, содержит блок 1 управления РЛС, синтезатор 2 частот, генератор 3 М-кода, модуляторы 4 и 5, усилители 6 и 7 мощности, СВЧ коммутатор 8, блок 9 управления антенной системой, блок 10 антенной системы, приемопередающую антенну 11, приемные антенны 12 и 31, усилители 13, 14 и 32 высокой частоты, смесители 15, 16 и 33, устройство 17 временной автоматической регулировки усиления, усилители 18, 19 и 34 промежуточной частоты, коммутатор 20 промежуточной частоты, усилитель 21 промежуточной частоты, блок 22 автоматической и ручной регулировки усиления, блоки 23 и 24 фазовых детекторов, фазовращатель 25, блоки 26 и 27 аналого-цифровых преобразователей, блок 28 первичной цифровой обработки, буферное запоминающее устройство 29, цифровой измеритель 30, перемножители 35, 36, 37, узкополосные фильтры 38, 39, 40, опорный генератор 41, дополнительные фазовые детекторы 42 и 43, усилители 44, 47 и 50 суммарной частоты, амплитудные детекторы 45, 48 и 51, ключи 46, 49 и 52. 2 н.п. ф-лы, 3 ил.

Предлагаемая система относится к гелиотехнике, в частности к средствам управления солнечным концентраторным модулем для получения электрической и тепловой энергии. Техническим результатом изобретения является повышение помехоустойчивости и достоверности обмена дискретной информацией между пунктом контроля и управления и удаленными объектами, на которых установлены солнечные концентраторные модули, путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Система дистанционного контроля и управления солнечным концентраторным модулем содержит солнечный концентраторный модуль и два модема, первый из которых размещен на пункте контроля и управления, а второй вместе с солнечным концентраторным модулем размещены на удаленном объекте. Солнечный концентраторный модуль содержит приемник с двухсторонней рабочей поверхностью, цилиндрический концентратор с ветвями, верхнюю кромку приемника, центры окружностей, горизонтальную поверхность, полусферический колпак, герметичную коробку, внутри которой расположены буферная щелочная батарея и второй модем, штыревую приемопередающую антенну и удаленный объект. Каждый модем содержит задающий генератор, источник дискретных сообщений, фазовый манипулятор, первый гетеродин, первый смеситель, усилитель первой промежуточной частоты, первый усилитель мощности, дуплексер, приемопередающую антенну, второй усилитель мощности, второй гетеродин, второй смеситель, усилитель второй промежуточной частоты, перемножитель, полосовой фильтр, фазовый детектор, усилитель, амплитудный детектор и ключ. 5 ил.

Предлагаемые способ и система относятся к средствам информационного обеспечения в сетях удаленного доступа, направленным на идентификацию сельскохозяйственной продукции, поступающей на реализацию. Техническим результатом является расширение диапазона рабочих частот без расширения диапазона частотной перестройки гетеродинов путем использования зеркальных каналов приема. Система, реализующая предлагаемый способ, содержит ридер, радиочастотную метку и приемную аппаратуру производителя. Ридер содержит задающий генератор 1, дуплексер 2, приемопередающую антенну 3, усилитель 4 высокой частоты, фазовый детектор 5, базу 6 данных идентификационных кодов, блок 7 сравнения кодов, ключ 8, линию 9 задержки, генератор 10 псевдослучайной последовательности, сумматор 11, перемножитель 12, узкополосный фильтр 13, фазовый манипулятор 14 и усилитель 15 мощности. Радиочастотная метка содержит пьезокристалл 16, микрополосковую антенну 17, электроды 18, шины 19 и 20, набор 21 отражателей. Приемная аппаратура производителя содержит приемную антенну 22, усилитель 23 высокой частоты, гетеродины 30 и 31, смесители 32 и 33, усилители 34, 35 и 47 промежуточной частоты, коррелятор 36, пороговый блок 37, ключи 38, 51, 52 и 53, усилители 48 и 49 утроенной промежуточной частоты, амплитудные детекторы 50, 52 и 53, блоки 56, 57 и 58 универсальных демодуляторов сложных ФМн сигналов, каждый из которых содержит перемножитель 25, 26, 40 и 41, узкополосные фильтры 27 и 43, фильтры 28 и 42 нижних частот, базу 29 данных сервера производителя, фазоинвенторы 44 и 45, блок 46 вычитания. 2 н.п. ф-лы, 5 ил.

