Патенты автора Белов Николай Александрович (RU)

Изобретение относится к области металлургии. Алюминиевый сплав содержит 5.4-6,4% кальция, 0,3-0,6% кремния и 0,8-1,2% железа. В виде отливок, не требующих термической обработки, сплав обладает следующими механическими свойствами на растяжение: временное сопротивление (σв) не менее 180 МПа, относительное удлинение (δ) не менее 1%. Обеспечивается получение экономнолегированного коррозионно-стойкого алюминиевого сплава, обладающего высокими и стабильными механическими свойствами. 2 з.п. ф-лы, 3 ил., 2 табл., 2 пр.

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении фасонных отливок различными методами литья, в частности дисков автомобильных колес методом литья под низким давлением. Литейный алюминиево-кремниевый сплав содержит, мас. %: кремний 10,5-11,5, стронций 0,02-0,08, магний 0,05-0,15, марганец 0,3-0,5, железо 0,3-0,5, алюминий и примеси – остальное, и имеет структуру, состоящую из первичных кристаллов алюминиевого твердого раствора и модифицированной алюминиево-кремниевой эвтектики, в состав которой входит стронцийсодержащая фаза, при этом не менее 90% всего количества железа входит в состав алюминиево-кремниевой эвтектики в виде фазы Al15(Fe,Mn)3Si2. Изобретение направлено на создание нового экономнолегированного силумина, предназначенного для получения фасонных отливок сложной формы и обладающего высокими и стабильными механическими свойствами. 2 з.п. ф-лы, 2 пр., 2 табл., 1 ил.

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, и может быть использовано для изготовления высоконагруженных паяных конструкций. Алюминиевый сплав содержит, мас. %: кремний 0,5-0,8, магний 0,5-0,9, медь 0,05-0,3, хром 0,05-0,2, железо 0,15-0,25, титан 0,005-0,02, цирконий 0,1-0,2, молибден 0,05-0,35, алюминий - остальное, при этом медь полностью связана во вторичные выделения фазы Al5Cu2Mg8Si6, температура солидуса материала составляет не менее 600°C. Изобретение направлено на повышение прочности паяных конструкций и заготовок, что приводит к увеличению срока службы изделий. 3 з.п. ф-лы, 4 пр., 3 табл.

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, и может быть использовано для изготовления высоконагруженных паяных конструкций. Алюминиевый сплав содержит, мас. %: кремний 0,5-0,8, магний 0,5-0,9, медь 0,05-0,3, хром 0,05-0,2, железо 0,15-0,25, титан 0,005-0,02, цирконий 0,1-0,2, молибден 0,05-0,35, алюминий - остальное, при этом медь полностью связана во вторичные выделения фазы Al5Cu2Mg8Si6, температура солидуса материала составляет не менее 600°C. Изобретение направлено на повышение прочности паяных конструкций и заготовок, что приводит к увеличению срока службы изделий. 3 з.п. ф-лы, 4 пр., 3 табл.

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, и может быть использовано для изготовления высоконагруженных паяных конструкций. Алюминиевый сплав содержит, мас. %: кремний 0,5-0,8, магний 0,5-0,9, медь 0,05-0,3, хром 0,05-0,2, железо 0,15-0,25, титан 0,005-0,02, цирконий 0,1-0,2, молибден 0,05-0,35, алюминий - остальное, при этом медь полностью связана во вторичные выделения фазы Al5Cu2Mg8Si6, температура солидуса материала составляет не менее 600°C. Изобретение направлено на повышение прочности паяных конструкций и заготовок, что приводит к увеличению срока службы изделий. 3 з.п. ф-лы, 4 пр., 3 табл.

