Патенты автора Иванов Александр Николаевич (RU)

Изобретение относится к детонирующим устройствам, срабатывающим при воздействии заданного механического усилия, не содержащим инициирующих взрывчатых веществ, и может быть использовано при разработке конструкции механического взрывателя и в детонационных цепях взрывной автоматики. Устройство взрывное состоит из корпуса 1, выполненного в виде гильзы, с расположенными в ней инициатором, выполненным в виде корпуса 2, с запрессованным в нем инициирующим зарядом 5, выполненным т-образной формы в сечении из вторичного ВВ, установленным на нем бойком 3, выполненным в форме диска из пьезокерамического материала, и зафиксированным фиксатором 4, выполненным в виде колпачка с центральным отверстием по оси из неметаллического материала. Инициирующий заряд 5 из вторичного ВВ, своим основанием контактирует с передаточным зарядом 6, выполненным из аналогичного вторичного ВВ, а передаточный заряд 6 сопряжен с детонатором 7, выполненным из вторичного ВВ высокой плотности. Техническим результатом является снижение энергии срабатывания, повышение безопасности при изготовлении и эксплуатации, повышение выходной мощности взрывного устройства при малых габаритах. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области радиотехники и может быть использовано для создания шумовых прерывистых помех. Техническим результатом является повышение эффективности заявленного устройства путем увеличения числа подавляемых им радиолокационных станций (РЛС), средств воздушной радиолокационной параметрической разведки (РЛПР) за счет создания шумовых прерывистых помех, использующих особенности функционирования объектов противодействия. Заявленное устройство дополняется приемным антенным устройством, состоящим из антенной решетки из К рупорных излучателей и диаграммообразующей схемы, блоком L входных коммутаторов, где L - количество парциальных диаграмм направленности приемного антенного устройства, блоком L входных усилителей высокой частоты (УВЧ), входным сумматором сигналов, блоком формирователей, состоящим из L каналов, каждый из которых состоит из последовательно соединенных детектора, видеоусилителя и формирователя сигнала управления, блоком схем И, состоящим из L каналов, каждый из которых имеет N схем И, где N - количество частотных каналов, блоком управления, канальным ключом, дешифратором номеров частотных каналов, дешифратором номеров парциальных ДН, переключателем, ДОС, блоком К выходных УВЧ, передающей антенной решеткой из К рупорных излучателей. Паузы шумовой прерывистой помехи дают возможность создавать шумовую прерывистую помеху другим РЛС средств воздушной РЛПР, что позволяет увеличить число подавляемых радиолокационных станций средств воздушной радиолокационной параметрической разведки. 3 ил.

Изобретение относится к средствам инициирования и передачи взрывного импульса, в частности к устройствам коммутации с разветвлением и инициированием ударно-волновых трубок (УВТ). Разветвитель детонации в ударно-волновых трубках (УВТ) состоит из корпуса 1, фиксирующего элемента 2, в котором закреплена инициирующая УВТ 3. В разветвителе детонации в УВТ установлено энергопреобразующее устройство между инициирующей УВТ 3 и корпусом разветвителя детонации 1. Энергопреобразующее устройство выполнено из заряда ВВ в виде навески ВВ 4, выполненной из дефлагрирующего ВВ с плотностью, увеличивающейся в сторону задействования устройства, расположенного в корпусе 6 энергопреобразующего устройства, который, в свою очередь, расположен в центрирующей втулке 8. Фиксирующий элемент 2 закреплен зажимной гайкой 7. Разветвитель детонации в УВТ снабжен обтюратором 5, расположенным между инициирующей УВТ 3 и корпусом 6 энергопреобразующего устройства, и оборудован коммутатором 9, в основании которого расположены в осевом направлении n-е количество УВТ 11, зафиксированные уплотнителями 10. Изобретение позволяет одновременно инициировать большое количество УВТ, тем самым увеличив эксплуатационные возможности заявляемого устройства. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области средств взрывания повышенной безопасности, а именно к низковольтным мостиковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования при проведении взрывных работ. Электродетонатор, содержащий корпус, в котором размещены заряд взрывчатого вещества (ВВ) в виде навесок: выходной из ВВ высокой плотности и инициирующей из дефлагрирующего ВВ высокой плотности, инициатор, установленный на герметизирующей колодке и выполненный в виде диэлектрической пластины с нанесенными на нее слоями из токопроводящих материалов, разнесенных по противоположным сторонам оси с образованием зоны контакта по оси, перпендикулярной оси электродетонатора, и токовыводы. Корпус выполнен в виде зарядной части и основания соединенных между собой. В зарядной части расположен заряд ВВ. Герметизирующая колодка выполнена диэлектрической и расположена в основании. На инициатор установлен диэлектрический концентратор, выполненный в виде шайбы с отверстием, направленным к зарядной части корпуса и имеющим форму тела вращения. На зону контакта слоев из токопроводящих материалов нанесен дополнительный слой из токопроводящего материала. Изобретение позволяет повысить эффективность задействования, надежность и быстродействие электродетонатора и снизить энергопотребление. 8 з.п. ф-лы, 1 ил.

