Патенты автора Никитин Александр Анатольевич (RU)

Изобретение относится к катализатору гидроочистки для переработки дизельного топлива с высоким содержанием вторичных фракций, включающему в свой состав соединения кобальта, молибдена, фосфора, полученному сульфидированием состава, мас.%: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] – 6,0-12,0, Co2[H2P2Mo5O23] – 21,0-30,0 и носитель – остальное, и содержащему, мас.%: Mo – 10,7-13,5; Co – 3,5-4,2; S – 9,0-11,5; P – 1,4-1,9; носитель – остальное; при этом носитель содержит 0,001-0,05 мас.% Na и имеет на своей поверхности изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La, равным 50–10000, причем носитель состоит из низкотемпературных форм оксида алюминия – γ- и χ-Al2O3 – в следующих соотношениях, мас.%: (50-95):(50-5), имеет удельную поверхность 120-200 м2/г, объем пор 0,30-0,50 см3/г, средний диаметр пор 8-13 нм. Технический результат заключается в высокой активности и стабильности катализатора в целевых реакциях, протекающих при гидроочистке дизельного топлива с высоким содержанием вторичных фракций. 1 з.п. ф-лы, 1 табл., 9 пр.
Изобретение относится к способам получения малосернистых дизельных топлив. Изобретение относится к способу, заключающемуся в превращении прямогонных и содержащих до 30% вторичных дизельных фракций при температуре 340-380°C, давлении 3,5-8,0 МПа, массовом расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-800 м3/м3 в присутствии гетерогенного катализатора. Катализатор получают сульфидированием состава, мас.%: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] - 6,0-12,0, Co2[H2P2Mo5O23] - 21,0-30,0, носитель - остальное. После сульфидирования катализатор содержит, мас.%: Mo - 10.7-13.5; Co - 3.5-4.2; S - 9.0-11.5; P - 1.4-1.9; носитель - остальное. При этом носитель содержит 0,001-0,05 мас.% Na и дополнительно содержит на своей поверхности изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к атомам La, равным 50 - 10000, причем носитель состоит из низкотемпературных форм оксида алюминия - γ- и χ-Al2O3 - в следующих соотношениях, мас.%: (50-95):(50-5). Катализатор имеет удельную поверхность 120-200 м2/г, объем пор 0.30-0.50 см3/г, средний диаметр пор 8-13 нм. Технический результат - получение дизельного топлива, содержащего менее 10 ppm серы при гидроочистке прямогонных и содержащих до 30% вторичных дизельных фракций. 3 з.п. ф-лы, 1 табл., 14 пр.
Изобретение относится к способам приготовления катализаторов, предназначенных для переработки дизельного топлива с высоким содержанием вторичных фракций. Описан способ приготовления катализатора гидроочистки дизельного топлива, характеризующийся тем, что катализатор готовят пропиткой носителя, содержащего 0,001-0,05 мас.% Na и дополнительно содержащего на своей поверхности изолированные атомы La со средним размером 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 2-50 атомов на 10 нм2 поверхности и соотношением атомов Al к числу атомов La, равным 50-10000, причем носитель состоит из низкотемпературных форм оксида алюминия - γ- и χ-Al2O3 - в следующих соотношениях, мас.%: (50-95):(50-5), водным раствором, одновременно содержащим смесь комплексных соединений [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] и Co2[H2P2Mo5O23]; при этом концентрации компонентов раствора обеспечивают получение состава, мас.%: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] - 6,0-12,0, Co2[H2P2Mo5O23] - 21,0-30,0, носитель - остальное; с последующим сульфидированием. Получаемый катализатор имеет удельную поверхность 120-200 м2/г, объем пор 0.30-0.50 см3/г, средний диаметр пор 8-13 нм. После сульфидирования по известным методикам катализатор содержит, мас.%: Mo - 10.7-13.5; Co - 3.5-4.2; S - 9.0-11.5; P - 1.4-1.9; носитель - остальное. Технический результат - получение катализатора, имеющего высокую активность и стабильность в целевых реакциях, протекающих при гидроочистке дизельного топлива с высоким содержанием вторичных фракций. 4 з.п. ф-лы, 1 табл., 9 пр.