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из борсодержащего алюминиевого сплава с содержанием бора не менее 2 мас.% включает приготовление алюминиевого расплава, содержащего медь и боридные частицы, получение слитка путем кристаллизации расплава, гомогенизацию слитка, горячую прокатку, холодную прокатку и упрочняющую термообработку, при этом в алюминиевый расплав вводят от 5,5 до 6,5 мас.% меди, горячую прокатку проводят при температуре 400-450°C с суммарной степенью обжатия от 85 до 90%, а холодную прокатку проводят с суммарной степенью обжатия от 92 до 96%. Изобретение направлено на получение алюминиевого сплава с содержанием бора не менее 2 мас.%, обладающего высокими и стабильными механическими свойствами. В частности, способ позволяет получить прокат толщиной менее 0,3 мм, временным сопротивлением на разрыв σв>420 МПа и относительным удлинением δ>8%. 1 з.п. ф-лы, 2 пр., 2 табл., 3 ил.

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из слитков борсодержащего алюминиевого сплава включает приготовление алюминиевого расплава, содержащего медь, введение бора в количестве от 2 до 2,8 масс. % в виде боридных частиц, получение слитка путем кристаллизации расплава, горячую прокатку, промежуточный отжиг, холодную прокатку, при этом в алюминиевый расплав вводят от 1,8 до 2,5 масс. % меди и от 1,4 до 2,2% марганца, литой слиток подвергают горячей прокатке при температуре от 400 до 450°C, а после холодной прокатки проводят отжиг при температуре от 360 до 400°C. Способ позволяет реализовать структуру тонколистового проката, обеспечивающую наилучшее сочетание эксплуатационных свойств, в частности прочности и пластичности. В частном случае способ позволяет получить прокат толщиной менее 0,3 мм, временным сопротивлением на разрыв σв>300 МПа и относительным удлинением δ>5%. 1 з.п. ф-лы, 2 пр., 2 табл., 2 ил.

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др. Способ получения прутков из алюминиевых сплавов системы алюминий-цинк-магний-никель-железо-цирконий включает приготовление расплава на основе алюминия, полученного по технологии электролиза с инертным анодом и содержащего железо, введение в него цинка, магния, никеля, меди и циркония, получение цилиндрического слитка, его термическую и деформационную обработку методом радиально-сдвиговой прокатки при температуре от 270 до 300°C с суммарным обжатием от 65 до 85% и частоте вращения валков от 40 до 60 об/мин и упрочняющую термообработку полученного прутка, включающую закалку и искусственное старение. Изобретение направлено на получение высокопрочных калиброванных прутков со следующим уровнем механических свойств: временное сопротивление (σв) - не менее 600 МПа, предел текучести (σ0,2) - не менее 550 МПа, относительное удлинение (δ) - не менее 5%. 1 з.п. ф-лы, 1 пр., 2 табл., 3 ил.

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и других транспортных средств (велосипедов, самокатов, тележек), детали спортинвентаря и др. Способ получения отливок из высокопрочного сплава на основе алюминия включает приготовление расплава алюминия, содержащего цинк, магний, медь, никель и железо, получение отливки методом литья приготовленного расплава и термообработку отливки для формирования структуры, состоящей из дисперсионно упрочненной алюминиевой матрицы и частиц фазы Al9FeNi, при этом приготовление расплава алюминия осуществляют с использованием алюминия, получаемого по технологии электролиза с инертным анодом, при этом расплав готовят при следующей концентрации легирующих элементов, мас.%: цинк 6,3-7,5, магний 2,1-2,8, медь 0,2-0,35, никель 0,6-0,8, железо 0,50-0,70, алюминий - остальное, а после термообработки получают структуру с размером дендритной ячейки алюминиевой матрицы не более 30 мкм и микротвердостью не менее 170 HV. Техническим результатом изобретения является получение отливок с временным сопротивлением (σв) - не менее 500 МПа, пределом текучести (σ0,2) - не менее 450 МПа, относительным удлинением (δ) - не менее 5%. 2 з.п. ф-лы, 3 пр., 4 табл., 3 ил.