Изобретение относится к области средств взрывания повышенной безопасности, а именно к низковольтным мостиковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования при проведении взрывных работ. Детонирующее устройство содержит корпус 1, с установленным внутри него вкладышем 2 с зарядом взрывчатого вещества, выполненным в виде навесок: выходной 3, промежуточной 5 и инициирующей 6, сопряженной с инициатором 7. Корпус выполнен в виде оболочки с вкладышем 2, выполненным в виде стакана из материала с высоким акустическим импедансом. Дно стакана контактирует с выходной навеской 3 заряда взрывчатого вещества, снабженного усиливающей навеской 4, выполненной из энергонасыщенных металлокомплексов (НКТ) высокой плотности, расположенной между выходной навеской 3 и промежуточной навеской 4 заряда взрывчатого вещества, выполненной из энергонасыщенных металлокомплексов (НКТ) низкой плотности и сопряженной с инициирующей навеской 6 заряда взрывчатого вещества, расположенной внутри инициатора 7. Высоту дна вкладыша 2 по оси определяют из соотношения h=(0,020-0,025)d, где d - внутренний диаметр вкладыша, мм. Суммарную высоту усиливающей 4 и промежуточной 5 навесок определяют из соотношения L=(44-46)/d, где d - внутренний диаметр вкладыша, мм. Вкладыш 2 выполнен металлическим. Инициатор 7 выполнен в виде низковольтного инициирующего устройства. Выходная навеска 3 взрывчатого вещества выполнена из бризантного взрывчатого вещества - ТЭНа. Промежуточная навеска 5 взрывчатого вещества выполнена из энергонасыщенного металлокомплекса (НКТ) низкой плотности. Усиливающая навеска 4 взрывчатого вещества выполнена из энергонасыщенного металлокомплекса (НКТ) высокой плотности. Инициирующая навеска 6 взрывчатого вещества выполнена из энергонасыщенного металлокомплекса (НКТ) высокой плотности. Техническим результатом является повышение инициирующей способности, увеличение быстродействия детонирующего устройства. 6 з.п. ф-лы, 3 ил.

Изобретение относится к области электрических средств инициирования взрывчатых веществ (ВВ) и может быть использовано в устройствах взрывной автоматики. Индукционный детонатор по первому варианту состоит из корпуса 1, выполненного со стенками разной толщины в сечении из диэлектрического материала, и металлического вкладыша 2 в форме стакана, с запрессованной в него воспламенительной навеской 3 из взрывчатого материала. Вкладыш 2 установлен в корпус 1 с внутренней стенкой в сечении с большей толщиной, а в нижней части вкладыша 2 установлен инициатор 4. Теплоизолятор 5 расположен между витками катушки индуктивности 6, которая в свою очередь расположена между теплоизолятором 5 и внутренней стороной корпуса 1 со стенкой в сечении меньшей толщины. Индукционный детонатор по второму варианту выполнен разъемным: одна часть выполнена в виде корпуса 1 со стенками разной толщины в сечении, снабженного металлическим вкладышем 2, установленным в части корпуса 1, с большей толщиной стенки в сечении. Вкладыш 2 оборудован инициатором 4, расположенным в теплоизоляторе 5, выполненным в виде втулки с основанием, расположенным в части корпуса 1 с меньшей толщиной стенки в сечении. Другая разъемная часть индукционного детонатора выполнена в виде катушки индуктивности 6 с выводами, корпус 7 сопряжен внутренней поверхностью с наружной поверхностью части корпуса 1 с меньшей толщиной стенки в сечении. Технический результат заключается в обеспечении надежности срабатывания устройства и безопасности при воздействии нештатных электрических импульсов и разряда статического электричества. 2 н. и 4 з.п. ф-лы, 2 ил.