Настоящее изобретение относится к металлоустойчивому катализатору крекинга и способу его получения. Предлагаемый катализатор включает ультрастабильный цеолит Y в катион-декатионированной форме, матрицу, состоящую из аморфного алюмосиликата, гидроксида алюминия и природной глины, и смешанный оксид магния-алюминия, При этом в качестве компонентов матрицы используют каолиновую глину, гидроксид алюминия из продукта термохимической активации глинозема и аморфный алюмосиликат, содержащий 1,5-3,5 мас. % оксида магния, а смешанный оксид магния-алюминия имеет мольное отношение магния к алюминию (5-7,5):1, и содержание указанных компонентов в катализаторе составляет, мас. %: цеолит Y 21-25; каолиновая глина 15-30; гидроксид алюминия 22-40; аморфный алюмосиликат 20-30, смешанный оксид магния-алюминия 2-3. Способ получения катализатора включает проведение ионных обменов на катионы аммония и редкоземельных элементов на цеолите Y, ультрастабилизацию цеолита, смешение цеолита с матрицей, состоящей из аморфного алюмосиликата, гидроксида алюминия и природной глины, и магнийалюминиевым гидротальцитом, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора. При этом в качестве природной глины используют каолиновую, гидроксид алюминия получают путем обработки продукта термохимической активации глинозема, аморфный алюмосиликат модифицируют катионами магния до содержания 1,5-3,5 мас. % оксида магния, а смешанный оксид магния-алюминия, полученный из гидротальцита, имеет мольное отношение магния к алюминию (5-7,5):1. Технический результат заключается в создании катализатора крекинга, обеспечивающего высокую конверсию тяжелого нефтяного сырья с повышенным содержанием металлов. 2 н.п. ф-лы, 2 табл., 9 пр.

Группа изобретений включает способ подготовки водно-грязевой смеси для физиотерапии и ионизатор, относится к области медицины и предназначено для водогрязетерапии, и в частности в курортологии. Способ подготовки водно-грязевой смеси для физиотерапии ионизатором включает загрузку необходимого количества водно-грязевой смеси в ионизационную камеру и подачу электрического тока на катод и анод, и ее ионизацию. Ионизацию водно-грязевой смеси ведут в ионизаторе, внутреннюю полость которого разделяют на 2 отсека пористой мембраной, где под воздействием создаваемого ионного тока при подаче электрического тока на анод и катод формируют ионный транспортный поток ионизированных частиц водно-грязевой смеси через пористую мембрану, тем самым обеспечивая получение водно-грязевой смеси анионита и катионита в разделенных отсеках. Ионизатор содержит камеру ионизации с устройством для ионизации, блок питания. Камера ионизации образована корпусом ионизатора, внутренняя полость которого разделена пористой мембраной на 2 отсека - анодный и катодный. Отсеки ограничены с наружных сторон свободно извлекаемыми анодом и катодом, установленными преимущественно в вертикальные направляющие корпуса с возможностью их свободного извлечения, выполненными в виде шторок, закрепленных элементами крепления, и пористой мембраны, выполненной в виде рамки-шторки. Изобретения позволяют повысить степени ионизации водно-грязевой смеси большого и малого объема для аппликационной физиотерапии при низких напряжениях в полевых условиях, и таким образом получить водно-грязевую смесь анионит и катионит. 2 н. и 4 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к медицине, в частности к способу подготовки водно-грязевой смеси для физиотерапии. Способ подготовки водно-грязевой смеси для физиотерапии включает загрузку необходимого количества целебной грязи и предварительно ионизированной минеральной природной воды в камеру, размешивание исходной водно-грязевой смеси при воздействии температуры, на выходе из камеры определяют степень ионизации исходной водно-грязевой смеси путем замера окислительно-восстановительного потенциала (редокс-потенциала), сравнивают его с рекомендуемым значением для наилучшего проникновения полезных веществ водно-грязевой смеси через кожные покровы, и по разнице между определяемым и рекомендуемым окислительно-восстановительным потенциалом определяют время ионизации при подаче высоковольтного напряжения по зависимости: t=kΔE, где k=1÷2, - экспериментальный коэффициент; ΔE - разница между определяемым и рекомендуемым окислительно-восстановительным потенциалом, далее водно-грязевую смесь подают в ионизационную камеру с размещенными там плазмотронами, имеющими направленные вниз коронирующие иглы, на которые подают напряжение, под воздействием разрядов, стекающих с коронирующих игл, повышают степень ионизации исходной водно-грязевой смеси, а затем транспортируют ее в процедурную камеру. Вышеописанный способ позволяет повысить оздоровительное воздействие на организм пациента водно-грязевой смеси за счет оптимизации ее степени ионизации для глубокого проникновения полезных веществ через кожные покровы. 1 ил., 3 пр.