Изобретение относится к сельскому хозяйству, в частности к оборудованию ферм по производству молока. Выходы измерителей (7)-(12) через модуль сбора данных соединены с входом компьютера фермы (14). На второй вход компьютера фермы через регистратор визуального контроля (16) подаются сигналы с видеокамер (15). Компьютер фермы линией (17) соединен с компьютерами пользователей (18). Компьютер фермы выполнен в виде последовательно включенных первого задающего генератора, первого фазового манипулятора, второй вход которого через формирователь модулирующего кода соединен с выходами модуля сбора данных и регистратора визуального контроля, первого усилителя мощности, логического элемента ИЛИ и передающей антенны (22.4). Компьютер пользователей выполнен в виде последовательно включенных приемной антенны (23), усилителя высокой частоты, первого смесителя, второй вход которого соединен с первым выходом первого гетеродина, первого фильтра нижних частот, первого перемножителя, второй вход которого соединен с выходом усилителя высокой частоты первого узкополосного фильтра, первого фазового детектора, второй вход которого соединен со вторым выходом первого гетеродина, и второй фильтр нижних частот, выход которого соединен с управляющим входом первого гетеродина. Расширяется диапазон рабочих частот. 4 ил.

Изобретение относится к области автоматизированного мониторинга состояния льда и окружающей среды с одновременным определением координат собственного местонахождения комплекса и передачей полученной информации по радиоканалу. Измерительно-навигационный комплекс содержит корпус 1, приемник 3 GPS-сигналов, блок 2.1 управления, блок 4 определения состояния атмосферы, блок 5 определения толщины ледового покрова, блок 6 определения состояния аккумуляторной батареи, блок 7 электропитания и приемопередающее устройство, которое выполнено в виде первой радиостанции 8.1. Стационарный пост мониторинга (СПМ) выполнен в виде второй радиостанции 8.2. Каждая радиостанция 8.1 (8.2) содержит блок 2.1 (2.2) управления, синхронизатор 16.1 (16.2), генератор 17.1 (17.2) ПСП, синтезатор 18.1 (18.2) несущих частот, фазовый манипулятор 19.1 (19.2), синтезатор 20.1 (20.2) частот первого гетеродина, первый смеситель 21.1 (21.2), усилитель 22.1 (22.2) первой промежуточной частоты, первый усилитель 23.1 (23.2) мощности, дуплексер 24.1 (24.2), приемопередающую антенну 25.1 (25.2), второй усилитель 26.1 (26.2) мощности, синтезатор 27.1 (27.2) частот второго гетеродина, второй смеситель 28.1 (28.2), усилитель 29.1 (29.2) второй промежуточной частоты, перемножитель 30.1 (30.2), полосовой фильтр 31.1 (31.2), фазовый детектор 32.1 (32.2). Приемник 3 GPS-сигналов содержит приемную антенну 9, усилитель 10 мощности, смеситель 11, усилитель 12 второй промежуточной частоты, перемножитель 13, полосовой фильтр 14 и фазовый детектор 15. Технический результат - повышение надежности обмена радиотелеметрической и командной информацией между измерительно-навигационным комплексом. Система мониторинга состояния льда и окружающей среды содержит измерительно-навигационный комплекс (ИНК), устанавливаемый на дрейфующий лед, стационарный пост мониторинга (СПМ), GPS-спутники и ИСЗ-ретранслятор S. 5 ил.

Предлагаемый способ относится области сельского хозяйства, в частности к животноводству, и может быть использован для получения оперативной информации о животных с целью формирования контрольно-отчетной документации. Технической задачей изобретения является повышение достоверности считывания индивидуальных кодов одновременно с нескольких животных, находящихся в зоне радиозондирования, в составе общего стада, путем последовательного во времени их радиозапроса. Предлагаемый способ реализуют с помощью интеллектуального ключа 1 и идентификаторов. Интеллектуальный ключ 1 содержит считыватель 2 и микроконтроллер 3. Считыватель 2 содержит синхронизатор 4, задающий генератор 5, синтезатор 6 несущих частот, логический элемент И7, дуплексер 8, приемопередающую антенну 9, полосовой фильтр 10 и фазовый детектор 11. Каждый идентификатор содержит микрополосковую приемопередающую антенну 12.i, блок 13.i доступности к ВШП, узкополосный фильтр 14.i, амплитудный детектор 15.i, ключи 16.i и 17.i, пьезокристалл 18.i, электроды 19.i, шины 20.i и 21.i, набор 22.i отражателей (i=1, 2, n). 2 ил.

Предлагаемый комплекс относится к области многофункциональной работы технической диагностической техники и может быть использован для систематического дистанционного контроля состояния магистральных газопроводов и нефтепроводов, для технической разведки и контроля местности и объектов, проведения видео-, фотосъемки, получения информации об излучении радиоэлектронных средств (РЭС), дозиметрического контроля и другой информации в режиме реального масштаба времени с высоты «птичьего полета» с помощью комплексной аппаратуры, установленной на носитель - дистанционно-пилотируемый летательный аппарат (ДПЛА). Технической задачей изобретения является повышение избирательности и помехоустойчивости приемников радиостанций путем подавления ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам. Автоматический беспилотный диагностический комплекс содержит систему 1 автоматического управления, спутники 2.i (i=1, 2, … 24) глобальной навигационной системы «Навстар» или «ГЛОНАСС», навигационную систему 3, инерциальную навигационную систему 4, приемную аппаратуру 5 спутниковой навигационной системы «Навстар» или «ГЛОНАСС», вычислитель 6 действительных координат ДПЛА, радиомаяк 7, систему 8 воздушно-скоростных сигналов, малогабаритный радиовысотомер 9 малых высот, систему 10 автоматического дистанционного управления, систему 11 команд радиоуправления, информационный логический блок 12, приемную аппаратуру 13 командного радиоуправления, обзорную телевизионную систему 14, систему 15 радиотелеметрии, систему 16 автоконтроля работы бортовых систем ДПЛА с вычислителем, систему 17 управления двигателем, вычислитель 18 системы автоматического управления, радиоретранслятор 19, блок 20 управления бортовыми системами, бортовой накопитель 21 информации, систему 22 посадки и выпуска парашюта, блок 23 управления системой диагностики состояния магистральных газопроводов, систему 24 диагностики состояния магистральных газопроводов, радиовысотомер 25, наземный пункт 26 управления, наземный пульт 27 управления, стартовую катапульту, систему 28 спасения и рули направления 29. Каждая радиостанция 15.1 (15.2) содержит генератор 30.1 (30.2) высокой частоты, фазовый манипулятор 31.1 (31.2), источник 32.1 (32.2) дискретных сообщений и команд, первый смеситель 33.1 (33.2), первый гетеродин 34.1 (34.2), усилитель 35.1 (35.2) первой промежуточной частоты, первый усилитель 36.1 (36.2) мощности, дуплексер 37.1 (37.2), приемопередающую антенну 38.1 (38.2), второй усилитель 39.1 (39.2) мощности, второй смеситель 40.1 (40.2), второй гетеродин 41.1 (41.2), усилитель 42.1 (42.2) второй промежуточной частоты, перемножитель 43.1 (43.2), полосовой фильтр 44.1 (44.2), фазовый детектор 45.1 (45.2), колебательный контур 46.1 (46.2), узкополосный фильтр 47.1 (47.2), амплитудный детектор 48.1 (48.2), пороговый блок 49.1 (49.2) и ключ 50.1 (50.2). 5 ил.

Изобретение относится к системам регулирования и организации дорожного движения. Устройство для организации дорожного движения содержит жезл регулировщика, идентификационную метку и централизованную базу данных. Жезл регулировщика выполнен в виде цилиндрического корпуса, в котором размещены сканирующий блок и телекоммуникационное устройство связи. Сканирующий блок содержит источник электропитания, кнопку включения, задающий генератор, дуплексер, приемопередающую антенну, четыре полосовых фильтра, четыре фазовых детектора, второй сумматор, перемножитель и узкополосный фильтр. Телекоммуникационное устройство связи содержит счетчик для подсчета количества остановленных транспортных средств, монитор, три линии задержки, генератор псевдослучайной последовательности, первый сумматор, три перемножителя, три узкополосных фильтра, фазовый манипулятор и усилитель мощности. Централизованная база данных содержит приемопередающую антенну, дуплексер, два усилителя мощности, фазовый детектор, компьютер, задающий генератор, перемножитель, узкополосный фильтр и фазовый манипулятор. Идентификационная метка содержит пьезокристалл и три электрода, микрополосковую антенну, шесть шин и набор отражателей. Достигается повышение достоверности распознавания транспортного средства, находящихся в угоне. 4 ил.

Изобретение относится к системам для дистанционного контроля состояния окружающей среды. Сущность: система содержит блок управления, блок определения координат по системе спутниковой навигации, блок определения состояния атмосферы, блок определения толщины ледяного покрова, блок электропитания, установленные в термостатируемом корпусе. При этом система снабжена спутниками-ретрансляторами (9.1-9.3) спутниковой системы связи и передающим устройством. Передающее устройство состоит из блока (1) управления, задающего генератора (2), фазового манипулятора (3), гетеродина (4), смесителя (5), усилителя (6) первой промежуточной частоты, усилителя (7) мощности, передающей антенны (8). Блок определения координат по системе спутниковой навигации содержит два приемника сложных сигналов с фазовой манипуляцией. Первый приемник сложных сигналов с фазовой манипуляцией состоит из приемной антенны (10), усилителя (11) высокой частоты, гетеродина (12), смесителя (13), фильтра (14) нижних частот, фазовращателя (16) на 90°, перемножителя (17), фазового детектора (18), блока (19) регистрации и анализа. Второй приемник сложных сигналов с фазовой манипуляцией состоит из приемной антенны (31), усилителя (32) высокой частоты, гетеродина (33), смесителя (34), фильтра (35) нижних частот, перемножителя (37), фазовращателя (38) на 90°, фазового детектора (39). Технический результат: повышение достоверности определения местоположения комплексов, установленных на дрейфующий лед. 3 ил.

