Патенты автора Савин Леонид Алексеевич (RU)

Изобретение относится к области машиностроения, в частности к способам управления радиально-осевыми движениями ротора с использованием гидродинамических подшипниковых узлов скольжения, воспринимающих основную нагрузку. Способ включает операцию, при которой, осуществляют регулирование положения ротора за счет приложения усилия на торец втулки управляемого подшипникового узла после поступления сигналов о величине температуры, давления, осевого и радиального перемещения в режиме реального времени, переданных от измерительного блока на блок сбора, обработки и управления сигналами, оснащенный программным обеспечением, основанным на предварительно обученной нейронной сети. Регулирование положения ротора приводит к уменьшению зазора между внутренней втулкой и ротором и смещению вращающегося ротора в сторону второго подшипникового узла. Подшипниковые узлы скольжения выполнены коническими, один из них является управляемым. Достигается повышение надежности. 1 ил.

Изобретение относится к области машиностроения, в частности к подшипникам скольжения, и может быть использовано в узлах механизмов и машин для обеспечения вращательного движения. Подшипник скольжения содержит внутреннюю и наружную втулки, устройство перемещения внутренней втулки, блок сбора, обработки и управления сигналами, который соединен прямой и обратной связью с датчиками температуры, перемещения и давления. Внутренняя поверхность внутренней втулки выполнена конусообразной. В наружной втулке выполнены каналы для подачи гидравлической жидкости в полость устройства перемещения внутренней втулки, выполненного в виде упругого гофрированного элемента, представляющего собой полую металлическую или резинометаллическую оболочку с возможностью расширения ее вдоль оси подшипника при гидравлическом воздействии, причем этот элемент одной стороной соединен с торцевой поверхностью внутренней втулкой, а другой - с торцевой внутренней поверхностью наружной втулки, каналы которой через напорную магистраль, включающую последовательно установленные гидравлические шланги, фильтр, насосную станцию, сервоклапан, расходомер, распределитель, и через сливную магистраль, подключенную к распределителю, соединены с баком для гидравлической жидкости, подшипник снабжен измерительным блоком, в состав которого входят датчик температуры, датчик давления, два датчика перемещения, установленных под углом 90 градусов друг к другу, и датчик осевого перемещения. Все датчики, насосная станция, сервоклапан, расходомер и распределитель соединены прямой и обратной связью с электронным блоком сбора, обработки и управления сигналами. Технический результат: увеличение ресурса работы конического подшипника скольжения. 1 ил.

Изобретение относится к области учебного лабораторного оборудования и может быть использовано в учебном процессе при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях. Устройство содержит корпус, установленный на станине, закрепленные в корпусе на валу, связанном с электродвигателем, подшипниковые узлы с датчиками перемещения, установленное в корпусе нагрузочное устройство, посаженное на вал и содержащее датчик силы, смазочную систему, включающую гидравлические элементы, установленные в резьбовых отверстиях корпуса и выполненные в виде фитингов, подключенный к ним бак со смазочным материалом, связанный гидравлическими шлангами с датчиком расхода, предохранительным клапаном и соединенным с ним тройником. При этом электродвигатель зафиксирован на станине с помощью кронштейна, на корпусе смонтирована крышка, в которой установлен болт, фиксирующий датчик силы, в подшипниках установлены внутренние втулки, посаженные на вал, подшипниковые узлы имеют корпусы, на которых закреплены крышки и планки с зафиксированными на них датчиками, согласно изобретению первый подшипниковый узел содержит подшипник скольжения, второй подшипниковый узел содержит конический подшипник скольжения с зазором между ним и валом, связанным с электродвигателем через упругодемпфирующий узел, первый подшипниковый узел дополнительно снабжен датчиком частоты вращения, а второй подшипниковый узел - датчиком давления, датчики температуры и уровня смазочного материала размещены в корпусе установки, причем электродвигатель и все датчики подключены к блоку управления, сбора и обработки сигналов. Упругодемпфирующий узел выполнен из двух полумуфт, двух сопряженных с ними демпфирующих элементов, двух стаканов, размещенных внутри полумуфт с заключенным между ними упругим элементом, причем одна полумуфта закреплена на валу электродвигателя, а вторая - на валу установки. В смазочной системе внутри бака со смазочным материалом расположены нагревательные элементы, бак связан гидравлическими шлангами с последовательно соединенными фильтром, насосной станцией и сервоклапаном, сливная магистраль оснащена коллектором и фильтром, причем насосная станция, нагревательные элементы и сервоклапан подключены к блоку управления, сбора и обработки сигналов. Технический результат заключается в расширении области исследования роторных систем за счет активного управления характеристиками конического подшипникового узла. 2 з.п. ф-лы, 5 ил.

Изобретение относится к машиностроению. Рекуператор содержит два основания, первое из которых закреплено на источнике колебаний, а второе - на защищаемом объекте. На первом основании закреплена стойка. Зубчатое колесо закреплено на стойке с возможностью свободного вращения. Упругий элемент ограничивает поворот зубчатого колеса относительно стойки. Два затвора предназначены для периодической фиксации положения стержней относительно второго основания. Две рейки соединены со стержнями и расположены по разные стороны зубчатого колеса. Датчик установлен на втором основании и подключен к входу блока управления. Затворы электрически связаны с выходами блока управления. Достигается управляемый процесс накопления потенциальной энергии упругим элементом и возвращение этой энергии в систему с положительным эффектом. 1 ил.

Изобретение относится к области машиностроения и ремонта машин, может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения. Способ изготовления втулки подшипника скольжения включает механическое нанесение рельефа на внутреннюю цилиндрическую поверхность стальной втулки, нанесение газопламенным напылением антифрикционного покрытия, а затем пластическое деформирование антифрикционного покрытия накатыванием твердосплавным инструментом. Накатывают антифрикционное покрытие до достижения требуемой толщины, причем последний слой механически обрабатывают и наносят пленочное антифрикционное покрытие, обеспечивающее образование микрованночек для удержания смазочного материала. Увеличивается ресурс работы подшипника скольжения в период пуска, останова и реверса. 1 ил.