Изобретение относится к процессам нефтепереработки, в частности к способам стабилизации керосиновых фракций. Изобретение касается стабилизации керосиновых фракций путем горячей сепарации газопродуктовой смеси из реактора гидродемеркаптанизации на газовую и жидкую фазы, направления жидкой фазы в качестве сырья колонны стабилизации керосиновых фракций, а также охлаждения, конденсации газовой фазы с последующей сепарацией в холодном сепараторе на водородосодержащий газ и жидкую фазу, которую подают в качестве компонента острого орошения колонны стабилизации, при этом жидкую фазу горячего сепаратора подают в колонну стабилизации после охлаждения, а жидкую фазу холодного сепаратора без подогрева подают в качестве компонента острого орошения верхней тарелки колонны стабилизации керосиновых фракций. Технический результат - стабилизация керосиновых фракций при минимизации нагрузки на систему конденсации, снижение расхода энергии на подогрев потоков при использовании простой технологической схемы с одним сырьевым потоком, обеспечение необходимого качества сырья для каталитического риформинга. 1 з.п. ф-лы, 1 ил., 4 табл., 2 пр.

Изобретение относится к процессам нефтепереработки. Изобретение касается способа получения зимнего дизельного топлива из сернистых нефтей, включающего перегонку нефти, при которой выделяют легкую и тяжелую прямогонные дизельные фракции, далее прямогонную фракцию легкого дизельного топлива подвергают каталитической гидроочистке, а прямогонную фракцию тяжелого дизельного топлива в полном объеме подвергают каталитической гидроочистке и каталитической депарафинизации. Прямогонную фракцию легкого дизельного топлива выделяют с температурой помутнения, находящейся в интервале температур от 5°C выше до 5°C ниже нормативного значения для получаемого товарного зимнего дизельного топлива, а прямогонную фракцию тяжелого дизельного топлива выделяют с 95%-ной точкой выкипания фракционного состава, которая обеспечивает возможность вовлечения этой фракции полностью или частично в зимнее дизельное топливо после проведения процесса депарафинизации. Процесс каталитической депарафинизации фракции тяжелого дизельного топлива ведут до получения необходимых значений температуры помутнения данной фракции, которые обеспечивают получение нормативного значения температуры помутнения товарного зимнего дизельного топлива, получаемого компаундированием гидроочищенной фракции легкого дизельного топлива с балансовым количеством прошедшей гидроочистку и каталитическую депарафинизацию фракции тяжелого дизельного топлива, одновременно обеспечивают при этом нормативное значение 95%-ной точки выкипания фракционного состава товарного топлива, а необходимое значение предельной температуры фильтруемости (ПТФ) товарного топлива обеспечивают путем ввода депрессорной присадки. Технический результат - получение зимнего дизельного топлива с максимальным использованием основного ресурса - фракции прямогонного топлива дизельного летнего без привлечения керосиновых фракций, с сохранением отборов фракций светлых нефтепродуктов на установках первичной перегонки нефти, снижение производственных и капитальных затрат. 1 ил., 4 табл., 4 пр.

