Патенты автора Жуков Андрей Александрович (RU)

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена в виде пластины с закрепленным на поверхности ее контакта с поверхностью перемещения средством фиксации. При этом ступня соединена с ногой пяткой с помощью шарнира с одной степенью свободы. Пластина выполнена из гибкого диэлектрического материала с размещенными на ней с промежутками между собой жесткими элементами так, что их суммарная площадь на единице площади поверхности пластины монотонно убывает от пятки к носку. А средство фиксации выполнено в виде отдельных, не контактирующих между собой и покрытых слоем диэлектрика проводников, подключенных к разным полюсам источника напряжения. Изобретение обеспечивает повышение надежности фиксации на поверхности перемещения. 6 з.п. ф-лы, 5 ил.

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, и выполнения задач напланетных миссий. Ступня выполнена в виде пластины с нанесенным на площадь ее контакта с поверхностью перемещения адгезивом, соединенной пяткой с ногой с помощью шарнира с одной степенью свободы. Пластина выполнена гибкой с размещенными на ней с промежутками между собой жесткими элементами, при этом их суммарная площадь на единице площади поверхности пластины монотонно убывает от пятки к носку. Технический результат - повышение надежности фиксации на поверхности перемещения. 9 з.п. ф-лы, 6 ил.

Изобретение относится к технологии микроэлектроники, а именно изготовлению изделий микроэлектроники, содержащих в конструкции клеевое адгезионное соединение «полиимидная пленка-металл». В частности, предложена обработка полиимидной пленки в факеле неравновесной гетерогенной низкотемпературной СВЧ-плазмы при атмосферном давлении, использующей в качестве буферного газа смесь аргона и кислорода, и взаимном перемещении пленки и факела плазмы при частоте следования импульсов возбуждения не менее 50 Гц и скважности импульсов 2,6-2,85. Потребляемая мощность генератора СВЧ-плазмы составляет не более 500 Вт. Плазменный факел имеет цилиндрическую форму. Скорость обработки от 10 до 100 мм/сек. В результате чего без предварительной механической и химической обработки полиимидной пленки удается создать воспроизводимую поверхность для формирования клеевого соединения «полиимид-металл». 3 з.п. ф-лы, 8 ил., 1 табл.

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов. Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов согласно изобретению включает формирование структуры планарного диода, проведение термических операций, металлизации лицевой и тыльной сторон кремниевой монокристаллической подложки, разделение подложки на кристаллы, присоединение электропроводящих шин, формирование защитного покрытия на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах, при этом защитное покрытие на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах формируют на основе никель-золота последовательно в несколько этапов: удаление органических загрязнений жидкостными методами, нанесение химического никеля, промывка никелированного диода в сборе, нанесение иммерсионного золота, промывка позолоченного диода в сборе, сушка в вакууме. Изобретение позволит повысить качество бескорпусных диодов и обеспечит возможность изготавливать бескорпусные диоды, сформированные в едином технологическом цикле на одной подложке, с идентичными характеристиками. 1 з.п. ф-лы, 2 ил.

Изобретение может использоваться в электронной, космической, авиационной, военной промышленности при создании электронной аппаратуры, предполагающей проведение диагностики, настройки, поиск неисправностей, входной и выходной контроль. Основное назначение изобретения - обеспечение возможности гарантированного размыкания механического тест-реле на время, достаточное для получения информации об электрических параметрах и/или характеристиках объекта измерения при отсутствии необходимости контроля соединения последнего с аксессуаром измерительного прибора. Нормально замкнутое механического тест-реле включает наружный конструктивный элемент, форма которого обеспечивает возможность требуемого разъемного соединения тест-реле с упомянутым аксессуаром при обеспечении фиксации их взаимного расположения на время соединения. 5 з.п. ф-лы, 8 ил.

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении 3D-устройств микросистемной техники и полупроводниковых приборов, содержащих в своей структуре металлизированные и/или неметаллизированные сквозные отверстия в кремнии различного функционального назначения. Способ изготовления сквозных металлизированных микроотверстий в кремниевой подложке включает формирование полиимидного покрытия из раствора полиамидокислоты на основе диангидрида и оксидианилина в полярном растворителе толщиной не менее 2 мкм с последующей сушкой при температуре 80–120оС и термоимидизацией при температуре не менее 350оС в течение не менее 30 минут, проведение «сухого» травления через маску алюминия толщиной не менее 1 мкм в два этапа последовательно реактивным ионным травлением и в «Бош»-процессе до образования положительного клина травления на границе раздела «кремниевая подложка - полиимидное покрытие» глубиной не менее 1 мкм, удаление маски и «стоп-слоя» проводят в едином цикле в щелочном травителе полиимида. Техническим результатом изобретения является повышение технологичности и воспроизводимости при изготовлении сквозных металлизированных микроотверстий в кремниевой подложке. 4 з.п. ф-лы, 3 ил.