Группа изобретений относится к наружной труболовке для захвата и извлечения из скважины оборванной части колонны труб. Устройство содержит корпус с выполненным в нем кольцевым выступом, цангу, размещенную ниже кольцевого выступа, крышку корпуса, имеющую отверстие, поршневой узел. Поршневой узел включает поршень и установленные на нем первый шток и второй шток. Поршень размещен между крышкой и кольцевым выступом. Выше поршня размещен первый гидроканал, а ниже поршня размещен второй гидроканал. Внутренняя поверхность нижней части корпуса выполнена в виде расширяющегося конуса. Первый шток выполнен с возможностью перемещения в отверстии крышки корпуса. Второй шток выполнен с возможностью перемещения в кольцевом выступе и соединен с цангой. Для перемещения трубчатого элемента подводят цангу к трубчатому элементу, осуществляют подачу жидкости во второй гидроканал для перемещения корпуса относительно цанги и зажатия трубчатого элемента рабочей поверхностью цанги, перемещают трубчатый элемент в требуемое положение и осуществляют подачу жидкости в первый гидроканал для перемещения корпуса относительно цанги и разжатия трубчатого элемента рабочей поверхностью цанги. Повышается надежность зажима и разжима трубчатого элемента при одновременном упрощении конструкции труболовки и снижении удельных контактных напряжений, оказываемых цангой на трубчатый элемент. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к области средств воспламенения с электрическим способом задействования пиротехнических составов, порохов, твердого топлива и может быть использовано в устройствах взрывной автоматики. Воспламенительное устройство состоит из корпуса, выполненного в виде стакана из двух слоев: металлического 1 и диэлектрического 2, установленного внутри металлического 1. Инициатор 3 выполнен в виде шайбы, расположен в контакте с основным зарядом 4 ВВ. Основной заряд 4 ВВ расположен между корпусными контактными элементами 6, выполненными в виде токопроводящих пластин. На поверхности инициатора 3, контактирующей с основным зарядом 4, расположены разрядники 8, а на обратной стороне инициатора 3 установлены мостики накаливания 5. Диэлектрический слой 2 корпуса воспламенительного устройства снабжен корпусными контактными элементами 6, соединенными с электровводами 7, расположенными со стороны дна корпуса. Технический результат заключается в повышении эффективности за счет послойного горения заряда и стабильного форса пламени, упрощения конструкции устройства и улучшении технологичности за счет возможности выполнения инициаторов отдельно от корпуса устройства. 3 з.п. ф-лы, 2 ил.

Устройство передачи детонации состоит из корпуса 1, в котором выполнены два соосных канала, разделенных неразрушаемой преградой. В одном канале расположен инициатор 2, а в другом размещен приемный узел, содержащий приемный 5 и передающий 6 заряды ВВ, и фиксатор 4 с установленной в нем диэлектрической прокладкой 3, граничащей с приемным зарядом ВВ 5. Приемный заряд ВВ 5 граничит с передающим зарядом ВВ 6, размещенным в колпачке 7, оборудованным концентратором 8. Высота слоя по оси hk приемного заряда ВВ 5, расположенного между концентратором 8 и диэлектрической прокладкой 3, определяется из математического выражения. Технический результат - обеспечение надежной передачи инициирующего импульса через неразрушаемую преграду, повышение безопасности устройства и надежности его срабатывания. 5 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к средствам инициирования и может быть использовано при проведении взрывных работ с целью повышения их безопасности. Термостойкое инициирующее устройство состоит из корпуса, в который установлен вкладыш из диэлектрического материала. Во вкладыше размещен заряд из термостойкого высококалорийного пиротехнического состава. Между зарядом и вкладышем расположен инициатор, выполненный из прессованного на электровводы неметаллического высокодисперсного материала. Изобретение позволяет повысить безопасность и термостойкость при сохранении его высокой инициирующей способности. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области квантовой электроники и измерительной техники. Способ доставки на точечную цель излучения лазерного дальномера основан на однозначной связи углов рефракции оптических лучей с соотношением температур воды на поверхности моря и воздуха в приводном слое атмосферы. С целью компенсации погрешности данных целеуказания от телевизионного канала из-за разной рефракции лучей телевизионного и лазерного каналов в атмосфере производят адаптивную корректировку данных целеуказания для лазерного дальномера, для чего рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны телевизионного канала. Одновременно рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны тепловизионного канала. Также рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны лазерного канала, затем измеряют текущие значения температур воздуха в приводном слое атмосферы и воды на поверхности моря, вычисляют разность между измеренными температурами воздуха в приводном слое атмосферы и воды на поверхности моря. Далее измеряют угловую координату цели в вертикальной плоскости с помощью телевизионного канала и угловую координату цели в вертикальной плоскости с помощью тепловизионного канала, затем вычисляют их разность. Далее определяют значение угла нацеливания лазерного луча в вертикальной плоскости. В дальнейшем смещают лазерный луч на вычисленный угол в вертикальной плоскости. В заключение осуществляют посылку лазерного луча на цель. Технический результат - компенсация влияния оптической рефракции при наведении лазерного канала активно-пассивной оптико-электронной системы на точечную цель. 2 ил., 2 табл.

Изобретение относится к военной технике, а более конкретно к конструкции порохового аккумулятора давления, предназначенного для приведения в действие аэродинамических поверхностей летательных аппаратов. Аккумулятор давления состоит из последовательно расположенных в корпусе 1 воспламенителя 2, камеры сгорания 3 с пороховым зарядом 4, детонационного узла с инициирующей навеской 5 и рабочей навеской 6, запрессованными в глухое отверстие корпуса 1, при этом инициирующая навеска 5 граничит с воспламенителем 2. Поджигающий заряд 7 расположен соосно детонирующему узлу с навесками 5 и 6 в глухом отверстии корпуса 1, выполненном со стороны камеры сгорания 3 и граничащим с ней. Инициирующая навеска 5 и рабочая навеска 6 выполнены из вторичного ВВ, а поджигающий заряд 7 выполнен из взрывчатого материала. Глухое отверстие с расположенным в нем поджигающим зарядом 7 выполнено диаметром d. Расстояние S (толщина гермостенки) по оси между детонирующим узлом с инициирующей навеской 5, рабочей навеской 6 и поджигающим зарядом 7 определяется из соотношения (0,3⋅d+1,6)≤S<(0,3⋅d+1,6)⋅1,5. Предложенное устройство позволило улучшить эксплуатационные характеристики, а именно расширить температурный диапазон эксплуатации, увеличить быстродействие срабатывания аккумулятора давления, повысить безопасность эксплуатации этого устройства, улучшить массогабаритные характеристики. 5 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, а именно к волоконно-оптическим датчикам (ВОД), и может быть использовано в различных измерительных системах для контроля (измерения) силы, давления и деформации. Волоконно-оптический датчик силы, выполненный на основе многомодового оптического волокна, содержащий участки ввода и вывода излучения с установленными оптическими разъемами в корпусе прямоугольного сечения, пропускной канал, согласно изобретению, изготовлен цельно-металлическим консольного типа, пропускной канал выполнен в массиве датчика в виде сквозного "U"-образного паза, разделяющего массив на две части: наружную - деформирующуюся (рабочую) и внутреннюю - статическую, связанные перемычками, центральная часть сквозного паза датчика имеет два параллельных участка синусоидальной формы, расположенных друг напротив друга, с количеством пиков и их амплитудой, определяемой с учетом контролируемых нагрузок, в центре образованных перемычек имеются отверстия с таким же диаметром, как и оптическое волокно, сквозной паз с двух сторон от оптического волокна залит жидкой резиной. Технический результат – возможность применения датчика для измерения разрывных и сжимающих нагрузок без усложнения конструкции при сохранении надежности датчика, возможность использования в составе силоизмерительной машины любой конфигурации. 5 ил.

Изобретение относится к области электрических средств воспламенения, а именно к средствам инициирования взрывчатых веществ (ВВ), пиротехнических составов (ПТС), порохов, и может быть использовано в устройствах взрывной автоматики. Индукционный воспламенитель состоит из корпуса 1 и вкладыша 2, который выполнен из диэлектрического материала в форме стакана с глухим дном с разной толщиной стенок. В нижней части вкладыша 2, выполненной с меньшей толщиной стенки, установлена катушка индуктивности 5. Во внутреннюю полость вкладыша 2 запрессована воспламенительная навеска 3, выполненная из взрывчатого материала, который содержит металлические частицы или частицы графита, выполняющие инициирующую функцию при нагреве. Вкладыш 2 и катушка индуктивности 5 установлены внутрь корпуса 1, выполненного в виде полого цилиндра с дном, имеющим два отверстия под электрические выводы катушки индуктивности 5. Полости между катушкой индуктивности 5, вкладышем 2 и корпусом 1 заполнены клеем 4. Изобретение позволяет повысить надёжность и безопасность устройства. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области плазменной технологии, в частности к способам стабильного возбуждения газового разряда при высоком и низком давлении, используемым для получения излучения в газоразрядных лазерах, плазмотронах . В способе возбуждения газового разряда, заключающемся в искровом пробое межэлектродного промежутка между вспомогательными электродами для возбуждения дугового разряда между основными электродами, согласно изобретению вызывают высоковольтный пробой разрядного промежутка основного разряда при 7-20 кВ и его стабильное горение при 1-20 мА, используя разряд от мощного 20-400 мА источника разряда с малым выходным напряжением 1-500 В между основными электродами. При этом суммарная вкладываемая мощность от 10 Вт до 1,5 кВт. Технический результат - стабилизация горения газового разряда в большом диапазоне мощностей при малом напряжении мощного источника, повышение безопасности работы. 1 ил.

Изобретение относится к устройствам коммутации с разветвлением и инициированием ударно-волновых трубок (УВТ). Разветвитель детонации состоит из корпуса с n-м количеством УВТ и фиксирующим элементом для УВТ. Разветвитель снабжен энергопреобразующим устройством, размещенным между инициирующей УВТ, закрепленной в фиксирующем элементе, и корпусом разветвителя. В корпусе энергопреобразующего устройства расположены по порядку входная навеска из пиротехнического состава, сопряженная с инициирующей УВТ, промежуточная навеска из пиротехнического состава и выходная навеска, выполненная из дефлагрирующего ВВ. N-е количество УВТ расположены в радиальном направлении корпуса разветвителя с рабочим направлением от центра. Входная навеска выполнена из безгазового пиротехнического состава на основе компонентов бор - титан. Промежуточная навеска выполнена из воспламенительного пиротехнического состава на основе компонентов перхлорат калия - бор. Выходная навеска выполнена из дефлагрирующего ВВ диперхлорат (5-нитротетразолато)-пентааммин кобальта(III). Инициирующая УВТ зафиксирована с возможностью задействования остальных УВТ, расположенных к ней под углом. Изобретение позволяет одновременно инициировать большое количество УВТ с различной временной задержкой. 4 з.п. ф-лы, 1 ил.

Изобретение относится к детонирующим устройствам, срабатывающим при воздействии заданного механического усилия, не содержащим инициирующих взрывчатых веществ (ВВ), и может быть использовано при разработке конструкции ударного механического взрывателя и в детонационных цепях взрывной автоматики. Взрывное устройство содержит стальной капсюль, на основании которого выполнены продольные каналы и концентратор напряжения, в который запрессован инициирующий заряд. В корпус последовательно запрессованы детонатор, передаточный заряд. Изобретение позволяет улучшить эксплуатационные характеристики - эффективность и быстродействие срабатывания взрывного устройства, улучшить массогабаритные характеристики взрывного устройства и повысить безопасность. 3 з.п. ф-лы, 1 ил.

Изобретение относится к контрольно-измерительным методам исследования механических напряжений и деформаций в деталях машин и элементах конструкций и может быть использовано для определения пластических деформаций изделий в машиностроении, авиастроении и других отраслях промышленности. Заявленный способ измерения деформаций включает нанесение на испытуемый образец двух цветных меток на расстоянии начальной расчетной длины образца исходя из его размеров, получение при помощи цветной видеокамеры цифрового изображения испытуемого образца и меток в стандартной палитре красного R, зеленого G и синего В цветов (sRGB), на основе статистического распределения интенсивности цветовых составляющих пикселей всего изображения устанавливают значения критериев для обнаружения подходящих пикселей, принадлежащих цвету меток, нахождение для выделения цветных меток максимального скопления пикселей одного цвета и выделение ближайших друг к другу границ, между которыми вычисляется числовое значение пикселей (расстояние) по координатам нахождения их в цифровом изображении как разность меньшего и большего значения, таким образом рассчитывают расстояния между метками, нанесенными на испытуемый образец, а также производят обработку каждого кадра, полученного с цифровой видеокамеры, деформацию рассчитывают после получения второго и последующих кадров изображения как разность расстояний между метками первого кадра и расстояния между метками каждого последующего кадра, значения рассчитанной деформации в пикселях сопоставляют с единицей измерения деформации, которые записывают в массив для последующего анализа. Технический результат заключается в создании автоматизированного способа измерения деформаций в процессе испытаний пластических деформаций изделий, изготовленных из листовых, цилиндрических и объемных заготовок. 3 ил.