Изобретение относится к области металлургии, в частности к борсодержащим материалам на основе алюминия, получаемым в виде слитков и предназначено для получения листового проката, в том числе толщиной менее 0,3 мм, к которому предъявляются требования низкого удельного веса и повышенной прочности в сочетании с радиационнозащитными свойствами. Способ получения слита из сплава на основе алюминия, содержащего бор для изготовления листового проката, включает приготовление расплава алюминия, формирование в нем борсодержащих частиц, получение слитка путем кристаллизации расплава и его гомогенизацию, причем готовят алюминиевый расплав, содержащий от 3 до 4,6 мас.% меди, от 2,3 до 2,7 мас.% магния и от 0,3 до 0,7 мас.% марганца, бор вводят в расплав в виде лигатуры в количестве, обеспечивающем в структуре слитка образование не мене 5 об.% борсодержащих частиц, формирование которых осуществляют при температуре расплава в пределах от 940 до 1000°С в течение 30-5 мин с получением в структуре слитка равномернораспределенных борсодержащих частиц со средним размером не более 25 мкм. Высокая технологичность слитков позволяет получать из них деформированные полуфабрикаты, в том числе тонколистовой прокат, имеющие после операций дисперсионного упрочнения высокие эксплуатационные свойства. 2 пр., 3 табл., 4 ил.

Изобретение относится к области металлургии, в частности к производству высокопрочных материалов на основе алюминия, и может быть использовано для получения ответственных изделий, работающих под действием высоких нагрузок, в частности для изготовления деталей, используемых для автомобилестроения, летательных аппаратов, спортивного инвентаря, корпусов электронных устройств и др. Высокопрочный сплав на основе алюминия содержит, мас. %: цинк 5,2-6,0, магний 1,5-2,0, никель 0,5-2,0, железо 0,4-1,0, медь 0,01-0,25, цирконий 0,05-0,20, по меньшей мере, один элемент из группы, включающей скандий 0,05-0,10 и титан 0,02-0,05, алюминий – остальное, при выполнении соотношения 1≤Ni/Fe≤2 и суммарном содержании циркония и, по меньшей мере, одного элемента из группы, включающей титан и скандий, составляющем не более 0,25 мас. %. Техническим результатом изобретения является увеличение прочностных свойств сплава и изделий, выполненных из него, за счет образования вторичных выделений упрочняющей фазы путем дисперсионного твердения. 7 з.п. ф-лы, 3 пр., 4 табл., 2 ил.