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта, электромагнитного явления и коррекционной обработки электрических сигналов. Отличительная особенность способа заключается в установке на измерительном участке трубопровода датчиков на расстояние λ. Полученные на выходе датчиков электрические сигналы усиливаются усилителями и подаются на коррелятор, состоящий из блока регулируемой задержки, перемножителя, фильтра нижних частот и экстремального регулятора. На выходе перемножителя выделяются низкочастотное напряжение, пропорциональное корреляционной функции R(τ), где τ - текущая временная задержка. Изменением текущей временной задержки τ обеспечивают максимальное значение коррекционной функции R(τ). Экстремальный регулятор поддерживает значение коррекционной функции R(τ) на максимальном уровне, воздействуют на управляющий вход блока регулируемой задержки. Максимальное значение коррекционной функции R(τ) обеспечивается при τ=τт. Определяют скорость V движущейся жидкости на измерительном участке трубопровода ее расход Q=S⋅V, где S - сечение измерительного участка трубопровода. Технический результат - расширение функциональных возможностей способа путем определения скорости движущейся жидкости. 2 ил.

Предлагаемые способ и система относятся к автоматике и вычислительной технике и могут быть использованы при построении систем автоматизированного контроля состояния подземных сооружений метрополитена. Технической задачей изобретения является повышение помехоустойчивости приема ФМн-сигнала и достоверности определения координат электронных идентификаторов, а также точности изменения фазового сдвига Δϕ путем устранения явления «обратной работы» второго типа. Система, реализующая предлагаемый способ, содержит электронные идентификаторы 1.i (i=1, 2, …, n), считыватель 2, передающий радиомодем 3 с приемопередающей антенной 8, приемный радиомодем 5 с приемной антенной 23, подключенный к ЭВМ. Каждый приемный идентификатор 1.i (i=1, 2, …, n) содержит пьезокристалл 18, микрополосковую приемопередающую антенну 19, электроды 20, шины 21.1 и 21.2, набор отражателей 22.1 и чувствительный элемент 22.2. Считыватель 2 содержит задающий генератор 6, циркулятор 7, усилитель 9 высокой частоты, фазовый детектор 10, удвоитель 30 фазы, делитель 31 фазы на два, второй узкополосный фильтр 32, частотный детектор 43, триггер 44 и двойной балансный переключатель 45. Передающий радиомодем 3 содержит первую 11 и вторую 10 линии задержки, генератор 12 псевдослучайной последовательности, сумматор 13, перемножитель 14, узкополосный фильтр 15, фазовый манипулятор 16, усилитель 17 мощности, фазометр 33, аналого-цифровой преобразователь 34, блок 35 формирования эталонного фазового сдвига, блок 36 сравнения кодов, первый 37, второй 38 и третий 39 ключи, блок 41 памяти и переключатель 42. Приемный радиомодем 5 содержит усилитель 24 высокой частоты, демодулятор 25 ФМн-сигналов, первый 26 и второй 27 перемножители, узкополосный фильтр 28 и фильтр 29 нижних частот. 2 н.п. ф-лы, 6 ил.

Изобретение относится к сельскохозяйственному машиностроению. Устройство позиционирования наземного мобильного средства (10) при возделывании агрокультур (14) содержит первый блок искусственного зрения, размещенный на наземном мобильном средстве (10), блок обработки видеосигнала, беспилотный летательный аппарат (7), беспилотный дистанционно управляемый вертолет, второй блок искусственного зрения, два блока передачи-приема данных, блок тестирования и управления, блок ориентации в трехмерных координатах. Беспилотный дистанционно управляемый вертолет имеет возможность двигаться в пределах возделываемого угодья. Первый блок передачи-приема данных, блок встроенного тестирования и управления, блок ориентации в трехмерных координатах установлены на наземном мобильном средстве (10). Второй блок искусственного зрения и второй блок передачи-приема данных размещены на беспилотном дистанционно управляемом вертолете. Выход второго блока искусственного зрения соединен с входом второго блока передачи-приема данных. Выход первого блока передачи-приема данных соединен с первым входом блока встроенного тестирования и управления. Выход блока ориентации в трехмерных координатах соединен со вторым входом блока встроенного тестирования и управления. Беспилотный дистанционно управляемый вертолет снабжен синхронизатором, переключателем сектора обзора, генератором строб-импульса и четырьмя радиолокаторами, каждый из которых состоит из последовательно включенных передатчика, управляющий вход которого соединен с выходом синхронизатора, антенного переключателя, вход-выход которого связан с приемопередающей антенной, а управляющий вход соединен с выходом переключателя сектора обзора приемника, управляющий вход которого через генератор строб-импульса соединен с выходом синхронизатора, и блока обработки сигнала, управляющий вход которого соединен с выходом синхронизатора, а выход подключен к соответствующему входу второго блока приема-передачи данных, связанного радиоканалом с первым блоком передачи-приема данных и блоком тестирования и управления. Приемопередающие антенны размещены на концах лопастей несущего винта вертолета, принятые ими сигналы обрабатываются по алгоритму синтезированной апертуры. Обеспечивается расширение функциональных возможностей беспилотного дистанционно управляемого вертолета путем дистанционного структурного анализа почвы возделываемого угодья и обнаружения различных металлических изделий, скрытых под земной поверхностью. 5 ил.

Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - обеспечение однозначности отсчета угловой координаты β при сохранении требуемой точности измерения. Радиолокационная система, реализующая способ, содержит блок управления РЛС, синтезатор частот, генератор М-кода, два модулятора, два усилителя мощности, СВЧ коммутатор, блок управления антенной системой, блок антенной системы, приемопередающую антенну, три приемные антенны, четыре усилителя высокой частоты, четыре смесителя, устройство временной автоматической регулировки усиления, четыре усилителя промежуточной частоты, коммутатор промежуточной частоты, усилитель промежуточной частоты, блок автоматической и ручной регулировки усиления, два блока фазовых детекторов, фазовращатель, два блока аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, блок первичной цифровой обработки, двухпортовое буферное оперативное запоминающее устройство, цифровой измеритель, четыре перемножителя, четыре узкополосных фильтра, опорный генератор, два разовых детектора, два фазометра, сумматор и вычитатель. 2 н.п. ф-лы, 2 ил.

Группа изобретений относится к упаковке и хранению сельскохозяйственной продукции с ограничением по условиям и сроку хранения, а именно к способу компьютерного контроля их состояния при хранении. Для этого на упаковку или тару сельскохозяйственной продукции наносят средства контроля (датчики) воздействующих на нее факторов, по изменению состоянию которых судят о состоянии сельскохозяйственной продукции. При этом выделяют наиболее неблагоприятный для данной продукции фактор, и в случае превышения допустимых параметров осуществляется блокировка части системы контроля этого фактора. Одновременно в режим постоянного контроля переключается индикаторное средство, выполненное в виде блока световой и звуковой сигнализации, которое преобразуют полученную с датчиков информацию и передает ее на компьютерную систему контроля состояния сельскохозяйственной продукции. Далее осуществляется регистрация и сравнение полученной информации с предельно допустимыми значениями измеряемых параметров неблагоприятных факторов в памяти компьютера. Таким образом формируют условное изображение упаковки или тары контролируемой сельскохозяйственной продукции. Состояние сельскохозяйственной продукции отражают в реальном времени через цвет меток-индикаторов на условном изображении. Группа изобретений обеспечивает повышение эффективности системы дистанционного контроля сельскохозяйственной продукции при повышения оперативности и достоверности оценки контролируемых параметров. 2 н.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области пожарной безопасности и предназначено для обнаружения пожара на ранних стадиях тления и возгорания горючих материалов. Технический результат - повышение избирательности и помехоустойчивости приема и достоверности синхронного детектирования фазоманипулированных сигналов. Устройство, реализующее предлагаемый способ, содержит на передающей стороне газовый сенсор, согласующий усилитель, аналого-цифровой преобразователь, микропроцессор, формирователь световых и звуковых сигналов тревоги, световой сигнализатор, звуковой сигнализатор, выход формирователя, формирователь модулирующего кода, задающий генератор, фазовый манипулятор, усилитель мощности и передающую антенну. На принимающей стороне устройство для приема сложных сигналов с фазовой манипуляцией содержит приемную антенну , усилитель высокой частоты, гетеродин, смеситель, два фильтра нижних частот, систему ФАПЧ, фазовращатель на 90°, два перемножителя, фазовый детектор, блок регистрации, измеритель несущей частоты, измеритель доплеровской частоты. Причем изобретение обеспечивает измерение несущей и доплеровской частоты принимаемых сигналов с фазовой манипуляцией и определение взаимного перемещения объекта пожарной опасности и диспетчерского пункта наблюдения. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области пожарной безопасности и может быть использовано для постоянного наземного мониторинга лесных массивов и населенных пунктов в местах, где развернута система сотовой связи. Технический результат заключается в повышении избирательности, помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между телекоммуникационным модулем и центральным сервером путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Такой результат достигается за счет того, что комплексная система раннего обнаружения лесных пожаров, реализующая способ мониторинга лесных пожаров, содержит тепловизионный модуль 1, видеокамеру 2 и угломерно-азимутальный измеритель 6, выходы которых связаны с первым-третьим входами контроллера 4 управления, вход устройства управления движением сканирующей платформы 3 связан с первым выходом контроллера 4. Четвертый вход контроллера 4 управления связан с блоком 5 глобальной навигационной спутниковой системы. Шестой вход контроллера 4 управления соединен с выходом устройства 7 сбора метеоданных. Телекоммуникационный модуль 8, осуществляющий беспроводную связь 9 с центральным сервером 10, связан входом-выходом соответственно со вторым выходом и пятым входом контроллера 4 управления. 2 н.п. ф-лы, 4 ил.