Изобретение относится к процессам нефтеперерабатывающей промышленности, в частности к получению зимнего дизельного топлива ЕВРО

Изобретение относится к области нефтепереработки, в частности к способу получения битума

Изобретение относится к области нефтепереработки углеводородного сырья

Изобретение относится к области нефтепереработки и может быть использовано для очистки керосиновых фракций от меркаптанов

Изобретение относится к процессам нефтеперерабатывающей промышленности, в частности к способам очистки от сероводорода мазута и нефтяных фракций - компонентов товарного мазута

Изобретение относится к области нефтепереработки углеводородного сырья и может быть использовано для увеличения выработки моторных топлив

Изобретение относится к нефтепереработке и может быть использовано на установках первичной переработки нефти с двукратным испарением для увеличения вывода компонентов сжиженного газа - фракции С3-С4 посредством сокращения потерь

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способам получения котельного топлива из нефтяных остатков, и может быть использовано для увеличения глубины переработки нефти
Изобретение относится к способу получения высокооктанового компонента автомобильных бензинов путем алкилирования изобутановой фракции бутиленсодержащим сырьем в присутствии концентрированной серной кислоты последовательно в двух реакционных устройствах с активным перемешиванием, последующее разделение кислоты и углеводородов, очистку продуктов реакции от кислых примесей, характеризующемуся тем, что алкилирование проводят в двух реакционных устройствах, снабженных общим контуром циркуляции серной кислоты и раздельными контурами по углеводородной фазе, при этом смесь продуктов реакции и кислоты из первого реакционного устройства охлаждают в отстойной зоне до 4-6°С и разделяют с последующим возвратом балансовой части серной кислоты в первое реакционное устройство, а продукты реакции и другую часть серной кислоты параллельными потоками направляют во второе реакционное устройство, куда также подают бутиленсодержащее сырье, в количестве 1-3 м3/ч (в пересчете на 100% бутилен) на 1 м3 серной кислоты в объеме реактора, при этом температуру на выходе из второго реакционного устройства поддерживают не выше 15°С без дополнительной подачи изобутана, далее смесь продуктов реакции, избытка изобутана и кислоты из второго реакционного устройства разделяют в гидроциклоне на углеводородную фазу и серную кислоту, которую возвращают в отстойную зону первого реакционного устройства, а углеводородную фазу направляют в отстойник второго реакционного устройства для более тщательного отделения кислоты, а затем на блок очистки, при этом оптимальную концентрацию серной кислоты (90-93%) в объединенном контуре циркуляции кислоты поддерживают за счет постоянной подачи свежей 98-99% серной кислоты
Изобретение относится к способам исследования и анализа моторных топлив и их компонентов применительно к нефтеперерабатывающей промышленности

Изобретение относится к способам деасфальтизации гудронов (тяжелых нефтяных остатков вакуумной перегонки мазутов) пропаном для получения компонентов остаточных базовых масел и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к гидроприводам срезающих устройств и может быть использовано в лесной промышленности

Изобретение относится к способам получения гидроочищенного дизельного топлива и может быть использовано в нефтеперерабатывающей промышленности
Изобретение относится к способам каталитического крекинга тяжелого нефтяного сырья в присутствии микросферического цеолитсодержащего катализатора для получения бензина, сжиженных углеводородных газов, легкого газойля и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к способам получения депарафинированных масел и твердых парафинов из нефтяного парафинсодержащего сырья и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к сигнальным устройствам и может быть использовано для сигнализации об открывании крышки, люка, двери

Изобретение относится к способам получения компонентов экологически чистых автобензинов и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности

 


Наверх