Изобретение относится к способам проведения поисково-спасательных работ с помощью авиационных средств. Способ проведения поисково-спасательных работ включает введение перед запуском беспилотного летательного аппарата (БПЛА) координат границ поиска, высоту полета, направление и шаг сканирования. БПЛА, обладающий ГЛОНАС, производит поиск, сканируя территорию при помощи сверхширокополосного радара (СШПР), при этом рассчитывают расстояние между беспилотным летательным аппаратом и обнаруженным пострадавшим, определяют его физическое состояние, устанавливают уровень углекислого газа в атмосфере с помощью газоанализатора. По изображению с инфракрасной видеокамеры определяют источники огня и повышенной температурной опасности. С помощью лазерного 3D сканера определяют местонахождение препятствий, которые необходимо облететь. Данные со всех детектирующих устройств поступают в микрокомпьютер БПЛА и на пульт оператора. При обнаружении человека в области сканирования на пульт оператора подают сигнал и с помощью БПЛА доставляют средства индивидуальной защиты, медикаменты, мобильный телефон. Достигается ускорение и улучшение качества поисково-спасательных работ. 3 ил.

Изобретение относится к области турбо- и компрессоростроения, в частности к устройству опорных сегментных подшипников скольжения, используемых для роторов высокооборотных машин. Опорный сегментный подшипник скольжения содержит корпус с каналами подвода смазки и сливной полостью и с размещенным в нем вкладышем (2) из двух полувкладышей с кольцевой канавкой (3) и каналами (4) индивидуального подвода смазки в них к размещенным в плавающем сепараторе (5) самоустанавливающимся сегментам (7) с установочными шипами и с распределительными осевыми канавками для подвода смазки на входных и слива масла на выходных кромках, одна из которых, у входной кромки, соединена радиальными каналами с полостью под сегментом (7). Индивидуальный подвод смазки осуществлен под выполненные с окружной канавкой на спинке (13) сегменты (7), которые размещены в окнах сепаратора (5) с дросселирующими торцевыми и окружными зазорами с обеспечением при этом максимального качания крайних точек несущих рабочих поверхностей сегмента (7) в пределах, соответствующих возможности перемещения цапфы вала (8) в пределах диаметрального зазора между цапфой вала (8) и внутренней расточкой подшипника. Технический результат: повышение виброустойчивости и несущей способности опорного сегментного подшипника скольжения путем повышения его демпфирующих свойств, снижение расхода смазки и оптимизация теплового режима работы подшипника. 4 ил.

Изобретение относится к изготовлению бронированных твердотопливных зарядов, покрытие которых исключает горение забронированных поверхностей. Бронирование термостойкого заряда топлива осуществляется в две стадии. На первой стадии на поверхность топливной шашки кистью наносят клей ЭЛ-20 на основе эпоксидиановой смолы марки ЭД-20 и низкомолекулярного полиамида Л-20 в качестве адгезионного подслоя, на который сверху в два слоя накладывают стеклоткань или бязь, пропитанную клеем ЭЛ-20. Сушат с одновременной полимеризацией при температуре 20-25°C в течение 24-25 ч или при 50-70°C в течение 3-5 ч. На второй стадии шашку устанавливают в пресс-форму в виде металлического стакана и в зазор между стаканом и шашкой заливают клей ЭЛ-20, полимеризацию которого осуществляют аналогично первой стадии. Способ обеспечивает простой и безопасный способ нанесения бронепокрытия на малогабаритные твердотопливные заряды. 3 ил., 1 табл., 5 пр.

Изобретение относится к медицинской технике. Устройство содержит опорный стержень в виде собранных в жгут никелид-титановых нитей и облегающую стержень оболочку из проницаемо-пористого никелида титана, химически связанную с опорным стержнем. Диаметры отдельных нитей и среднестатистический размер стенок пор связаны соотношением 0.9-1.1. Изобретение обеспечивает высокую механическую прочность при изгибной деформации. 3 ил.

Изобретение относится к гидротехническим сооружениям и может быть использовано при создании морских буровых самоподъемных установок, предназначенных для эксплуатации в ледовых условиях. Морская самоподъемная платформа содержит корпус и три или более опорные колонны с шаговыми гидравлическими механизмами подъема и башмаками. Башмак и ледорез смонтированы с возможностью перемещения и фиксации относительно опорной колонны в необходимых положениях по высоте посредством установленных на них вертикальных кронштейнов. В верхних частях кронштейнов расположены управляемые замковые механизмы для фиксации ледореза на уровне ледовой ватерлинии и фиксации башмака на уровне, необходимом для расчетного заглубления опорной колонны в грунт. В корпусе ледореза выполнены ниши для прохода кронштейнов башмака. Кронштейны ледореза смещены относительно кронштейнов башмака по окружности. Каждая опорная колонна выполнена с дополнительными отверстиями для закрепления ледореза относительно последней. Достигается возможность расширения эксплуатационных возможностей платформы путем обеспечения возможности эксплуатации в тяжелых ледовых условиях при одновременном повышении надежности и безопасности. 5 з.п. ф-лы, 9 ил.