Изобретение относится к синтезу и термической обработке аморфного стеклообразного перфторированного полимера поли(гексафторпропилена) и применению мембран на его основе для газоразделения. Мембрана для разделения газовых смесей состоит из аморфного стеклообразного поли(гексафторпропилена), подвергнутого термическому отжигу при 160-180°C в течение 3-5 часов. Способ мембранного разделения газовых смесей, включающих два из компонентов He, CH4, H2, N2, CO2, включает подачу разделяемой смеси с одной стороны этой мембраны и отбор проникающих через нее компонентов с другой стороны. Технический результат - увеличение селективности мембран на основе ПГФП при достижении улучшенной комбинации селективности и проницаемости материала. 2 н.п. ф-лы, 4 табл., 6 пр., 6 ил.
Изобретение относится к области металлургии, в частности к деформированным борсодержащим алюмоматричным композиционным материалам в виде листов, к которым предъявляются специальные требования по поглощению нейтронного излучения в сочетании с низким удельным весом. Способ включает приготовление алюминиевого расплава, содержащего, мас.%: марганец от 0,5 до 2, магний от 0,5 до 4, кремний от 0,1 до 0,3, скандий от 0,15 до 0,3, формирование борсодержащих частиц в алюминиевом расплаве путем введения в расплав лигатуры, содержащей смесь порошка TiB2 и солей NaCl2, MgCl2 и KCl, причем температуру расплава в процессе замешивания лигатуры поддерживают в пределах от 720 до 800°С в течение 30-45 минут, получение слитка путем кристаллизации расплава, получение листа путем деформирования слитка и отжиг деформированного полуфабриката при температуре 250-350°С, при этом получают листы со структурой композиционного материала, содержащего частицы TiB2 в количестве от 4 до 8%. Техническим результатом изобретения является достижение высокого уровня прочностных характеристик (временное сопротивление при растяжении (σв) - не менее 280 МПа) без использования операции гомогенизации для слитков и закалки для листов. 1 з.п. ф-лы, 2 пр., 2 табл.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении деформированных полуфабрикатов в виде прессованных профилей, прутков, труб, катаных плит и листов, предназначенных для использования в строительстве, судостроении, авиационной, автомобильной и других отраслях промышленности. Сплав на основе алюминия содержит, мас.%: марганец 0,5-2,0, железо 0,2-0,6, магний 0,5-1,5, цирконий 0,2-0,6, кремний 0,15-0,6, медь 0,1-0,3, цинк 0,05-0,5, алюминий остальное, при соотношении Zr/Si=1-2, при этом цирконий в структуре сплава присутствует в виде вторичных выделений кубической фазы Al3Zr с решеткой L12 и со средним размером не более 20 нм. Способ получения деформированного полуфабриката из сплава на основе алюминия включает получение расплава, получение слитка путем кристаллизации расплава, получение деформированного полуфабриката путем деформирования литого слитка и термической обработки деформированного полуфабриката, при этом кристаллизацию расплава проводят при температуре, превышающей температуру ликвидуса сплава не менее чем на 50°C, а скорость охлаждения в интервале кристаллизации составляет не менее 20 K/с, деформирование литой заготовки проводят при температуре, не превышающей 450°C, а термическую обработку готового деформированного полуфабриката проводят при температуре 300-400°C. Техническим результатом изобретения является повышение уровня механических свойств, в том числе после нагревов при температурах до 300°C включительно, достигаемых без использования гомогенизации слитков и закалки деформированных полуфабрикатов. В частности, временное сопротивление превышает 250 МПа, относительное удлинение превышает 8%, а предел текучести выше 200 МПа. 2 н. и 2 з.п. ф-лы, 1 пр., 3 табл., 5 ил.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для использования в качестве упаковочного материала пищевых продуктов, изделия, используемые в строительстве в качестве отделочно-декоративного материала, химической промышленности для хранения и транспортировки различных химических веществ и т.д. Способ получения деформированных полуфабрикатов из алюминиевого сплава включает приготовление расплава, содержащего алюминий, железо и кремний, получение слитка путем кристаллизации расплава, получение деформированных полуфабрикатов путем деформации слитка и отжиг деформированных полуфабрикатов, при этом расплав готовят на основе алюминия, полученного по технологии инертного анода, при следующем соотношении компонентов в расплаве, мас. %: железо - 0,5-1,6, кремний - 0,25-0,4, алюминий - остальное, при отношении железа к кремнию, составляющем 2-4, кристаллизацию расплава проводят со скоростью охлаждения не менее 20 К/с, деформацию слитка проводят по меньшей мере в 2 этапа с промежуточным отжигом между этапами при 300-450°C, на первом этапе со степенью деформации не менее 90%, на последующем этапе со степенью деформации не менее 60%, отжиг готового деформированного полуфабриката проводят при 300-400°C, при этом получают деформированные полуфабрикаты со структурой, содержащей алюминиевую матрицу с содержанием кремния до 0,1 мас. % и равномерно распределенными частицами фазы Al8Fe2Si со средним поперечным размером не более 1 мкм и массовой долей от 0,5 до 2%. Техническим результатом изобретения является создание нового деформированного сплава, выполненного в виде тонколистового проката, плиты, фольги и проволоки с высоким комплексом механических и электрических свойств, в частности с временным сопротивлением после отжига, превышающим 130 МПа, электропроводностью более 60% IACS, относительным удлинением, превышающим 20%. 4 з.п. ф-лы, 4 ил., 2 табл., 3 пр.