Изобретение относится к области машиностроения и ремонта машин, может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения. Способ изготовления втулки подшипника скольжения включает изготовление втулки с наружным диаметром, равным посадочному диаметру узла, в который устанавливают втулку, и механическое нанесение микрорельефа на внутреннюю поверхность втулки. На внутреннюю поверхность втулки, выполненную из антифрикционного материала, с нанесенным микрорельефом наносят пленочное антифрикционное покрытие, обеспечивающее в сочетании с микрорельефом образование микрованночек для удержания смазочного материала. Увеличивается ресурс работы подшипника скольжения в период пуска, останова и реверса. 1 ил.

Изобретение относится к области машиностроения, в частности к роликовым подшипникам качения, и может быть использовано в узлах механизмов и машин для обеспечения вращательного движения. Мехатронный подшипник качения содержит внутренние и наружные кольца, расположенные между ними тела качения, разделенные сепаратором. Подшипник также содержит устройство перемещения внутреннего кольца, включающее планетарную передачу и электродвигатель, подключенный к блоку управления сбора и обработки сигналов, который соединен прямой и обратной связью с датчиками температуры, вибрации, перемещения и усилия, встроенными в наружное кольцо. Технический результат заключается в поддержании рационального зазора между телами и дорожками качения подшипника на всех режимах работы, что приводит к увеличению ресурса работы устройства. 1 ил.

Изобретение относится к области учебного лабораторного оборудования и может быть использовано в учебном процессе при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях. В установке для исследования роторных систем с использованием аэрированного, микрополярного и гибридного смазочных материалов, содержащей корпус, установленный на станине и имеющий резьбовые отверстия для крепления элементов смазочной системы, выполненных в виде фитингов, вал, связанный через муфту с электродвигателем, зафиксированным на станине с помощью кронштейна, на корпусе смонтирована крышка, в которой установлен винт, фиксирующий датчик силы, первый подшипниковый узел, на котором установлен датчик частоты вращения, второй подшипниковый узел, на котором установлены датчики перемещения, датчик температуры, датчик давления и модуль с многозонной подачей смазочного материала, содержащий отверстия для крепления элементов, связанных гидравлическими шлангами со смазочной системой, два контура подачи смазочного материала, включающих сервоклапаны, фильтры, нагревательные элементы, датчики расхода, гидравлические шланги, блок управления, сбора и обработки сигналов, входы которого связаны с датчиком частоты вращения, датчиками температуры, датчиками перемещения, датчиком давления, датчиком силы, датчиками расхода, а выходы - с сервоклапанами, электродвигателем, и нагревательными элементами, согласно изобретению установка снабжена насосными станциями, инжекторами с дозаторами и контейнерами, содержащими воздух, жидкости и присадки, установленными в двух контурах смазочной системы, дозаторы соединены прямой и обратной связью с блоком управления, сбора и обработки сигналов, а на входе баков со смазочным материалом установлена фильтрующая система. Технический результат - расширение области исследования роторных систем за счёт применения активного управления дозированием и характеристиками подачи аэрированного, микрополярноого и гибридного смазочных материалов в подшипниковый узел с возможностью изменения концентрации и физико-химических свойств смазочного материала в подшипниковом узле. 3 ил.

Изобретение относится к области учебного лабораторного оборудования и может быть использовано в учебном процессе при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях. В установке для исследования роторных систем с активным управлением, содержащей корпус, установленный на станице, закрепленные в корпусе на валу, связанном через муфту с электродвигателем, первый подшипниковый узел, на котором установлен датчик частоты вращения и датчик давления, второй подшипниковый узел, на котором установлены датчики перемещения и датчик давления, внутри корпуса установлены только датчик температуры и датчик уровня смазочного материала, нагрузочное устройство, посаженное на вал и содержащее датчик силы, элементы, установленные в резьбовых отверстиях корпуса, выполненные в виде фитингов, электродвигатель, зафиксированный на станине с помощью кронштейна, один подшипниковый узел имеет датчик частоты вращения, уплотнения, смазочную систему, содержащую бак со смазочным материалом, насос, тройник, соединенный гидравлическими шлангами с баком через последовательно расположенные предохранительные клапаны и датчик расхода, согласно изобретению, в нее дополнительно введен блок управления, сбора и обработки сигналов, входы которого связаны с датчиками частоты вращения, температуры, перемещения, давления, силы, расхода и уровня смазочного материала, а выходы - с сервоклапанами, электродвигателем, насосными станциями и нагревательными элементами, помещенными в баки со смазочным материалом, один подшипниковый узел снабжен коническим подшипником скольжения, смазочная система имеет три изолированные друг от друга с помощью уплотнений полости для управления характеристиками конического подшипника скольжения, к бакам через гидравлические шланги и фильтры подсоединены насосные станции, одна из которых через тройник подключена к двум параллельным ветвям, каждая из которых состоит из последовательно соединенных предохранительного клапана, сервоклапана, датчика расхода и подключена к полости подшипникового узла с коническим подшипником, а другая насосная станция через соответствующий фильтр и гидравлический клапан гидравлическими шлангами подключена к полости другого подшипникового узла, причем третья полость через гидравлические шланги, элемент и клапан соединена с коллектором. Технический результат - расширение области исследования роторных систем за счёт конструктивной возможности модернизации стенда с помощью установки дополнительных элементов в подшипниковые узлы и возможностью изменения схемы подачи смазочного материала в них, а также возможностью активного управления характеристиками конического подшипникого узла. 4 ил.