Изобретения могут использоваться в электронной, космической, авиационной, военной и других отраслях промышленности. Способ измерения электрических параметров или характеристик объекта исследования, установленного в электронном устройстве или блоке без демонтажа объекта исследования с печатной платы, на которой он установлен, заключается в том, что посредством подключающего устройства измерительного оборудования или прибора подключают объект исследования - электрически соединяют его с таким оборудованием или прибором, согласно изобретению используют как минимум один специальный электронный компонент – Тест-ключ, который выполнен с возможностью замыкания и размыкания электрической цепи, подключенной к паре его выводов, при этом Тест-ключ электрически соединяют последовательно с объектом исследования, для чего его располагают непосредственно перед или за объектом исследования в соответствии с электрической схемой упомянутых устройства или блока, причем один из выводов пары электрически соединяют с заданным полюсом объекта исследования, в то время как другой - с тем местом или участком электрической цепи измеряемых устройства или блока, с которым этот полюс должен быть электрически соединен, при этом исключают соединение самого такого полюса с указанным местом посредством стационарно установленного проводника, причем обеспечивают возможность электрического соединения с таким полюсом подключающего устройства упомянутых оборудования или прибора, для чего обеспечивают возможность физического доступа извне к электрически соединенному с ним проводнику до, во время или после подключения объекта исследования к упомянутым оборудованию или прибору, но перед измерением, посредством управляющего состоянием Тест-ключа воздействия обеспечивают размыкание ключа, соответствующего упомянутому полюсу объекта исследования, за счет чего отключают объект исследования от электрической цепи упомянутых устройства или блока, после чего диагностируют объект исследования, электрически развязанный с электрической цепью упомянутых устройства или блока или с ее частью, причем не менее чем на время измерений или, по крайней мере, не менее чем на время тестирования объекта исследования упомянутым оборудованием или прибором поддерживают Тест-ключ в разомкнутом состоянии, тогда как по окончании измерений или тестирования объекта исследования непосредственно или отсрочено обеспечивают замыканием Тест-ключа подключение объекта исследования к указанной цепи для обеспечения возможности штатного функционирования диагностируемого устройства или блока. Технический результат, достигаемый при использовании изобретений, заключается в снижении затрат времени на проведение диагностики и настройки электронных устройств или блоков, что обеспечивается за счет снижения затрат времени на измерение распаянных на печатных платах объектов исследования и исключения деструктивного влияния на них процесса измерения в виду исключения необходимости их полного и частичного демонтажа с плат. 5 н. и 20 з.п. ф-лы, 3 ил.

Использование: для изготовления микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы. Сущность изобретения заключается в том, что микромеханический актюатор выполнен в виде сформированной в меза-структуре упруго-шарнирной консольной балки, состоящей из параллельных трапециевидных вставок из монокристаллической кремниевой подложки p-типа с ориентацией [100], расположенных перпендикулярно основной оси консольной балки и соединённых полиимидными прослойками, образованными полиимидной пленкой, нагревателя и электропроводящих шин, образующих омический контакт с кремнием, трапециевидные вставки выполнены на противоположных сторонах упруго-шарнирной консольной балки и образуют, по меньшей мере, две зоны деформации. Технический результат: обеспечение возможности повышения надежности при эксплуатации в широком диапазоне температур. 2 н. и 9 з.п. ф-лы, 5 ил.

Использование: для создания систем, обеспечивающих микроперемещения. Сущность изобретения заключается в том, что кремниево-полиимидное гибкое сочленение для микросистем содержит соединяемые полиимидной вставкой кремниевые элементы, при этом в кремниевых элементах выполнены отверстия, заполненные материалом полиимидной вставки. Технический результат: обеспечение возможности повышения надежности сочленения. 4 з.п. ф-лы, 5 ил.