Изобретение относится к области определения сорбционных характеристик веществ, а именно к способам измерения величины сорбции и построения изотерм сорбции газа (пара) в различных мембранных материалах. Для определения изотерм сорбции газов и паров в мембранных материалах предварительно определяют количество газа (пара) в газовой фазе сорбционного объема. Далее проводят сорбцию газа (пара) мембранным материалом при заданном парциальном давлении газа (пара) до полного насыщения им мембранного материала и десорбцию газа (пара) потоком газа-носителя в хроматографический детектор. Сорбцию и десорбцию осуществляют в изотермических условиях в хроматографической петле, присоединенной к крану-дозатору. Используя полученную хроматограмму, рассчитывают количество сорбированного газа (пара) n 1 p o l , моль, по формулам: n 1 ∑ = n 1 G + n 1 p o l , VΣ,G=Vpol+VG, V p o l = m p o l ρ p o l , где n 1 ∑ , моль, - суммарное количество газа или пара в сорбционном объеме, определяемое из площади пика хроматограммы, n 1 G - количество газа или пара, находящееся в пустом объеме VG петли, заполненной мембранным материалом, и определяемое по уравнению состояния газа или пара, V∑,G, см3, - суммарный сорбционный объем, рассчитываемый по уравнению состояния газа или пара из предварительного определенного количества газа или пара в газовой фазе сорбционного объема, Vpol, см3, - объем мембранного материала, mpol, г, - масса мембранного материала в сорбционном объеме, ρpol, г/см3, - плотность мембранного материала. Устройство для осуществления данного способа состоит из блока подготовки газов или паров, блока детектирования - детектора газового хроматографа и блока проведения сорбции-десорбции, выполненного в виде хроматографической петли, присоединенной к шестиходовому крану-дозатору. Кран выполнен с возможностью переключения в положение для сорбции газа или пара в мембранном материале и в положение для десорбции газа или пара потоком газа-носителя в блок детектирования. Техническим результатом является упрощение и ускорение измерений, а также предотвращение изменения свойств мембранных материалов под действием нагрева-охлаждения. 2 н.п. ф-лы, 4 табл., 14 пр., 3 ил.

Изобретение относится к области металлургии, в частности к бор-содержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании, в частности, с высоким уровнем поглощения при нейтронном излучении. Способ включает приготовление алюминиевого расплава, содержащего 0,5-0,9% Si, l,3-1,9% Mg, 0,2-0,4% Cu, формирование в нем бор-содержащих частиц путем введения в расплав лигатуры, содержащей бор, при поддержании его температуры в пределах от 850 до 930°C в течение 30-45 минут, получение слитка путем кристаллизации расплава, его гомогенизацию, получение листов путем прокатки слитка и их термообработку, при этом получают листы со структурой композиционного материала, содержащей равномерно распределенные в алюминиевой матрице включения AlB2 со средним размером не более 30 мкм и массовой долей от 4 до 8%. Техническим результатом изобретения является повышение механических свойств катаных листов из алюмоматричного бор-содержащего композиционного материала. 2 табл., 1 ил., 2 пр.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в диапазоне температур до 350°С. Сплав содержит, мас.%: 0,6-1,5 Cu; 1,2-1,8 Mn; 0,2-0,6 Zr; 0,05-0,25 Si; 0,1-0,4 Fe; 0,01-0,3 Cr; Al остальное, при этом сплав содержит цирконий в своей структуре в виде наночастиц фазы Al3Zr с размером не более 20 нм, а марганец преимущественно образует вторичные выделения фазы Al20Cu2Mn3 с размером не более 500 нм в количестве не менее 2 об.%. Способ получения деформированного полуфабриката из упомянутого сплава включает приготовление расплава и получение литой заготовки путем кристаллизации расплава при температуре, не менее чем на 50°С превышающей температуру ликвидуса, деформирование литой заготовки в два этапа с промежуточным отжигом при 340-450°С при температуре, не превышающей 350°С, с получением промежуточного деформированного полуфабриката, отжиг полученного полуфабриката при температуре 340-450°С и его деформирование при комнатной температуре до получения готового деформированного полуфабриката и отжиг готового деформированного полуфабриката при температуре 300-400°С. Технический результат заключается в повышении прочности, термостойкости и электропроводности сплава на основе алюминия, а также деформированных полуфабрикатов в виде листов, прутков, проволоки, штамповок, труб, выполненных из него. 2 н. и 5 з.п. ф-лы, 6 пр., 8 табл., 3 ил.