Изобретение относится к средствам информационного обеспечения в сетях удаленного доступа и направленным на идентификацию агропромышленной продукции. Техническим результатом является повышение помехоустойчивости и чувствительности приема сложных сигналов с фазовой манипуляцией путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам, используемых для идентификации продукции. Система, реализующая предлагаемый способ, содержит ридер, радиочастотную метку и приемную аппаратуру производителя. Ридер содержит задающий генератор 1, дуплексер 2, приемо-передающую антенну 3, усилитель 4 высокой частоты, фазовый детектор 5, базу данных 6 идентификационных кодов, блок 7 сравнения кодов, ключ 8, линию 9 задержки, генератор 10 псевдослучайной последовательности, сумматор 11, перемножитель 12, узкополосный фильтр 13, фазовый манипулятор 14 и усилитель 15 мощности. Радиочастотная метка содержит пьезокристалл 16, микрополосковую антенну 17, электроды 18, шины 19 и 20, набор 21 отражателей. Приемная аппаратура производителя содержит приемную аппаратуру 22, усилитель 23 высокой частоты, гетеродин 24, смеситель 25, фильтр 26 нижних частот, базу данных 27 сервера производителя, систему ФАПЧ 28, перемножитель 29, узкополосный фильтр 30 и фазовый детектор 31. 2 н.п. ф-лы, 4 ил.

Изобретение относится к системам и устройствам формирования измерительной и управляющей информации по первичным параметрам, определяющим расход природного газа и контроля его утечек в многоквартирных домах. Технический результат - повышение помехоустойчивости когерентного приема ФМн-сигналов и достоверности определения номера N1 многоквартирного дома и номера N1i квартиры, в которой зафиксировано превышение допустимого уровня загазованности. Результат достигается путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам, и устранения явления «обратной работы» второго типа. Для подавления ложных сигналов (помех), принимаемых по дополнительным каналам, используется двойное преобразование частоты принимаемых сигналов. При первом преобразовании несущая частота принимаемых сигналов преобразуется «вверх» с использованием частоты первого гетеродина и выделяется напряжение первой суммарной частоты. А при втором преобразовании первая суммарная частота преобразуется «вниз» с использованием частоты второго гетеродина и выделяется напряжение промежуточной частоты. Устранение явления «обратной работы» второго типа достигается методом стабилизации фазы опорного напряжения с использованием частотного детектора, триггера и двойного балансного переключателя. Причем, частотный детектор обеспечивает обнаружение момента возникновения явления «обратной работы» второго типа, а триггер и двойной балансный переключатель устраняют ее. 4 ил.

Изобретение относится к средствам контроля и регистрации перемещения специальной техники. Система содержит части оборудования пункта контроля и контролируемого объекта. Часть на контролируемом объекте включает датчики давления, положения кузова, расхода топлива, пройденного пути, элемент И, блок кодирования, передатчик, генератор высокой частоты, фазовой манипулятор, усилитель мощности, приемопередающую антенну, дуплексер, перемножители, фильтры нижних частот и узкополосные, демодуляторы сложных ФМН-сигналов, блок вычитания, фазоинверторы. Часть на пункте контроля включает панорамный приемник, дешифратор, блок регистрации, элемента запрета, формирователь длительности импульсов, усилитель высокой частоты, блок поиска, гетеродины, смесители, усилители промежуточной частоты, амплитудный детектор, перемножители, фильтры нижних частот и узкополосные, частотомер, счетчики расхода топлива и пройденного пути, блок регистрации, приемную и приемопередающую антенну, приемник GPS, вычислительную машину, блок кодирования, передатчик, генератор высокой частоты, фазовый манипулятор, усилитель мощности, дуплексер, демодуляторы сложных ФМН сигналов, фазоинверторы, блок вычитания, коррелятор и пороговый блок. Достигается повышение помехоустойчивости и достоверности обмена дискретной информацией. 4 ил.