Изобретение относится к области машиностроения, а именно к активным упорным гидро/аэростатодинамическим подшипникам, и может быть использовано в быстровращающихся, высоконагруженных или прецессионных роторных машинах. Активный упорный гидро/аэростатодинамический подшипниковый узел содержит корпус, в котором размещен вал с пятой и установлен вкладыш, в котором выполнено одно смазочное отверстие, соединенное с подающей магистралью. Подшипниковый узел дополнительно содержит систему управления, соединенную с датчиком осевого перемещения и датчиком частоты вращения вала, а также с датчиком давления, соединенным с подающей магистралью и регулирующей арматурой, соединяющей подающую магистраль со смазочным отверстием. Также заявлен способ управления характеристиками упомянутого подшипникового узла, который заключается в установке вала с пятой в упорный подшипник, в котором выполнено как минимум одно смазочное отверстие, соединенное с регулирующей арматурой, при этом управление осевым перемещением вала относительно вкладыша осуществляют путем изменения давления смазочного материала, подаваемого в упорный подшипник через смазочные отверстия, с помощью регулирующей арматуры. Затем задают значение уставки в системе управления, в которую дополнительно передают данные о давлении подачи смазочного материала в упорный подшипник, частоте вращения и осевом перемещении вала, а при неравенстве значений осевого зазора и уставки изменение давления подачи регулируют программой, заложенной в системе управления, в зависимости от давления подачи смазочного материала, частоты вращения и осевого перемещения вала. Технический результат: расширение рабочего диапазона частоты вращения вала, управление динамическими и статическими характеристиками подшипникового узла, увеличение точности управления и надежности. 2 н.п. ф-лы, 3 ил.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками, в системах кондиционирования воздуха кабин летательных аппаратов, а также систем турбонаддува в современном автомобилестроении. Многолепестковый мехатронный газодинамический подшипник содержит корпус, в пазы которого внахлест друг другу вставлены лепестки, расположенные равномерно по окружности корпуса, и пьезоактуаторы. Тонкие лепестки опираются на секционные пружины, вставленные в продольные пазы корпуса и воспринимающие нагрузку при отсутствии электрического напряжения. При этом расположенные вдоль оси вращения ротора пьезоактуаторы позволяют формировать коническую и бочкообразную упругую поверхность. Технический результат: улучшение динамических характеристик высокоскоростного ротора, повышение надежности и долговечности подшипникового узла, а также ресурса работы при многократных пусках и остановах за счет пьезоактуаторов, с помощью которых можно контролировать и управлять жесткостью опорной поверхности в осевом и радиальном направлениях. 6 ил.

Изобретение относится к области машиностроения и ремонта машин и может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения. В способе изготавливают втулку, на внутренней цилиндрической поверхности которой нарезана «рваная» резьба, нанесено антифрикционное покрытие с последующей механической обработкой пластическим деформированием накатыванием антифрикционного покрытия твердосплавным инструментом. На предварительно подготовленную механическим способом внутреннюю поверхность стальной втулки наносят подслой порошкового материала, связывающий антифрикционный слой со стальной втулкой, при этом антифрикционные слои наносят в несколько проходов, после каждого из которых их подвергают пластическому деформированию, последний слой подвергают механической обработке лезвийным инструментом. Технический результат: увеличение прочности сцепления антифрикционного покрытия со стальной основой, увеличение микротвердости антифрикционного покрытия и его равномерного распределения по высоте, снижение пористости антифрикционного покрытия и достижение заданных параметров точности обработки антифрикционной поверхности. 1 ил.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками, в системах кондиционирования воздуха кабин летательных аппаратов, а также системах турбонаддува в современном автомобилестроении. Лепестковый мехатронный газодинамический подшипник содержит корпус, в паз которого вставлены тонкий лепесток, круговой гофрированный элемент и пьезоэлементы. В продольные пазы корпуса вставлены пакетные пьезоэлементы, изменяющие форму опорной поверхности подшипника воздействием на круговой гофрированный элемент в радиальном направлении, позволяющие снимать данные о положении вала и деформациях опорной поверхности, а также варьировать жесткостью опорной поверхности. Технический результат: улучшение динамических характеристик высокоскоростного ротора, повышение надежности и энергоэффективности подшипникового узла, а также ресурса работы при многократных пусках и остановах. 3 ил.

Изобретение относится к области машиностроения и может быть использовано в конструкциях газотурбинных двигателей и паровых турбин. Техническая задача, которую решает данное изобретение, - улучшение расходных и прочностных характеристик подвижных площадок уплотнения за счет изменения геометрической формы уплотнения и уменьшения количества пьезоактуаторов для управления зазором. Сущность предлагаемого изобретения: бесконтактное конусно-лепестковое уплотнение с активным управлением зазором содержит корпус, в котором установлены подвижные элементы, выполненные с помощью прорезей, пьезоактуаторы подключенные к источнику питания, связанному с управляющим контроллером, соединенным с датчиком перемещения. Согласно изобретению подвижные элементы выполнены с помощью прорезей во втулке, имеющей внутреннюю цилиндрическую и наружную коническую, переходящую в цилиндрическую, поверхности, при этом втулка установлена в корпусе с возможностью перемещения под действием пьезоактуаторов. Технический результат заключается в уменьшении объема утечек газа, уменьшении количества пьезоактуаторов и повышении ресурса бесконтактного конусно-лепесткового уплотнения за счет исключения колебаний упругих лепестков, что позволяет устранить явление циклической усталости и повысить эффективность работы уплотнения. 4 ил.

Изобретение относится к области учебного лабораторного оборудования и может быть использовано в учебном процессе при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях. Мехатронная установка для исследования роторных систем содержит корпус, установленный на станине, имеющий резьбовые отверстия для крепления соединительных элементов, связанных гидравлическими шлангами со смазочной системой, в корпусе с двух сторон установлены и закреплены подшипниковые узлы, имеющие подшипники скольжения, дистанционную втулку, гайку, вал, связанный через муфту с электродвигателем, нагрузочное устройство с датчиком силы, датчик давления, датчик перемещения, установленный на корпусе датчик перемещения, бак с погружным насосом, регулируемый предохранительный клапан, коллектор для подвода смазочного материала, расходомер, манометр, шаровые краны. Корпус установлен вертикально и прикреплен к каркасу, закрепленному на станине, корпус через подшипниковый узел связан с дополнительным модулем, установленным на станине, содержащим упорный подшипник скольжения, резьбовые отверстия, выполнены в корпусе для крепления датчиков температуры и перемещения, штуцер, сервоклапан связанный гидравлическими шлангами со смазочной системой, в которой установлены фильтры грубой и тонкой очистки, датчик давления расположен в штуцере между модулем и сервоклапаном, блок сбора и обработки сигналов, входы которого связаны с датчиком частоты вращения, датчиками температуры, датчиком перемещения, датчиком давления, датчиком силы, а выходы - с сервоклапаном, электродвигателем, насосом и нагрузочным устройством, снабженным датчиком силы, закрепленным на каркасе, и воздействующим на вал через диск, закрепленный на валу. Технический результат - расширение области исследования роторных систем, за счет изменения положения корпуса установки, с возможностью применения дополнительного модуля с активным управлением характеристиками подачи смазочного материала и возможностью изменения схемы подачи смазочного материала в подшипниковый узел. 5 ил.

Изобретение относится к области учебного лабораторного оборудования и может быть использовано в учебном процессе при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях. Установка содержит корпус, установленный на станине и имеющий резьбовые отверстия для крепления элементов смазочной системы, выполненных в виде фитингов, вал, связанный через муфту с электродвигателем, зафиксированным на станине с помощью кронштейна. На корпусе смонтирована крышка, в которой установлен винт, фиксирующий датчик силы, подшипниковые узлы, имеющие корпуса, на которых винтами закреплены крышки, в которых выполнены резьбовые отверстия, с установленными в них датчиками перемещения, датчиками давления, датчиками температуры. При этом один подшипниковый узел имеет дополнительно датчик частоты вращения, уплотнения, установленные в крышке. Также установка имеет модуль с многозонной подачей смазочного материала, установленный на одном подшипниковом узле, содержащий рассеиватель, прокладку и крышку, в которой выполнены резьбовые отверстия для крепления соединительных элементов, связанных гидравлическими шлангами со смазочной системой. Кроме того, установка имеет два контура подачи смазочного материала, включающих сервоклапаны, фильтры, нагревательные элементы, расходомеры, гидропневмоаккумуляторы с клапанами и гидравлическими шлангами, на другом подшипниковом узле установлен подшипник качения, дополнительно введен блок управления, сбора и обработки сигналов, входы которого связаны с датчиком частоты вращения, датчиками температуры, датчиками перемещения, датчиком давления, датчиком силы, расходомерами, а выходы - с сервоклапанами, электродвигателем, насосами и нагревательными элементами. Технический результат заключается в расширении области исследования роторных систем. 8 ил.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся высоконагруженных роторных машинах. Управляемый газомагнитный подшипниковый узел содержит корпус, в котором установлен вкладыш подшипника скольжения, вал, размещенный во вкладыше, электромагнитный подшипник, содержащий более одного электромагнита, полюса и ярма электромагнитов, установленные в корпусе, обмотки электромагнитов, расположенные на ярмах, датчики измерения зазора. Полюса и ярма электромагнитов установлены поперечно во вкладыше газодинамического подшипника скольжения и в корпусе, в котором установлены датчик измерения частоты вращения вала и датчики измерения зазора. На внутренней поверхности вкладыша смонтированы лепестки. Технический результат: улучшение динамических характеристик, повышение надежности и ресурса системы "ротор - опоры". 2 ил.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся высоконагруженных роторных машинах. Комбинированная опора содержит подшипник скольжения (6), два подшипника качения (3, 4), внешние кольца которых смонтированы во втулке (5), а внутренние - на валу (2). Внутреннее кольцо одного (3) из подшипников установлено на валу (2) упором в ступень (10) вала (2), а внутреннее кольцо другого подшипника (4) установлено на валу (2) упором в гравер (8), зафиксированный на валу болтом. Внешние кольца подшипников качения (3, 4) связаны через последовательно расположенные тарельчатые пружины (7). Технический результат: улучшение динамических характеристик, повышение надежности и ресурса системы "ротор - опоры" за счет выборки монтажного зазора в подшипнике качения. 3 ил.

Изобретение относится к области машиностроения и может быть использовано в конструкциях газотурбинных двигателей и паровых турбин. Бесконтактное пальчиковое уплотнение содержит кольцевые пластины с прорезями, образующие гибкие пальчики с подвижными площадками, и два утолщенных сплошных корпусных диска с кольцевыми проставками, скрепленных вместе по внешнему диаметру заклепками. В одном из корпусных дисков закреплены пьезоактуаторы, подключенные к источнику питания, связанному с управляющим контроллером, соединенным с датчиком перемещения подвижных площадок. Технический результат заключается в уменьшении объема утечек газа и повышении ресурса бесконтактного пальчикового уплотнения за счет активного управления перемещениями гибкими подвижными площадками, что позволяет предотвратить автоколебания и повысить эффективность работы уплотнения. 2 л.

Изобретение относится к области учебного лабораторного оборудования. Экспериментальная установка для исследования характеристик центробежных насосов содержит станину, на которую установлен тестируемый насос с шлангом высокого давления на выходе. Установка включает контрольно-измерительную аппаратуру, содержащую расходомер и датчик давления, емкость с рабочей жидкостью, компьютер, подключенный через электронный преобразователь сигналов к расходомеру и датчику давления, которые размещены на шланге высокого давления, шлицевую муфту, соединяющую тестируемый насос с электродвигателем. На входе тестируемого насоса установлен шланг высокого давления с контрольно-измерительной аппаратурой, которая дополнительно содержит датчик температуры, связанный с емкостью через вентиль, соединенный с шаговым электродвигателем. Компьютер дополнительно связан через электронный преобразователь сигналов с датчиком температуры, частотным преобразователем, подключенным к асинхронному электродвигателю, и шаговым электродвигателем. Изобретение направлено на увеличение глубины и ширины исследований центробежных насосов за счет применения частотного управления скоростью вращением асинхронного электродвигателя и управления шаговым электродвигателем, регулирующим положение вентиля. 2 ил.

Изобретение относится к области учебного лабораторного оборудования и может быть использована в учебном процессе, при проведении лабораторных работ и практических занятий по общеинженерным дисциплинам в высших и средних специальных учебных заведениях. Испытательный стенд для исследования роторных систем, содержащий корпус, установленный на станине и имеющий резьбовые отверстия для крепления элементов, закрепленные в корпусе подшипниковые узлы с датчиками перемещения, вал, связанный через муфту с электродвигателем, в корпусе установлено нагрузочное устройство, посаженное на вал и содержащее датчик силы, переходник датчика силы, внешнюю втулку, подшипники качения и внутреннюю втулку, согласно изобретению элементы, установленные в резьбовых отверстиях корпуса, выполнены в виде фитингов, электродвигатель зафиксирован на станине с помощью кронштейна, на корпусе смонтирована крышка, в которой установлен винт, фиксирующий датчик силы в переходнике датчика силы, зафиксированном винтом на внешней втулке, на внутренней поверхности которой установлены подшипники качения, во внутренней обойме которых установлена внутренняя втулка, посаженная на вал, подшипниковые узлы имеют корпусы, на которых винтами закреплены крышки и пластины, причем в пластинах выполнены резьбовые отверстия, в которых установлены датчики перемещения, датчики давления, датчики температуры, причем один подшипниковый узел имеет дополнительно датчик частоты вращения, зафиксированный на пластине, уплотнения, установленные в крышке, резьбовое отверстие в корпусе для крепления фитинга, а другой подшипниковый узел имеет резьбовое отверстие, выполненное в крышке для установки фитинга. Технический результат - увеличение глубины и ширины исследований роторных систем за счет применения активного управления характеристиками подачи смазочного материала и возможности изменения схемы подачи смазочного материала в подшипниковый узел. 7 ил.
Изобретение относится к области учебного лабораторного оборудования и может быть использовано в учебном процессе, при проведении лабораторных работ и практических занятий. Заявленная экспериментальная установка для исследования характеристик насосов содержит станину, на которую установлен тестируемый насос с водоподводящей головкой на входе и шлангом высокого давления на выходе, с контрольно-измерительной аппаратурой, содержащей расходомер, датчик давления, емкость с рабочей жидкостью, компьютер, подключенный через электронный преобразователь сигналов к расходомеру и датчику давления контрольно-измерительной аппаратуры, которые размещены на водоподводящей головке и шланге высокого давления, и электродвигателю, который через шлицевую муфту соединен с тестируемым насосом, согласно изобретению компьютер дополнительно связан через электронный преобразователь сигналов с шаговыми электродвигателями, установленными на тестируемом насосе и связанными через зубчатые колеса с лопатками, расположенными перед рабочим колесом испытуемого насоса. Технический результат заключается в увеличении глубины и ширины исследований центробежных насосов за счет применения и управления шаговыми электродвигателями, регулирующими положение лопаток. 4 ил.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся, высоконагруженных роторных машинах. Активная гидростатическая опора с регулируемым давлением подачи смазочного материала содержит корпус, в котором выполнены радиально расположенные выходные отверстия, вал, взаимодействующий посредством масляного клина с радиально расположенными карманами, представляющими собой углубления, например, выполненные в виде отверстий, которые, в свою очередь, соединены через дроссели с подающей магистралью. Карманы выполнены на внутренней поверхности втулки подшипника скольжения, установленной в корпусе, в котором размещены датчики перемещений, связанные через систему управления с линейными приводами электромагнитного, пьезоэлектрического, гидравлического, пневматического, магнитострикционного или комбинированного принципа действия, изменяющими положение запорно-регулирующих элементов дросселей, смонтированных в корпусе гидростатической опоры и во втулке подшипника скольжения, в которой дополнительно выполнены выходные отверстия для сливных магистралей. Технический результат: улучшение динамических характеристик, повышение надежности и ресурса системы "ротор-опоры", избегание неблагоприятных режимов работы опоры, за счет применения программно-аппаратного комплекса, уменьшение масса-габаритов. 2 ил.

Изобретение относится к области машиностроения, в частности к предохранительным упруго-демпфирующим муфтам. Гидромеханическая муфта содержит две полумуфты. Полумуфты кинематически связаны посредством зубчатого дифференциального передаточного механизма и обращаемого гидравлического насоса. Насос связан с одной из степеней свободы передаточного механизма и гидравлически соединен с гидродемпфером и сливной емкостью. Управляемый кран соединяет напорную линию обращаемого гидравлического насоса и гидравлическую полость гидродемпфера со сливной емкостью. Передаточный механизм может быть выполнен в виде конического дифференциала. Достигается исключение гидроудара при восстановлении муфты. 2 з.п. ф-лы, 3 ил.

Изобретение относится к транспортному средству с механическими опорами для перемещения транспортного средства. Транспортное средство содержит опоры, предназначенные для контакта с поверхностью перемещения, звенья, обеспечивающие шарнирное соединение опор, два электродвигателя и электромагниты. Звенья выполнены в виде гибких пластин. Электродвигатели жестко закреплены на концах среднего звена. Концы крайних звеньев закреплены на соответствующих опорах и осях электродвигателей. В средней части среднего звена расположено шарнирное соединение с опорой. Контактные части опор выполнены в виде шариковых обойм и снабжены электромагнитами, которые предназначены для периодической блокировки этих шариковых обойм. В шарнирных соединениях между опорами и звеньями установлены электромагниты, которые предназначены для периодической фиксации взаимного положения соответствующих звеньев и опор. Технический результат заключается в обеспечении различных программируемых вариантов перемещения транспортного средства по поверхности. 4 ил.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор роторов высокоскоростных машин и агрегатов для обеспечения большей несущей способности при сохранении устойчивого положения ротора, нагруженного радиальными и осевыми нагрузками, при максимально высоких оборотах, а также в системах кондиционирования воздуха кабин летательных аппаратов, систем турбонадува в современном автомобилестроении и в микрогазотурбинных электроагрегатах. Комбинированный радиально-осевой газодинамический лепестковый подшипник скольжения содержит корпус (1), выполненный в виде втулки с внутренней цилиндрической поверхностью, в котором установлены вкладыши (2) с прикрепленными к ним лепестками (3). В конструкции предусмотрены коническая и цилиндрическая части вала (5) и подшипника (4) скольжения. Поверхность вала (5) между подшипником (6) качения и подшипником (4) скольжения образована шевронными канавками (7). Внутренняя поверхность корпуса (1) выполнена в виде трех участков с разными диаметрами. На наружной поверхности корпуса (1) выполнены отверстия (8) для подвода газа. Технический результат: повышение ресурса и надежности системы «ротор - опоры» путем разделения и дублирования функций подшипников качения и подшипников скольжения. 3 ил.

Изобретение относится к мобильным транспортным средствам, способным перемещаться по плоским поверхностям и по ступенькам лестницы. Транспортное средство содержит по крайней мере два корпуса со встроенными полостями, заполненными рабочей средой, управляемый механизм, установленный между корпусами, гибкий шланг, соединяющий полости, и реверсивный насос, подсоединенный к шлангу. Управляемый механизм выполнен в виде манипулятора, обеспечивающего пространственное перемещение и взаимное позиционирование корпусов в пределах, ограниченных длиной шланга. Рабочей средой является жидкость. На контактных поверхностях корпусов закреплены ворсистые коврики. Достигается обеспечение различных программируемых вариантов перемещения транспортного средства по поверхности и преодоления им ступенчатых преград. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся, высоконагруженных роторных машинах. Комбинированная опора содержит корпус и размещенные в нем подшипник скольжения и подшипник качения, расположенные параллельно относительно поверхности вала. Подшипник качения установлен на коническом участке вала через втулку с внутренней конической поверхностью с возможностью перемещения относительно вала в осевом направлении под действием линейных пьезоприводов, установленных в корпусе и подключенных к источникам питания. Технический результат: улучшение динамических характеристик, повышение надежности и ресурса системы "ротор - опоры" за счет включения, выключения подшипника качения из работы под действием линейных пьезоприводов. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от сдвиговых скоростей деформаций, давления и температуры. Инерционный способ измерения вязкости включает прокачку испытуемой среды через канал формы тор под действием изменяющихся во времени сил инерции и трения среды, возникших в результате резкой остановки вращающегося вокруг своей оси тора, и определение параметров движения среды, а именно касательного напряжения и сдвиговой скорости деформации на поверхности канала. При этом в процессе инерционного движения среды измеряют только момент результирующей силы трения, по значениям которого в каждый момент времени определяют величину касательного напряжения, затем численным решением уравнения движения сплошной среды определяют сдвиговую скорость деформации и вязкость. Техническим результатом является повышение точности при минимальном количестве измеряемых параметров определять вязкость сред со сложными реологическими свойствами, зависящими одновременно от сдвиговых скоростей деформаций, давления и температуры в широком диапазоне перечисленных параметров. 2 табл.

Изобретение относится к области машиностроения и может быть использовано в быстровращающихся, высоконагруженных роторных машинах. Комбинированная опора содержит корпус и размещенные в нем последовательно на валу подшипник качения, наружное кольцо которого установлено в корпусе с использованием упругих колец таким образом, что подшипник качения может перемещаться относительно оси вала в радиальном направлении под действием внешних нагрузок, и подшипник скольжения. С увеличением частоты вращения вала в каналах подшипника скольжения появляется гидростатодинамическая реакция, уменьшающая нагрузку на подшипник качения, в результате чего происходит перераспределение внешней нагрузки между подшипником качения и подшипником скольжения. На внутренней поверхности корпуса установлены пьезоактуаторы, подключенные к источнику напряжения и способные в результате собственных деформаций перемещать подвижные колодки относительно оси вала в осевом направлении. Технический результат: повышение надежности, долговечности, улучшение динамических характеристик системы ротор - опора и уменьшение амплитуды колебаний ротора за счет включения, выключения упругих колец с помощью изменения напряжения, подаваемого на пьезоактуаторы. 2 ил.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками, в системах кондиционирования воздуха кабин летательных аппаратов, а также систем турбонаддува в современном автомобилестроении. Многолепестковый газодинамический подшипник с активным управлением содержит корпус, в пазы которого внахлест друг другу вставлены лепестки, расположенные равномерно по окружности корпуса. В корпус вставлены пьезоактуаторы, на которые опираются крепления лепестков, а также позволяющие снимать данные о положении вала и деформациях опорной поверхности и варьировать жесткостью опорной поверхности. Технический результат: повышение надежности и долговечности подшипникового узла, ресурса работы, устойчивости движения и подавление биений валов и роторов за счет пьезоактуаторов, с помощью которых можно контролировать и управлять жесткостью опорной поверхности. 4 ил.

Изобретение относится к области машиностроения. Опора содержит корпус, подшипник и демпфер. Подшипник размещен в корпусе. Демпфер расположен между корпусом и подшипником. Датчик виброперемещений установлен в демпфере. Датчик соединен через аналогово-цифровой преобразователь, микроконтроллер и цифроаналоговый преобразователь с исполнительным пьезомеханизмом. Пьезомеханизм связан с поджимным кольцом. Кольцо установлено с возможностью включения и выключения демпфера из работы. Достигается увеличение надежности и долговечности опоры ротора. 2 ил.

Изобретение относится к области машиностроения и может быть использовано в быстроходных роторных машинах. Комбинированная опора, содержит корпус с установленными в нем подшипником скольжения, подшипником качения, внутренняя обойма которого установлена неподвижно, с концентрично расположенной в подшипнике скольжения шейкой вала, а также подвижные колодки, закрепленные с возможностью перемещения в пазах. Пазы находятся на внутренней поверхности корпуса, подшипник качения установлен концентрично на валу, при этом внутренняя обойма подшипника качения установлена на валу неподвижно, подвижные колодки установлены с возможностью перемещения под действием поперечных деформаций пьезоэлементов пьезоэлектрического привода, установленного в пазах корпуса и подключенного к источнику напряжения. Технический результат: повышение надежности системы ротор-опора, улучшение динамических характеристик опоры на режимах пуск - останов, обеспечение вращения ротора на пусковых режимах с использованием подшипника качения с выведением его из работы с помощью изменения приложенного к пьезоэлементам напряжения на заданных частотах вращения. 4 ил.

Изобретение относится к области машиностроения и может быть использовано в роторных машинах, к которым предъявляются повышенные требования по быстроходности и возможности многократных пусков (остановов) машины. Комбинированная опора содержит внешнее кольцо (1), внутреннее кольцо (2) и тела качения (3), образующие подшипник качения, вал (4). В подшипнике качения концентрично размещен лепестковый газодинамический подшипник. Опора снабжена установленными в пазах на внутренней поверхности внутреннего кольца (2) креплениями (5) лепестков (6) с упругими элементами переключения (7) с возможностью перемещения под действием центробежных сил. Технический результат: увеличение частоты вращения ротора и улучшение его устойчивости, повышение долговечности опорного узла в целом при неизменных габаритах, расширение области применения данного типа опор, повышение надежности за счет разделения и дублирования функций подшипника качения и лепесткового газодинамического подшипника на различных режимах работы. 4 ил.

Изобретение относится к области машиностроения, в частности к предохранительным упруго-демпфирующим муфтам для передачи вращения, и может быть использовано в приводах тяжелонагруженного технологического оборудования. Гидромеханическая муфта содержит две полумуфты, кинематически связанные посредством дифференциального передаточного механизма, и гидромашину, гидравлически связанную с гидродемпфером посредством управляемого гидрораспределителя с системой управления по моменту на муфте. Дифференциальный передаточный механизм выполнен планетарным. В качестве гидромашины используется обращаемый гидравлический насос-мотор, который связан с одной из степеней свободы передаточного механизма. Второй выход гидрораспределителя связан со сливом. Достигается увеличение угла относительного закручивания полумуфт при демпфировании импульсных нагрузок и исключение удара в элементах муфты при размыкании и восстановлении ее. 9 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения. Гидравлический демпфер содержит рабочий цилиндр, в котором размещен упругий шток с жестко установленном на нем поршнем и на его торце выполнены радиальные ребра и выступы, имеющие изогнутые под прямым углом к оси поршня каналы. На вертикальной образующей цилиндрической поверхности поршня выполнены подобной формы пазы. Пазы с одной стороны связаны с каналами, размещенными в стенках рабочего цилиндра по их высоте, соединенными как с подпоршневой, так и надпоршневой его полостями, а с другой соединены с каналами, расположенными в поршне. Противоположные концы каналов имеют Г-образную форму и расположены с зазором относительно ребер, жестко закрепленных на верхней и нижней торцевых поверхностях поршня. Достигается расширение эксплуатационных характеристик гидравлических демпферов. 3 ил.

Изобретение относится к области промышленного оборудования. Рабочее колесо дымососа состоит из центрального диска, двух покрышек, лопаток ступицы и приводного вала. Новым является то, что на боковых сторонах покрышек закреплены пустотелые кольца различного внешнего и внутреннего диаметров, а в них подвижно расположены тела качения шаровой формы. Кольцо и между ним и закраиной расположены тела качения сферической формы. Изобретение направлено на устранение неуравновешенности рабочих колес дымососов. 3 ил.

Изобретение относится к области машиностроения и может быть использовано в роторных машинах, к которым предъявляются повышенные требования по быстроходности и возможности многократных пусков (остановов) машины. Комбинированная осевая опора состоит из корпуса (1), закрепленного в нем упорного подшипника качения (2) с валом (3), а также упорного подшипника скольжения, выполненного в виде подпятника (4) с многоклиновой рабочей поверхностью. Подпятник (4) установлен в корпусе (1) с возможностью осевого перемещения на упругой, заполненной газом, с выпуклыми тонкостенными торцевыми поверхностями камере (5), на внутренней поверхности которой находится устройство для изменения величины давления. Технический результат: повышение ресурса и надежности системы "ротор-опоры" путем снижения общего уровня вибраций и динамических нагрузок в опорах роторных машин. За счет подбора вязкости газа и давления улучшаются демпфирующие свойства. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от скорости сдвига, давления и температуры. Устройство измерения вязкости состоит из частично или полностью прозрачного канала формы тор с клапанами подачи и слива, который закреплен на валу с приводом, тормозом и датчиком момента, а также доплеровского измерителя скорости. В тор предварительно закачивается под давлением испытуемая среда. Затем тор плавно разгоняется и резко останавливается. Процедура измерения параметров инерционного тормозящегося движения среды производится при неподвижном состоянии тора. Конструкция устройства обеспечивает одинаковое по длине канала гидростатического давления, а факт измерения крутящего момента на неподвижном торе исключает действие момента силы трения в подшипниках опоры тора, что повышает точность измерения вязкости. Техническим результатом является повышение точности определения вязкости сред со сложными реологическими свойствами, зависящими одновременно от скорости сдвига, давления и температуры в широком диапазоне перечисленных параметров. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от скорости сдвига, давления и температуры. Способ измерения вязкости включает прокачку испытуемой среды через канал круглой формы поперечного сечения и определение параметров движения среды, а именно касательного напряжения и сдвиговой скорости деформации на поверхности канала, по которым определяют вязкость среды. При этом канал имеет замкнутую форму тора, а прокачка испытуемой среды происходит под действием сил инерции и трения среды, возникших в результате резкой остановки вращающегося вокруг своей оси тора. Техническим результатом является повышение точности определения вязкости сред со сложными реологическими свойствами, зависящими одновременно от скорости сдвига, давления и температуры в широком диапазоне перечисленных параметров. 3 табл.

Изобретение относится к области технологии нанесения покрытий для придания заранее заданных свойств, например высокой адгезии, износостойкости. Создание микрорельефа проводят четырьмя сдвоенными роликами с выфрезерованными на поверхности треугольными зубьями, расположенными под углом 40° к оси ролика. Зубья сдвоенного ролика смещены относительно друг друга на величину Р=0,5 шага зубьев, при этом из четырех сдвоенных роликов у двух зубья направлены вправо, а у двух других - влево. Техническим результатом изобретения является упрощение технологического процесса путем нанесения микрорельефа на поверхность за один проход без дополнительных операций механической обработки с возможностью нанесения его на тонкостенных элементах с последующим заполнением полученного микрорельефа напыляемым материалом при высокой прочности сцепления напыленного слоя с основой и усталостной прочности детали. 3 ил.