Изобретение относится к области металлургии, в частности к способам получения отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 700°C, в частности лопаток газотурбинных двигателей. Способ получения литого сплава на основе гамма алюминида титана для фасонных отливок включает получение смеси порошков, формирование из нее брикета и проведение самораспространяющегося высокотемпературного синтеза. Получают смесь порошков из чистых металлов, содержащую титан, алюминий, ниобий и молибден в количестве, мол.%: алюминий 40-44, ниобий 3-5, молибден 0,6-1,4, титан - остальное. Брикет формируют с относительной плотностью 50-85 % и подвергают его термовакуумной обработке при температуре 550-650°C в течение 10-40 мин, скорости нагрева 5-40°C/мин и давлении 10-1-10-3 Па, а СВС проводят при начальной температуре 560-650°C. Получают отливки заданной конфигурации с высоким уровнем механических свойств при повышенных температурах. 2 ил., 2 табл., 2 пр.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 150°С и 250°С кратковременно. Литейный сплав на основе магния содержит, масс.%: алюминий 7,5-9,0, цинк 0,2-0,8, марганец 0,15-0,5 и кальций 0,1-0,4, магний - остальное. Сплав характеризуется высокими механическими свойствами, а также температурой возгорания сплава - не ниже 650°С, температурой солидуса при равновесной кристаллизации - не менее 460°С, объемной долей выделений фазы Al2Ca - не выше 0,75%. 5 ил., 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей. Способ термообработки отливок из сплавов на основе гамма алюминида титана включает горячее изостатическое прессование, охлаждение до комнатной температуры и последующий нагрев при температуре ниже эвтектоидного превращения сплава. Горячее изостатическое прессование проводят при температуре выше эвтектоидного превращения сплава в фазовой области α+β+γ при следующем количестве фаз в сплаве, мас.%: бета-фаза (β) от 7 до 18, гамма-фаза (γ) от 5 до 16, альфа-фаза (α) - остальное. Снижается время термообработки, при этом сплавы имеют высокий уровень механических свойств. 1 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к области металлургии, в частности к борсодержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании с высоким уровнем поглощения при нейтронном излучении. Способ получения материала в виде литой заготовки включает приготовление алюминиевого расплава, содержащего 1-2 мас.% железа и 0,2-0,6 мас.% кремния, введение в расплав при температуре 900-1100°С бора в виде борной кислоты и титана в виде стружки в соотношении, позволяющем получить в литой структуре частицы диборида титана в количестве от 4 до 8 мас.%, и кристаллизацию путем литья в форму. Техническим результатом изобретения является создание экономичного способа получения содержащего бор композиционного материала на основе алюминия, обладающего высоким уровнем поглощения нейтронного излучения в сочетании с наилучшими механическими свойствами и технологичностью. 5 пр., 2 табл., 1 ил.
Изобретение относится к области металлургии, в частности к содержащим бор алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании со специальными свойствами, в частности высокий уровень поглощения при нейтронном излучении. Композиционный материал содержит медь, марганец, цирконий, железо, кремний бор и имеет структуру, состоящую из алюминиевого твердого раствора и равномерно распределенных в нем фаз при следующем их соотношении в твердом растворе, в мас.%: 6-15 В4С, 2-6 Al15(Fe, Mn)3Si2, 2-6 Al20Cu2Mn3, 0,4-0,8 Al3Zr. Техническим результатом изобретения является повышение термостойкости материала к нагревам до 350°С при достаточном уровне механических свойств, составляющих: временное сопротивление (σв) - не менее 450 МПа, предел текучести (σ0,2) - не менее 400 МПа, относительное удлинение (δ) - не менее 4%, твердость не менее 2,7 ГПа. 1 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к области металлургии, в частности к борсодержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании с высоким уровнем поглощения при нейтронном излучении. Способ получения материала в виде литой заготовки включает приготовление алюминиевого расплава, содержащего 1-2 мас.% железа и 0,2-0,6 мас.% кремния, введение в расплав при температуре 900-1100°С бора в виде борной кислоты и титана в виде стружки в соотношении, позволяющем получить в литой структуре частицы диборида титана в количестве от 4 до 8 мас.%, и кристаллизацию путем литья в форму. Техническим результатом изобретения является создание экономичного способа получения содержащего бор композиционного материала на основе алюминия, обладающего высоким уровнем поглощения нейтронного излучения в сочетании с наилучшими механическими свойствами и технологичностью. 5 пр., 2 табл., 1 ил.
Изобретение относится к области металлургии, в частности к содержащим бор алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании со специальными свойствами, в частности высокий уровень поглощения при нейтронном излучении. Композиционный материал содержит медь, марганец, цирконий, железо, кремний бор и имеет структуру, состоящую из алюминиевого твердого раствора и равномерно распределенных в нем фаз при следующем их соотношении в твердом растворе, в мас.%: 6-15 В4С, 2-6 Al15(Fe, Mn)3Si2, 2-6 Al20Cu2Mn3, 0,4-0,8 Al3Zr. Техническим результатом изобретения является повышение термостойкости материала к нагревам до 350°С при достаточном уровне механических свойств, составляющих: временное сопротивление (σв) - не менее 450 МПа, предел текучести (σ0,2) - не менее 400 МПа, относительное удлинение (δ) - не менее 4%, твердость не менее 2,7 ГПа. 1 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к области металлургии, в частности к борсодержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании с высоким уровнем поглощения при нейтронном излучении. Способ получения материала в виде литой заготовки включает приготовление алюминиевого расплава, содержащего 1-2 мас.% железа и 0,2-0,6 мас.% кремния, введение в расплав при температуре 900-1100°С бора в виде борной кислоты и титана в виде стружки в соотношении, позволяющем получить в литой структуре частицы диборида титана в количестве от 4 до 8 мас.%, и кристаллизацию путем литья в форму. Техническим результатом изобретения является создание экономичного способа получения содержащего бор композиционного материала на основе алюминия, обладающего высоким уровнем поглощения нейтронного излучения в сочетании с наилучшими механическими свойствами и технологичностью. 5 пр., 2 табл., 1 ил.
Изобретение относится к области металлургии, в частности к содержащим бор алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании со специальными свойствами, в частности высокий уровень поглощения при нейтронном излучении. Композиционный материал содержит медь, марганец, цирконий, железо, кремний бор и имеет структуру, состоящую из алюминиевого твердого раствора и равномерно распределенных в нем фаз при следующем их соотношении в твердом растворе, в мас.%: 6-15 В4С, 2-6 Al15(Fe, Mn)3Si2, 2-6 Al20Cu2Mn3, 0,4-0,8 Al3Zr. Техническим результатом изобретения является повышение термостойкости материала к нагревам до 350°С при достаточном уровне механических свойств, составляющих: временное сопротивление (σв) - не менее 450 МПа, предел текучести (σ0,2) - не менее 400 МПа, относительное удлинение (δ) - не менее 4%, твердость не менее 2,7 ГПа. 1 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении крупногабаритных отливок сложной формы, предназначенных для изготовления деталей ответственного назначения, в частности корпусов редукторов, применяемых в авиастроении

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, деталей летательных аппаратов, автомобилей и других транспортных средств, деталей спортинвентаря и др

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 100-150°С, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др

Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры, ступеней погружного насоса для нефтегазового комплекса, деталей радиаторов отопления и др

Изобретение относится к области металлургии, в частности к деформируемым материалам на основе алюминия, и может быть использовано при получении изделий, работающих при повышенных температурах до 350°С

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении деталей автомобильных двигателей, работающих под действием высоких нагрузок при температурах до 150-200°С: головки цилиндров, корпуса водяных насосов, впускные трубы и др

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий электротехнического назначения, в частности проводов высоковольтных ЛЭП
Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении разнообразных изделий методами фасонного литья, в частности литья под поршневым давлением для производства отливок различного назначения, разнообразной фурнитуры, товаров народного потребления, средненагруженных узлов и агрегатов машин

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении деталей автомобильных двигателей, работающих под действием высоких нагрузок при температурах до 150-200°С

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении разнообразных изделий методами фасонного литья, в частности, корпусных деталей автомобильного двигателя, дисков автомобильных колес, корпусов радиаторов

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали автомобилей и детали спортинвентаря

Изобретение относится к металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в широком диапазоне температур, до 350°С

Изобретение относится к железнодорожному транспорту, а именно к конструкциям вагонов-хопперов с укрытиями от атмосферных осадков
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх