Патенты автора Сосна Михаил Хаймович (RU)

Изобретение относится к способом переработки природного газа и может быть использовано в нефтеперерабатывающей промышленности и в промышленности органического синтеза. Природный газ подвергают паровому риформингу при повышенных температуре и давлении с образованием влажного конвертированного газа с температурой 860-830°С и давлением 20-30 атм. Затем полученный влажный конвертированный газ подвергают охлаждению до температуры 360-450°С и разделяют на два потока газа. Первый из потоков направляют последовательно на стадию конверсии оксида углерода, стадию охлаждения и стадию короткоцикловой адсорбции с выделением целевого водорода и газовой фазы. Последнюю направляют на паровой риформинг в качестве топлива. Второй поток газа после охлаждения до температуры 30-40°С и выделения влаги направляют либо на стадию получения метанола, либо на стадию получения синтетических жидких углеводородов. В случае получения метанола второй поток газа предварительно подвергают компрессии до 50,0-90 атм. Первый поток газа перед направлением на стадию конверсии оксида углерода смешивают с отбросным газом процесса получения метанола с обеспечением объемного соотношения в образованной смеси водяного пара и газа не менее 0,6. В случае получения синтетических жидких углеводородов второй поток газа подвергают синтезу Фишера-Тропша на кобальтовом катализаторе, при этом первый поток газа перед направлением на стадию конверсии оксида углерода смешивают с отбросным газом синтеза Фишера-Тропша с обеспечением объемного соотношения в образованной смеси водяного пара и газа не менее 0,6. Разделение исходного потока конвертированного газа на два потока газа производят в объемном соотношении первый поток газа ко второму потоку газа в случае получения метанола 1:0,33-0,43, а в случае получения синтетических жидких углеводородов 1:0,21 для исключения образования твердого углерода в процессе конверсии оксида углерода. Достигаемый технический результат заключается в обеспечении реструктуризации технологических потоков в процессе переработки природного газа при минимизации отходов производства. 14 табл., 4 пр.

Изобретение относится к газовой промышленности и может быть использовано при транспортировке газообразных энергоносителей на дальние расстояния. Метано-водородную смесь с содержанием водорода не менее 70% транспортируют по трубопроводу. На каждой газоперекачивающей станции отбирают посредством полимерного мембранного модуля парциальный поток водорода с чистотой не менее 98% об. Последний направляют на сжигание в газовую турбину газоперекачивающей станции. Метано-водородную смесь до отбора водорода подвергают компрессии до величины давления, необходимой и достаточной для соблюдения заданных условий транспортирования до следующего отбора водорода. Величину парциального отбора водорода на каждой газоперекачивающей станции выбирают, исходя из условия обеспечения в конце трубопровода содержания водорода в смеси не менее 70,0%. На конечной газоперекачивающей станции компрессию метано-водородной смеси проводят в две ступени с добавлением перед второй ступенью к метано-водородной смеси пентана. По окончании процесса компримирования пентан удаляют из метано-водородной смеси, которую направляют в основной магистральный трубопровод. Технический результат заключается в оптимизации количества отбираемого водорода на каждой газоперекачивающей станции и расстояния между точками компрессии.

Настоящее изобретение относится к газовой промышленности и может быть использовано при транспортировке газообразных энергоносителей на дальние расстояния. Изобретение касается способа транспортирования метано-водородной смеси. Формируют метано-водородную смесь с содержанием водорода от 68 до 92 об. %, которую предварительно смешивают с пентаном, количество которого выбирают, исходя из условия достижения плотности полученной метано-водородной смеси величины, соответствующей величине плотности транспортируемой смеси газа без водорода при значениях давления Р=101325 Па и температуры Т=20°С, соответствующих стандартным условиям, согласно правилу аддитивности, используя следующую формулу: где А - содержание пентана, добавляемого к МВС; ρCH4 - плотность метана, кг/м3; ρH2 - плотность водорода, кг/м3; ρC5 - плотность пентана, кг/м3; ωCH4 - содержание метана в МВС; ωH2 - содержание водорода в МВС, полученную смесь подвергают сжатию до 220 атм, затем по окончании процесса компримирования пентан отделяют от метано-водородной смеси, которую направляют в трубопровод для транспортирования с обеспечением величины давления на выходе из трубопровода, соответствующей условиям хранения или подачи потребителю. Технический результат - уменьшение энергетических затрат на транспортировку водорода с высоким содержанием водорода в транспортируемой смеси и затрат на сероочистку. 3 табл., 1 ил.

Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал. Использование: нефтеперерабатывающая и нефтехимическая отрасли промышленности. Достигаемый технический результат заключается в повышении селективности по целевой терефталевой кислоте за счет сформированной системы пор и каналов наноструктурированного композитного носителя, обеспечивающего при окислении молекулярно-ситовой эффект благодаря бимодальному распределению пор по размерам. Высокая удельная площадь поверхности описываемого катализатора и, как следствие, увеличение площади контакта молекул сырья с каталитически-активными центрами, позволяет увеличить конверсию пара-ксилола и выход целевой терефталевой кислоты. 1 табл., 11 пр.
Изобретение относится к области химической технологии и может быть использовано при получении оксида углерода или фосгена

Изобретение относится к способу получения метанола

Изобретение относится к химической технологии, в частности к усовершенствованному способу получения метанола из синтез-газа, и может быть использовано на заводах, выпускающих метанол

Изобретение относится к способу получения диметилового эфира из синтез-газа и может быть использовано в нефтехимической промышленности

Изобретение относится к области химической технологии и может быть использовано, в частности, на заводах, выпускающих метанол и аммиак, а именно относится к усовершенствованному способу получения метанола из продувочного газа основного синтеза метанола или аммиака, включающему дозирование в продувочный газ основного синтеза сжатого диоксида углерода, нагревание полученной газовой смеси до начальной температуры синтеза, пропускание нагретого газа через катализатор синтеза метанола, охлаждение прореагировавшего газа, выделение сконденсированного метанола-сырца и разделение несконденсированного газового потока на два: возвратный и продувочный, причем возвратный поток для смешения с потоком продувочного газа основного синтеза направляют в один или два циркуляционных струйных компрессора и циркуляцию осуществляют а) либо за счет энергии давления продувочного газа основного синтеза, который подается в струйный компрессор, с последующим указанным дозированием в поток сжатого диоксида углерода, б) либо за счет энергии давления сжатого диоксида углерода, указанное дозирование которого осуществляют в струйный компрессор с последующим введением в поток продувочного газа основного синтеза, в) либо за счет энергии давления продувочного газа основного синтеза и энергии давления указанного сжатого диоксида углерода, которые подаются в один или два струйных компрессора

 


Наверх