Изобретение относится к криогенной технике и может использоваться в криомедицине. Криоаппликатор содержит депо для жидкого криоагента, выполненное из проницаемо-пористого никелида титана в форме продолговатого цилиндра с рабочим участком на торце одного конца и термоизолированной рукоятью на втором конце. Депо для жидкого криоагента образовано объемом гранул никелида титана, сформованным и зафиксированным тканевой оболочкой из никелида титана, а поверхность рабочего участка депо для жидкого криоагента выполнена выпуклой. Использование изобретения позволяет расширить область применения устройства в труднодоступных местах и объектах нерегулярной формы. 1 з.п. ф-лы, 5 ил.

Изобретение относится к контрольным системам и используется для дефектации колес и диагностики подшипников буксовых узлов колесных пар. В пост комплексного контроля дефектов буксовых узлов и колес движущихся вагонов введены модуль контроля динамических нагрузок, выполненный из установленных между рельсами и подкладками волоконно-оптических датчиков с преобразователями, подключенными к первому входу второго блока сравнения, второй вход которого соединен с блоком эталонных сигналов, выход блока сравнения подключен через блок корректировки и блок обработки данных ко второму входу процессора. Модуль дефектации системы «колесо-рельс» выполнен из закрепленных на шейке рельса тензометрических датчиков, подключенных через соответствующие каналы тензоусилителя и аналого-цифрового преобразователя к третьему входу процессора. Счетчик колесных пар через блок согласования и коммутатор подключен к четвертому входу процессора, выход которого через локальную вычислительную сеть подключен к персональному компьютеру автоматизированного рабочего места. В результате расширяются функциональные возможности контролирующего устройства за счет комплексного контроля с одновременным выявлением дефектов подшипников буксовых узлов и дефектов поверхности колеса вагона. 3 ил.

Настоящее изобретение касается конструкции стойки опоры, в частности стойки сборной опоры, и может быть использовано при проектировании и возведении опор различного назначения для линий электропередачи, связи и т.п. Стойка опоры выполнена в виде трубчатой конструкции, стенки которой армированы продольной напрягаемой и ненапрягаемой стержневой арматурой и поперечной спиральной арматурой, включающей в себя подпятник и закладное изделие по меньшей мере на одном торце стойки, при этом закладное изделие содержит обечайку в виде кольца из стальной полосы, монтажное кольцо, закрепленное на внутренней поверхности обечайки, и анкерную арматуру из отдельных стержней, которые выполнены с наклонным участком отгиба стержня в нижней части, переходящим в прямолинейный конец, параллельный его верхней части, и установлены так, что участок верхней части стержня, переходящей в отгиб, охватывает монтажное кольцо, а упомянутый прямолинейный конец скреплен с обечайкой под монтажным кольцом. Стержни анкерной арматуры могут быть скреплены с ненапрягаемыми стержнями продольной арматуры стенки стойки. Анкерная арматура также может быть выполнена из отдельных П-образных стержней. Техническим результатом конструкции стойки опоры по настоящему изобретению является повышение несущей способности и надежности стойки опоры. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области измерительной техники, а именно к оптическим устройствам для измерения малых угловых перемещений объекта. Дифракционный способ измерения угловых перемещений состоит в том, что объект с установленным на нем отражателем освещают излучением лазера и направляют излучение через щель, формируя за ней дифракционную картину Фраунгофера. Выделяя из этой картины второй щелью или дифракционной решеткой фрагмент, содержащий линии инверсии фазы разных порядков, получают интерференционные полосы, по которым определяют угловое положение объекта. Устройство для контроля угловых перемещений, реализующее предлагаемый способ, содержит оптически связанные и последовательно размещенные лазерный источник, устройство формирования пучка, вспомогательное зеркало, светоделитель, установленный на объекте измерения отражатель, две щели, развернутые на угол α относительно друг друга, и фотоприемник. При этом вторая щель выделяет фрагмент дифракционной картины с линиями инверсии фазы разных порядков. Технический результат - увеличение точности и диапазона угловых измерений, а также упрощение конструкции и юстировки устройства, их реализующего. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для дробления и измельчения различных материалов и может быть использовано в горно-обогатительной, строительной, дорожной и других отраслях промышленности. Конусная дробилка содержит корпус 3 с дебалансными вибраторами 5 и коническим кольцом 4, внутри которого помещен дробящий конус 11, смонтированный на станине 1, и гидроцилиндр 15 вертикального перемещения конуса 11. Дробилка оборудована радиально поршневым насосом 17, состоящим из вала с эксцентриком 19, поршня 23 и цилиндра 24, причем цилиндр 24 непосредственно соединен с гидроцилиндром 15. В конусной дробилке обеспечивается повышение степени измельчения сырья и увеличение срока службы конуса. 1 ил.

Изобретение относится к области судостроения, а именно к разъемным швартовным турельным устройствам, и может быть использовано при создании морских судов и платформ, предназначенных для эксплуатации в ледовых условиях. Устройство для разъемного соединения швартовного турельного узла судна выполнено в виде комплекса соединительных механизмов, расположенных по окружности для равномерного распределения нагрузки внутри турельного узла. Каждый из соединительных механизмов содержит гидроцилиндры, смонтированные на стационарной части турельного узла выше уровня воды, снабженные тягами, один конец каждой из которых закреплен к гидроцилиндру, а другой к фиксатору, причем фиксатор выполнен прямоугольной формы. В верхней части буя по его окружности соответственно соединительным механизмам смонтированы штыри, выполненные с клиновидными выступами на их боковых поверхностях, с возможностью контакта с адекватными им поверхностями захватов. Технический результат заключается в улучшении эксплуатационных характеристик и повышении надежности функционирования устройства. 5 ил.

Устройство для предпосевной обработки семян включает загрузочный бункер-дозатор для подачи семян в камеру увлажнения семян с распылителем раствора, СВЧ-камеру, соединенную с СВЧ-источником и сообщенную с камерой увлажнения семян, расположенный снизу СВЧ-камеры направляющий воздуховод и приемный бункер. Для перемещения семян в рабочую зону СВЧ-камеры имеется ленточный транспортер с приводом. Внутри направляющего воздуховода установлен воздухоотсекатель-распределитель для равномерного распределения теплого воздушного потока по всей длине рабочей зоны сушки. В рабочей зоне происходит облучение семян электромагнитной энергией, излучаемой рупорами. Выход воздухоотсекателя-распределителя расположен между верхней и нижней ветвями транспортера. В средней части камеры увлажнения семян расположен телескопический стакан, внутри которого установлен с возможностью вращения распределитель. Последний жестко связан с диском для распределения семян и распылителем камеры увлажнения семян и сообщен с приводным насосом для подачи раствора в распылитель. Изобретение позволит повысить качество обработки семян, стимулировать жизнеспособность семян и выращиваемых из них растений и снизить удельные энергозатраты. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области радиотехники и может быть использовано для создания прицельных по частоте и заградительных по коду помех. Технический результат - повышения эффективности станции помех. Применение в системе передачи данных (СПД) ограниченного количества видов М-последовательности (для М-последовательности, имеющей период следования импульсов М, равный 32, таких видов может быть шесть) позволяет в условиях отсутствия информации о виде применяемой М-последовательности в станции помех с помощью нескольких программируемых согласованных фильтров в каждом приемном канале обнаруживать сигнал СПД в одном из них, а беспоисковые методы - мгновенное определение несущей частоты сигнала, обеспечивают создание помех прицельных по частоте и заградительных по коду. 3 з.п. ф-лы, 7 ил.

Установка содержит сортировочный барабан, камеру сушки шишек подогретым воздухом с устройством для открывания решетчатых створок стеллажей, транспортеры для подачи шишек в камеру сушки и отбивочный барабан. Кроме того, установка имеет емкость для водной сепарации семян и емкость с двумя отделениями для выделенных при сепарации жизнеспособных семян и водного раствора для обеззараживания и стимулирования семян. Нижняя ступень камеры сушки шишек включает камеру СВЧ обработки семян, которая герметично соединена с транспортирующим устройством с установленным над ним распылителем. Последний герметично соединен с отделением емкости для водного раствора, другое отделение которой герметично соединено с транспортирующим устройством. Изобретение позволит получить посадочный материал с улучшенными качественными показателями. 2 з.п. ф-лы, 2 ил.
Изобретение относится к технологии обработки деталей с гальваническими покрытиями для повышения износостойкости покрытий

Изобретение относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования при проведении взрывных работ
Изобретение относится к упрочняющей обработке поверхностных слоев деталей машин и может быть использовано для повышения износостойкости металлических поверхностей

Изобретение относится к медицинской технике

Изобретение относится к радиотехнике

Изобретение относится к производству строительных материалов и может быть использовано при производстве бетонов и строительных растворов

Изобретение относится к медицинской ортопедической технике и может использоваться для лечения деформационных и иных дефектов позвоночника и конечностей
Изобретение относится к области сельского хозяйства
Изобретение относится к области медицины

 


Наверх