Предлагаемая система относится к контрольно-измерительной технике и может быть использована при стопорении резьбовых соединений (болтов, шпилек), а также для дистанционного измерения усилий и температуры в различных резьбовых соединениях строительных элементов и конструкций, от состояния которых в значительной степени зависит вероятность аварийной ситуации на строительных сооружениях, имеющих важное стратегическое значение. Заявленная система содержит резьбовое соединение, считыватель и пункт контроля. Резьбовое соединение содержит гайку 1, резьбовый стержень 2, стопорный элемент 3, плоскую шайбу 4, шайбу с вуртом 5, соединяемую деталь 6, отверстие 7, боковые стенки 8, силоизмерительную шайбу 9. Силоизмерительная шайба 9 содержит приемопередающие антенны 10 и 11, разъемы 12 и 13, сквозные отверстия 14 и 15, высокочастотные кабели 16 и 17, шпоночную выточку 18, изолирующий защитный материал 19, резонаторы 20 и 21 на ПАВ, соединительный слой 22 и мягкий эластичный клей 23. Каждый резонатор 20 (21) на ПАВ содержит пьезокристалл 24 (25), электроды 26 (27), шины 28 (29) и 30 (31), набор отражателей 32 (33). Второй резонатор 21 содержит мембрану 34. Считыватель содержит задающий генератор 35, первый 36, второй 41 и третий 65 усилители мощности, дуплексер 37, приемопередающую антенну 38, первый 39, второй 46, третий 47, четвертый 54, и пятый 55 перемножители, первый 40, второй 48, третий 49 и четвертый 57 узкополостные фильтры, первый 42 и второй 43 усилители высокой частоты, первый 44 и второй 45 фазовые детекторы, первый 50 и второй 51 фазометры, блок 52 регистрации, демодулятор 53 ФМН-сигналов, блок 58 памяти, блок 59 сравнения, первый 60 и второй 62 аналого-цифровые преобразователи, линию задержки 61, сумматор 63 и фазовый манипулятор 64. Пункт контроля содержит компьютер 66, задающий генератор 67, фазовый манипулятор 68, усилитель 69 мощности, дуплексер 70, приемопередающую антенну 71, усилитель 72 высокой частоты, демодулятор 73 ФМН-сигналов, первый 74 и второй 75 перемножители, фильтр 76 нижних частот и узкополостной фильтр 77. Техническим результатом является расширение функциональных возможностей устройства путем дистанционного измерения усилий и температуры в различных резьбовых соединениях строительных элементов и конструкций с использованием пункта контроля дуплексной радиосвязи и сложных сигналов с фазовой манипуляцией. 8 ил.

Предлагаемое устройство относится к приборостроению и предназначено для измерения расхода газовых и жидких топливных сред. Ультразвуковой датчик расхода газовых и жидких топливных сред содержит генератор 1 псевдослучайной последовательности, генератор 2 гармонического колебания, фазовый манипулятор 3, усилители 4, 8 и 14, излучатель 5, трубопровод 6, приемный элемент 7, блок 9 регулируемой задержки, дифференциатор 10, перемножитель 11, коррелятор 12, фильтр 13 нижних частот и указатель 15 расхода. Технический результат - повышение точности измерения скорости движущихся частиц в трубопроводе заданного диапазона путем использования производной автокорреляционной функции и сложных сигналов с фазовой манипуляцией. 2 ил.

Изобретение относится к автоматическим противопожарным системам. Технический результат заключается в повышении помехоустойчивости и достоверности приема сложных сигналов с фазовой манипуляцией. Автономная сигнально-пусковая система пожаротушения включает последовательно соединенные тепловой пускатель, источник тока с пиротехническим активатором и реле времени, которое соединено с сигнальным устройством и соединено с исполнительным устройством, при этом тепловой пускатель и источник тока с пиротехническим активатором конструктивно объединены и заключены в корпус, и приемник снабжен двумя фильтрами нижних частот, двумя перемножителями, фазовращателем на 90°, узкополосным фильтром, измерителем несущей частоты и измерителем доплеровской частоты, и к выходу смесителя последовательно подключены первый фильтр, первый перемножитель и фазовый детектор, второй вход которого через фазовращатель на 90° соединен со вторым выходом гетеродина, а выход подключен к управляющему входу гетеродина, к выходу первого перемножителя подключены узкополосный фильтр и измеритель несущей частоты, частота гетеродина ωг выбрана равной частоте (ωc±Ωд) принимаемого сигнала [ωг=(ωс±Ωд)] и указанное равенство поддерживается автоматически. 7 ил.

Изобретения относятся к технике электросвязи, в частности к перспективным комбинированным системам волоконно-эфирной структуры, типичными представителями которых являются интенсивно развивающиеся локальные распределенные системы класса ROF (Radio-Over-Fiber). Технический результат состоит в повышении помехоустойчивости преобразователя частоты путем подавления ложных сигналов, помех, принимаемых по дополнительным каналам. Для этого модуль содержит приемную антенну 1, смеситель 2, полосовый фильтр 3, усилитель 4 промежуточной частоты, усилитель 5 суммарной частоты, амплитудный детектор 6, ключ 7, направленный ответвитель 8, первый 9 и второй 10 лазеры, фотодиод 11, электронный усилитель 12 и блок 13 восстановления несущей частоты. 2 н.п. ф-лы, 2 ил.

Предлагаемый комплекс относится к области сельского хозяйства и предназначен для подповерхностного зондирования сельскохозяйственных угодий, обнаружения очагов заражения сельскохозяйственных культур болезнями, лечения депрессивных участков возделываемых угодий, а также для определения местоположения источников радиоизлучений (ИРИ), например «черных ящиков» с сигнализацией, возникающих при катастрофах самолетов. Технической задачей изобретения является расширение функциональных возможностей известного технического решения путем обнаружения очагов заражения сельскохозяйственных культур болезнями, лечения депрессивных участков возделываемых угодий и определения местоположения источников радиоизлучений (ИРИ), например «черных ящиков» с сигнализацией, возникающих при катастрофах самолетов. Вертолетный радиоэлектронный комплекс для мониторинга сельскохозяйственных угодий содержит синхронизатор 1, передатчики 2.1-2.4, антенные переключатели 3.1-3.4, приемопередающие антенны 4.1-4.4, приемники 5.1-5.4, блоки 6.1-6.4 обработки, переключатель 7 сектора обзора, генератор 8 строй-импульса, цветной индикатор 9, тепловизионный датчик 10, телевизионный датчик 11, блок 12 приема, приемные антенны 13, 14 и 15, блок 16 определения местоположения ИРИ, лазер 17. Блок 16 определения местоположения ИРИ содержит усилители 19-22 высокой частоты, гетеродин 23, смеситель 24, усилитель 25 промежуточной частоты, демодулятор 26 сложных ФМн сигналов, перемножители 27, 28, 31-38, 44, узкополосные фильтры 29, 35-38, 46, фазометры 39, 40, 47, 48, блок 41 вычитания, сумматор 42, линию задержки 43, фазовый детектор, блок 52 регистрации и анализа. 6 ил.

Предлагаемые способ и устройство относятся к электроизмерительной технике и могут быть использованы для измерения электрической энергии в условиях переменного тока для целей коммерческого учета и обнаружения факта и вида хищения электроэнергии, например, на объектах агропромышленного комплекса. Устройство, реализующее предлагаемый способ, содержит датчик 1 тока фазного провода, датчик 2 тока нулевого провода, датчик 3 тока фазного провода, включенного в фазный провод до ввода в строение, датчик 4 напряжения нагрузки, включенный параллельно нагрузки 5, перемножители 6, 7, 8, блок 9 математической обработки, индикатором 10, блок 11 дистанционной передачи информации, формирователь 12 модулирующего кода, генератор 13 высокой частоты, фазовый манипулятор 14, усилитель 15 мощности и передающую антенну 16. Пункт контроля содержит приемную антенну 17, усилитель 18 высокой частоты, первый 19 и второй 39 смеситель, блок 20 поиска, первый 21 и второй 38 гетеродины, усилитель 22 промежуточной частоты, удваиватель (селектор) 25 фазы, блок 27 сравнения, пороговый блок 28, линии задержки 29, ключ 30, демодуляторы 31 и 40 Фмн сигналов, перемножители 32, 33, 41 и 42, узкополосные фильтры 34 и 43, фильтры 35 и 44 нижних частот, блок 36 регистрации, фазоинверторы 45 и 46, блок 47 вычитания. Техническим результатом при реализации заявленного решения является повышение достоверности и надежности дистанционного измерения потребляемой электроэнергии и выявления наличия, вида и времени ее хищения путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам, и ослабления узкополосных помех, принимаемых по основному каналу. 2 н.п. ф-лы, 5 ил.

Предлагаемые технические решения относятся к контрольно-измерительной технике и могут быть использованы для непрерывного неразрушающего контроля, оценки и прогнозирования технического состояния конструкций и инженерных сооружений специальных объектов, например, потенциально-опасных участков трубопроводов систем жизнеобеспечения объектов военной инфраструктуры, в течение всего периода их эксплуатации. Техническим результатом является повышение принимаемой помехоустойчивости и достоверности обмена дискретной информацией между пунктом контроля и модемом путем использования двух частот и сложных сигналов с фазовой манипуляцией. Способ дистанционного контроля и диагностики состояния конструкции и инженерных сооружений заключается в том, что на пункте контроля регистрируют сигналы с блоков измерения, установленных в местах диагностирования конструкции, сравнивают их с заранее зафиксированными значениями и по отклонению поступивших сигналов от заранее зафиксированных судят о наличии изменений контролируемых параметров. При этом изготавливают элемент конструкции из того же материала, что и вся конструкция, размещают на нем блоки измерения и проводят метрологическую аттестацию элемента. Далее врезают элемент с установленными на нем блоками измерения в места диагностирования конструкции и по отклонению поступивших сигналов с блоков измерения от заранее зарегистрированных сигналов судят о состоянии конструкции, при этом блоки измерения и преобразователи выполняют в виде линий задержки на поверхностных акустических волнах. При преобразовании акустических волн в электромагнитный сигнал используется фазовая манипуляция, при этом структура сигнала отражает порядковый номер линии задержки и величину контролируемого параметра. Обмен дискретной информацией между пунктом контроля и модемом осуществляется путем использования двух частот и сложных сигналов с фазовой манипуляцией. Устройство, реализующее предполагаемый способ, содержит элемент 1 конструкции, блоки измерения: деформации 2, механического напряжения 3, вибрации 4, давления 5, расхода 6, температуры 7 транспортируемого продукта, температуры 8 грунта, электрического тока 9, электрического потенциала 10 с электродом сращения, преобразователи 11-19, контроллер 20, модем 21, линию радиосвязи 22 и пункт 23 контроля. Особенности конструкции блоков измерения, преобразователей, контроллера 20, пункта контроля 23 приведены в описании и на поясняющих чертежах. 2 н.п. ф-лы, 6 ил.

 


Наверх