Изобретение относится к области машиностроения и может быть использовано в быстроходных роторных машинах, к которым предъявляются повышенные требования по быстроходности и возможности многократных пусков (остановов). Комбинированная опора состоит из корпуса, в котором установлены подшипник качения и втулка подшипника скольжения. Во внутреннее кольцо подшипника качения запрессована фрикционная втулка. На шейке вала с помощью штифтов установлено упругое эллиптическое равножесткое кольцо с центробежными грузами, которое имеет возможность деформироваться под действием центробежных сил. Технический результат: повышение надежности, долговечности и технологичности опорного узла за счет использования фрикционной втулки и равножесткого эллиптического кольца, а также увеличение функциональности агрегата в целом путем разделения и дублирования функций подшипника качения и подшипника скольжения. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения и ремонта машин и может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения. Способ заключается в изготовлении стальной втулки с наружным диаметром, равным посадочному диаметру узла, после чего на внутренней цилиндрической поверхности создают микрорельеф без нарезания «рваной» резьбы, четырьмя сдвоенными роликами методом центробежно-инерционного накатывания. На подготовленную таким образом внутреннюю поверхность напыляется газопламенным способом антифрикционный порошок на основе меди, диаметр частиц которого составляет 40 мкм. После напыления осуществляют механическую обработку. Технический результат: повышение прочности сцепления напыленного слоя с основой и возможность применения этого способа для изготовления тонкостенных биметаллических подшипников скольжения, за счет равномерного распределения усилия при нанесении микрорельефа на обрабатываемой поверхности. 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Клапан механизма газораспределения двигателя внутреннего сгорания состоит из стержня (1), плавно переходящего по образующей усеченного конуса в головку (2), снабженную рабочей поверхностью (3), взаимодействующей с седлом (4), установленным в блоке (7) цилиндров. На образующей усеченного конуса по его высоте выполнен ряд пазов (6), разделенных друг относительно друга криволинейной формы ребрами (5). Пазы (6) имеют по своей длине различный по величине радиус, уменьшающийся в сторону стержня (1) клапана. Технический результат заключается в увеличении проходного сечения клапана и в более равномерном распределении теплового поля по всему объему головки клапана. 3 ил.

Изобретение относится к машиностроению. Гидравлический амортизатор состоит из резервуара с рабочим цилиндром, заполненным рабочей жидкостью. Внутри цилиндра подвижно расположен поршень с клапанами. Поршень жестко закреплен на штоке, взаимосвязанном с защитным кожухом. Рабочий цилиндр и защитный кожух выполнены из диамагнитного материала. Защитный кожух контактирует своей внутренней круговой поверхностью с ответной поверхностью рабочего цилиндра через ряд тел качения. В пространстве между рядами тел качения внутри упомянутого защитного кожуха жестко закреплено кольцо, выполненное из постоянного магнита. Кольцо взаимодействует своим магнитным полем через воздушный зазор и стенку рабочего цилиндра с цилиндрической круговой образующей поверхностью магнитно-проводящего поршня амортизатора. Достигается повышение надежности и упрощение конструкции гидравлических амортизаторов. 3 ил.

Изобретение относится к области рельсовых и безрельсовых транспортных средств. Торсионная рессора экипажа содержит упругий стержень и рычаг. Один конец упругого стержня жестко, с помощью шлицев, закреплен в неподвижной опоре, а другой подвижно в подшипниковой опоре рамы. Рычаг контактирует с кузовом экипажа. Упругий стержень выполнен ступенчатым, имеющим по своей длине участки разного диаметра. Ступени стержня снабжены шлицами, взаимодействующими с ответными шлицами, изготовленными во внутренней части втулки. Втулка жестко закреплена, по крайней мере, на двух подвижно установленных в неподвижной опоре пальцах. Пальцы подпружинены винтовыми пружинами сжатия относительно опоры и контактируют своими торцами с наклонными поверхностями кронштейна. Кронштейн жестко установлен на кузове экипажа. Достигается расширение эксплуатационных характеристик торсионных рессор. 3 ил.

Изобретение относится к области машиностроения. Шестеренная гидромашина содержит шестерни, зубья 2 которых выполнены из тонкостенных пластин и расположены в камере, образованной корпусом и боковыми дисками. На торцевых поверхностях дисков в зонах всасывания и нагнетания расположены углубления. Тонкостенные пластины выполнены из упругого материала и каждый зуб 2 шестерен снабжен по высоте пазом 13 конусообразной формы. Паз 13 расположен в центральной части зуба 2. Вершины пазов 13 направлены в сторону оси вращения каждой из шестерен. Линии сопряжения углублений и боковых дисков имеют криволинейную форму. Ширина зубьев 2 шестерен от их делительной окружности в сторону головок за счет наличия пазов 13 выше, чем ширина ножки зуба 2. Изобретение направлено на повышение производительности гидромашины и снижение пульсаций потока рабочей жидкости, подаваемой к исполнительному органу гидроагрегата, где она используется. 5 ил.

Изобретение относится к области транспортных средств. Торсион транспортного средства содержит упругий стержень и рычаг. Один конец упругого стержня жестко с помощью шлицев закреплен в неподвижной опоре рамы, а другой подвижно в подшипниковой опоре рамы. Рычаг взаимосвязан с кузовом. Стержень торсиона выполнен конусным. Со стороны подшипниковой опоры стержень снабжен осевым каналом. Осевой канал имеет шлицы, взаимодействующие с ответными шлицами, расположенными на дополнительном стержне круглого сечения. Дополнительный стержень с помощью двуплечего рычага с вилкой связан с кузовом транспортного средства. Достигается повышение плавности хода транспортных средств. 1 ил.

 


Наверх