Изобретение относится к микросистемной технике, в частности к микроробототехнике, и может быть использовано в исполнительных устройствах роботов при манипулировании микрообъектами сложных конфигураций и сыпучих материалов, например, в космической технике, для забора проб грунта планет, комет и других небесных тел. Микросистемный захват содержит двумерную деформируемую структуру и средства управления деформацией. Деформируемая структура выполнена в виде гибкой оболочки, снабженной матрицей деформируемых элементов в виде актюаторов, каждый из которых снабжен средством для индивидуального управления деформацией. Деформируемые элементы выполнены в виде биморфных актюаторов, а средства для индивидуального управления деформацией - в виде нагревательных элементов. Изобретение направлено на расширение функциональных возможностей за счет принятия микросистемным захватом разнообразных форм, позволяющих ему при использовании в качестве рабочего органа робота манипулировать микрообъектами сложных конфигураций и сыпучими материалами. 5 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике, в частности к процессам формирования топологических элементов микроэлектронных устройств с использованием электрохимического осаждения и взрывной литографии. Способ фотолитографии включает формирование первого слоя позитивного фоторезиста путем, по меньшей мере, двух циклов нанесения на подложку слоя фоторезиста с последующей его сушкой, экспонирование первого слоя без шаблона, формирование второго слоя позитивного фоторезиста путем, по меньшей мере, двух циклов нанесения на подложку слоя фоторезиста с последующей его сушкой, термообработку при температуре 120-150°С, экспонирование через шаблон и проявление рисунка, причем время экспозиции первого слоя меньше времени экспозиции второго слоя. Технический результат, получаемый при реализации заявляемого изобретения, выражается в реализации расширения арсенала технических средств формирования технологически качественной маски отрицательным углом наклона стенок профиля из позитивного фоторезиста с толщиной 7-15 мкм, что сопровождается уменьшением образования дефектов, достигаются оптимальные параметры края отрицательного профиля, что необходимо для качественного проведения обратной фотолитографии и увеличивает процент выхода годных структур после фотолитографии. 7 з.п. ф-лы, 1 ил.

Изобретение относится к области микроробототехники, в которой основными подвижными элементами конструкции являются устройства микросистемной техники, выполненные по технологиям микрообработки кремния. Робот-инспектор может быть использован при создании систем, предназначенных для инспектирования и ремонта оборудования, находящегося в труднодоступных областях космических аппаратов за счет управляемого перемещения не менее чем в двух направлениях, возможности переноса полезной нагрузки и функционирования в условиях космического пространства. Изобретение обеспечивает возможность передвижения по поверхностям с различной степенью шероховатости и неровности, в том числе преодоление ступенчатых неровностей, устойчивость к жестким температурным условиям эксплуатации, увеличение надежности за счет применения термомеханических актюаторов, устойчивых к многократным изгибам, увеличение скорости передвижения за счет совместного использования разноразмерных исполнительных элементов. 2 н. и 24 з.п. ф-лы, 6 ил.

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин. Каждая микропластина закреплена на подложке с зазором 10...20 мкм. На обращенной к КА стороне подложки выполнены канавки прямоугольного или трапецеидального сечения, а также продольные углубления полукруглого сечения. Второй и последующие слои ЭВИ прикреплены к предыдущим слоям через сферические спейсеры, установленные между пластинами. Диаметр спейсеров составляет не менее величины указанного зазора. В местах установки спейсеров нанесены слои диоксида кремния толщиной 0,5...1 мкм. На внешнюю поверхность микропластин и открытые поверхности подложки нанесено алюминиевое покрытие толщиной 0,1...0,3 мкм с коэфф. отражения 0,7-0,9. Микропластины м.б. выполнены биморфными. При изготовлении микропластин электропроводными на поверхности кремниевой подложки м.б. выполнены токопроводящие шины. Технический результат изобретения состоит в снижении массы и габаритных размеров ЭВИ и КА. 6 з.п. ф-лы, 7 ил.

