Патенты автора Громов Олег Григорьевич (RU)

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения. Высоковольтная оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля в следующем количественном соотношении, мас. %: ZnO 77,5-82,5, Bi2O3 4,66-6,56, Sb2O3 2,05-2,95, Al2O3 4,08-5,83, Со2О3 3,32-4,37, NiO 1,92-3,48. Оксиды сурьмы и никеля соотносятся как 0,66-1,51. Технический результат изобретения – понижение плотности тока утечки варисторной керамики при обеспечении высоких значений напряжения пробоя и коэффициента нелинейности. Получаемая варисторная керамика имеет напряжение пробоя 3,7-5,1 кВ/мм, коэффициент нелинейности 56-74, плотность тока утечки 0,1-0,2 мкА/см2 и менее. 9 пр., 1 табл.

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН). Оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия и кобальта в количественном соотношении, мас.%: ZnO 85-95, Bi2O3 1,38-4,15, Sb2O3 0,96-2,9, Al2O3 1,66-4,95, Co2O3 1-3. Оксиды висмута, сурьмы, алюминия и кобальта соотносятся как 1,0:0,7:1,2:0,72. Получаемая варисторная керамика имеет напряжение пробоя 4,3-4,6 кВ/мм, коэффициент нелинейности 47-53 и плотность тока утечки 0,6-7 мкА/см2. Технический результат изобретения – снижение плотности тока утечки. При обеспечении высоких электрических характеристик получаемая высоковольтная варисторная керамика является более дешевой. 1 табл., 4 пр.

Изобретение относится к получению оксидно-цинковой варисторной керамики и может быть использовано в электроэнергетике при изготовлении варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения. Оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля в количественном соотношении, мас.%: ZnO 60,0-85,0, Bi2O3 3,42-9,11, Sb2O3 4,79-12,76, Al2O3 3,18-8,47, Co2O3 2,53-6,74, NiO 1,08-2,92. Оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32. Получаемая варисторная керамика имеет напряжение пробоя 3,5-4,4 кВ/мм и коэффициент нелинейности 40-55, что позволяет использовать ее для изготовления высоковольтных варисторов. 1 табл.
Изобретение относится к способу получения варисторной керамики. Технический результат изобретения заключается в повышении напряжения пробоя и коэффициента нелинейности при использовании холодного прессования. Смешивают исходные компоненты в виде твердофазных гидратированных нитратов цинка, висмута, алюминия, кобальта, хрома, марганца и коммерческого сахара в качестве топлива, при этом расход сахара составляет 0,5-0,6 мас. частей на 1 мас. часть получаемого нанокристаллического порошка. Добавляют виннокислый раствор сурьмы с концентрацией 0,098-0,102 г/мл Sb2O3 и осуществляют химическое сжигание смеси при 140-150°C в течение 40-50 минут. Продукт сжигания прокаливают при 690-710°C в течение 50-70 минут с получением нанокристаллического порошка, который смачивают 5% поливиниловым спиртом и осуществляют холодное прессование порошка при давлении 125-156 МПа с получением сырец-таблетки. Затем производят ее двухступенчатое спекание при температуре 690-710°C в течение 50-60 минут на первой ступени и при 920-930°C в течение 230-250 минут на второй ступени с получением варисторной керамики. 2 з.п. ф-лы, 5 пр.
Изобретение относится к способу получения частиц твердого электролита Li1+xAlxTi2-x(PO4)3 (0,1≤x≤0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NH4H2PO4 или фосфорную кислоту, и второго раствора, содержащего соединение титана и растворитель, с образованием азотнокислого коллективного раствора, нагревание коллективного раствора с получением прекурсора и его прокалку. При этом в качестве растворителя во втором растворе используют пероксид водорода, а в качестве соединения титана - пероксидный комплекс титана, азотную кислоту дополнительно вводят во второй раствор до обеспечения рН коллективного раствора не более 2, нагревание коллективного раствора ведут при 150-170°С с разложением пероксидного комплекса титана и получением аморфного прекурсора, а прокалку прекурсора осуществляют при 600-800°С. Способ позволяет синтезировать частицы электролита со средним размером 215-280 нм, а полученный на их основе твердый электролит является монофазным и имеет ионную проводимость до 6,3·10-4 См/см при комнатной температуре. Способ имеет пониженную энергоемкость и повышенную экологичность. 2 з.п. ф-лы, 3 пр.

Изобретение относится к металлургии благородных металлов, в частности к получению металлического серебра из его халькогенида, преимущественно селенида или сульфида

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное применение, в том числе в качестве источника энергии кардиостимуляторов
Изобретение относится к гидрометаллургии и может быть использовано при переработке отходов производства монокристаллов соединений тугоплавких металлов, в частности вольфрамата свинца PbW04, с получением высокочистых соединений вольфрама и свинца, пригодных для повторного выращивания монокристаллов
Изобретение относится к области твердофазного синтеза порошков сложных оксидов

Изобретение относится к области твердофазного синтеза высокочистого поликристаллического вольфрамата свинца PbWO4 и может найти применение при выращивании монокристаллов вольфрамата свинца

 


Наверх