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ). Техническим результатом изобретения является: повышение стойкости СБ к термоударам, к воздействию механических и термомеханических нагрузок, повышение технологичности конструкции, увеличение срока активного существования СБ космических аппаратов, повышение функциональных возможностей за счет расширения температурного диапазона функционирования и оптимизации конструкции СБ, упрощение коммутационной системы, что достигается путем повышения прочности соединения шунтирующих диодов и СЭ, повышение воспроизводимости процесса изготовления СБ космических аппаратов за счет оптимизации технологии изготовления шунтирующих диодов и СЭ СБ, а также коммутирующих шин, соединяющих СЭ и шунтирующие диоды, которые выполнены многослойными. Солнечная батарея для малоразмерных космических аппаратов содержит: панели с приклеенными на них модулями с солнечными элементами (СЭ), шунтирующий диод; коммутирующие шины, соединяющие лицевую и обратную стороны шунтирующего диода с СЭ, при этом шунтирующий диод установлен в вырезе в углу СЭ, при этом коммутирующие шины выполнены многослойными, состоящими из молибденовой фольги, с двух сторон которой последовательно нанесены слой ванадия или титана, слой никеля и слой серебра соответственно. 2 н. и 5 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к микросистемной технике для создания электростатически управляемых микромеханических резонаторов для датчикопреобразующей аппаратуры и микрореле для коммутации СВЧ и НЧ аналоговых электрических цепей. Система содержит микромеханический исполнительный элемент, микроэлектронный преобразователь постоянного тока, вибрирующий элемент в виде миниатюрного пьезоэлектрического резонатора, автоколебательную резонансную схему, обратную связь, фазовращатель, емкость (конденсатор), интегральные логические КМОП-элементы, жесткую пластину и упругие подвесы. Технический результат заключается в создании микромеханической системы, отличающейся простотой конструкции и устойчивыми воспроизводимыми эксплуатационными характеристиками. 5 з.п. ф-лы, 3 ил., 1 табл.

Группа изобретений относится к области микроэлектроники - технологии изготовления слоистых изделий - и может быть использована при создании электродинамических и/или антенных устройств, содержащих в своей структуре слоистый материал со специфическими электрическими свойствами и обеспечивающих искажение рабочего электромагнитного поля. Технический результат - создание воспроизводимых и стабильных процессов изготовления метаматериалов, в том числе многоуровневых, с качественным и высокоточным исполнением металлических резонансных структур без разрывов и подтравов. Для этого в способе отсутствует операция травления «жертвенного» слоя (жидкостного или плазмохимического травления). Способ изготовления метаматериала заключается в формировании на n пластинах-носителях n защитных слоев, на которых формируют, последовательно чередуя между собой, m+1 уровней резонансных структур и m слоев диэлектрика соответственно, отделяют сформированные последовательно чередующиеся между собой уровни резонансных структур и слои диэлектрика с защитными слоями от соответствующих n пластин-носителей; соединяют последовательно методом монтажа с помощью меток совмещения, расположенных в каждом уровне резонансных структур, отделенные сформированные последовательно чередующиеся между собой уровни резонансных структур и слои диэлектрика с защитным слоем через радиочастотные диэлектрические пластины. 2 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении полупроводниковых приборов и/или устройств микросистемной техники на кремниевых подложках, содержащих в своей структуре пленки нитрида кремния различного функционального назначения. Техническим результатом изобретения является повышение качества осаждаемых пленок нитрида кремния методом плазмоактивированного процесса химического осаждения из газовой фазы на кремниевые подложки путем предварительной обработки поверхности подложек в плазме азота, в результате чего увеличивается равномерность осаждения пленки на подложке, снижается количество дефектов в пленке, улучшаются ее оптические и диэлектрические свойства. Способ осаждения пленки нитрида кремния на кремниевую подложку включает: предварительную обработку поверхности кремниевой подложки в плазме азота, подготовку компонентов газовой смеси из 5,2% смеси моносилана с аргоном с расходом 1,05÷1,15 л/ч и азота с расходом 0,07÷0,08 л/ч, из которой формируется пленка нитрида кремния, осаждение пленки нитрида кремния на обработанную поверхность кремниевой подложки непосредственно без разгерметизации реактора после предварительной обработки поверхности кремниевой подложки в плазме азота. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может быть использовано при создании систем терморегуляции нагреваемой поверхности космических аппаратов, либо иных систем, обеспечивающих микроперемещения в горизонтальной плоскости плоской функциональной несущей поверхности относительно неподвижного основания с расположенными на нем термомеханическими микроактюаторами, состоящими как минимум из двух слоев термодеформируемого материала. Заявленное микросистемное устройство терморегуляции поверхности космического аппарата включает: основание из диэлектрического материала с низким коэффициентом теплопроводности с отверстием прямоугольной формы; как минимум два ряда независимых параллельных канала управления из микроактюаторов, расположенные параллельно друг другу вдоль основания (как это показано на фиг.1а, б); отражающий экран, расположенный над микроактюаторами; металлизированные дорожки с электрическими контактами на основании и/или внутри него для электрического контакта с микроактюаторами; направляющие отражающего экрана, закрепленные на основании; полиимидные прижимы, расположенные между направляющими отражающего экрана и отражающим экраном; при этом соседние микроактюаторы в ряду повернуты друг к другу под углом 180 градусов, количество микроактюаторов в каждом ряду равно, количество рядов - четное количество, а количество микроактюаторов в каждом ряду не менее 6, микроактюаторы выполнены с возможностью углового перемещения подвижных элементов на угол не менее 30 градусов; отражающий экран расположен над микроактюаторами так, что ось симметрии отражающего экрана равноудалена от каждой пары рядов микроактюаторов (как это показано на фиг.1а, б); свободная поверхность основания покрыта с обеих сторон материалом с высоким коэффициентом отражения; усилие на подвижных элементах микроактюаторов такое, что суммарно для всех микроактюаторов оно оказывается достаточным для преодоления силы трения между отражающим экраном и микроактюаторами. Техническим результатом заявленного изобретения является: - уменьшение массогабаритных параметров за счет линейного перемещения подвижного элемента в одной плоскости; - работоспособность системы в условиях открытого космоса, а также устойчивость к жестким температурным условиям эксплуатации; - уменьшение потерь на трение между элементами конструкции; - увеличение эффективности работы системы за счет активного управления и за счет полного закрытия защищаемой поверхности отражающим экраном; - уменьшение напряжения питания до бортового; - увеличение надежности за счет применения микроприводов, устойчивых к многократным изгибам; - уменьшение энергопотребления за счет режима работы, подразумевающего активность системы, и, как следствие, энергопотребление, только в момент осуществления передвижения экрана, то есть в момент изменения температурного режима защищаемого объекта и/или окружающей среды; - возможность изготовления систем терморегуляции групповыми методами по стандартным технологиям микрообработки кремния и механообработки элементов конструкции. 14 з.п. ф-лы, 5 ил.

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности. Технический результат - увеличение рабочей мощности переключателя при неизменной стабильности срабатывания и повышение стабильности срабатывания при неизменной рабочей мощности за счет увеличения количества каналов, через которые осуществляется вывод накопленной энергии из большего числа резонаторов. Переключатель содержит четыре волноводных Н-тройника, лежащих попарно в ортогональных плоскостях, с входными и выходными прямыми плечами и боковыми плечами полуволновой длины, объединеными через окна связи в полное сечение волновода в цилиндрической стенке проходного резонатора. В проходном резонаторе расположен СВЧ коммутатор с газоразрядной трубкой, установленной на полувысоте проходного резонатора по его диаметру под углом 45° к направлению боковых плеч, и с разрядником подсветки в центре одного из торцов газоразрядной трубки. Рабочая частота проходного резонатора выбрана равной частоте, на которой боковые плечи Н-тройников имеют полуволновую электрическую длину. Внешний диаметр d1 газоразрядной трубки составляет d1≈λ/6, а ее внутренний диаметр d2 составляет d2≈λ/10. 2 з.п. ф-лы, 2 ил.

Изобретение относится к микросистемной технике и может быть использовано при изготовлении микроэлектромеханических реле. Способ изготовления микроэлектромеханических реле включает последовательное формирование на подложке контактной металлизации, состоящей из управляющего электрода, двух нижних коммутируемых контактов, расположенных с двух сторон от управляющего электрода на определенном расстоянии, «жертвенного» слоя, верхнего подвижного контакта, расположенного над управляющим электродом и нижними коммутируемыми контактами, опор для подвеса подвижного верхнего контакта. «Жертвенный» слой формируют из не менее трех «жертвенных» подслоев в несколько стадий с использованием двух позитивных фоторезистов с различной величиной вязкости, формируют отверстия для нижних коммутируемых контактов и опор для подвеса подвижного верхнего контакта методом фотолитографии, на конечной стадии проводится термообработка «жертвенного» слоя. Техническим результатом заявленного изобретения является получение высокого уровня планарности «жертвенного» слоя, что повышает воспроизводимость технологического процесса изготовления микроэлектромеханических реле. 4 з.п. ф-лы, 9 ил.

Изобретение относится к способу изготовления поглощающего покрытия, обеспечивающего поглощение в инфракрасном диапазоне длин волн для создания эталонов абсолютно черного тела в имитаторах излучения для аппаратуры дистанционного зондирования земли со стабильными характеристиками. Способ изготовления поглощающего покрытия включает формирование на пластине-носителе последовательно адгезионного слоя; полиимидного слоя с углеродными нанотрубками из раствора пиромилитового диангидрида и оксидианилина в полярном растворителе методом центрифугирования или полива с последующей сушкой. На высушенном полиимидном слое с углеродными нанотрубками формируют методом центрифугирования или полива слой из дисперсии углеродных нанотрубок в полярном растворителе: диметилформамиде или диметилацетамиде. Далее проводят сушку и термоимидизацию полиимидного слоя с углеродными нанотрубками и с углеродными нанотрубками из дисперсии, внедренными частично в растворенный приповерхностный слой полиимида. На слое из углеродных нанотрубок, внедренных и выступающих из полиимидного слоя, прошедшего термоимидизацию, формируют упрочняющий и поглощающий слой из нитрида кремния методом плазмохимического осаждения. Технический результат - создание воспроизводимого и стабильного во времени процесса изготовления покрытия с высокой поглощающей способностью инфракрасного излучения, работающего в широком диапазоне температур. 2 ил., 1 пр.

Изобретение относится к области оптики и может быть использовано в устройствах и системах для отклонения пучка квазимонохроматического оптического излучения по двум пространственным направлениям, создания плоских изображений с помощью пучка квазимонохроматического оптического излучения, изменения и переключения изображений. Микросистема оптического излучения включает источник квазимонохроматического оптического излучения, систему оптических элементов, первую линейку электроуправляемых микроструктур, вторую линейку электроуправляемых микроструктур, фотоприемник и блок управления. Техническим результатом является повышение функциональной возможности конструкции за счет создания микросистемы оптического излучения, обеспечивающей возможность отклонения пучка квазимонохроматического оптического излучения по двум пространственным направлениям. 5 з.п. ф-лы, 4 ил.

Изобретение относится к антенным устройствам и может быть использовано как отдельная антенна, а также в качестве элемента сложной антенны или антенной системы радиочастотного, терагерцового, инфракрасного или оптического диапазонов

Изобретение относится к радиотехнике, а именно к активным антенным модулям

Изобретение относится к области изготовления дискретных полупроводниковых приборов

Изобретение относится к области антенной техники и может быть использовано при создании и изготовлении малогабаритных антенн, обеспечивающих сужение диаграммы направленности

Изобретение относится к микроэлектронике, а также к нано- и микросистемной технике и может быть использовано в интегральных микросхемах с защитой от электрических и/или тепловых перегрузок

Изобретение относится к области космонавтики и касается устройств для изменения теплопередачи, а именно микроструктурных систем, содержащих упругие гибкие деформируемые исполнительные элементы

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов

Изобретение относится к области микросистемной техники и может быть использовано при создании микросистемных устройств управления и/или сканирования малогабаритной антенной или оптической отражающей поверхностью (зеркала) на основе подвижных термомеханических микроактюаторов, обеспечивающих преобразование «электрический сигнал - перемещение» и/или «изменение температуры - перемещение»

Изобретение относится к области микросистемной техники и может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы, обеспечивающие преобразование «электрический сигнал - перемещение» и/или «изменение температуры - перемещение» для микроробототехнических систем

Изобретение относится к системам энергоснабжения космических аппаратов

Изобретение относится к области изготовления дискретных полупроводниковых приборов и может быть использовано при изготовлении шунтирующих диодов для солнечных батарей космических аппаратов

Изобретение относится к области микросистемной техники и может быть использовано при создании сенсоров, функционирующих на основе туннельного эффекта, обеспечивающих преобразование «перемещение-электрический сигнал», в информационных системах мониторинга для прогнозирования, диагностики и контроля воздействий ударных волн и акустических колебаний на различные конструкции, транспортные средства, промышленные здания и сооружения, температуры, для создания сверхчувствительных микрофонов и диагностического медицинского оборудования

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения дебита нефтяных скважин по жидкости

Изобретение относится к области печатной техники, а более конкретно к печатающим устройствам (принтерам) с термоструйной печатающей головкой
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх