Патенты автора Бусыгин Владимир Михайлович (RU)

Изобретение относится к способам получения катализаторов для дегидрирования парафиновых углеводородов. В соответствии с указанным способом используют алюмооксидный носитель со структурой гиббсита, дозируют раствор предшественника модификатора - оксида кремния и проводят пропитку носителя этим раствором, катализатор сушат, дозируют водные растворы предшественников активного вещества и промотора - оксида хрома и оксида калия, проводят пропитку носителя указанными растворами, сушку после каждой пропитки и прокалку носителя после пропитки активным веществом в течение 4-6 часов, перед нанесением компонентов на носитель проводят его прокалку при средней температуре 450-1000°С, затем прокаленный носитель подвергают гидротермальной обработке острым паром, подавая пар непосредственно в суспензию через барботеры внутрь автоклава, в течение 1-5 часов при соотношении воды и твердой фазы 2:1, далее продукт подвергают вторичной термической обработке и наносят активный компонент и промотор, после нанесения активного компонента и сушки носителя проводят прокалку катализатора при температуре 600-1000°С, выгруженный продукт подвергают классификации по размерам частиц с выделением требуемого распределения частиц. Технический результат: возможность регулирования фракционного состава за счет укрупнения гранул носителя с последующей их классификацией, смещение механизма разрушения носителя от поверхностного истирания к преимущественному разрушению по механизму раскалывания гранул, обеспечение быстрого формирования устойчивого фракционного состава. 1 табл., 9 пр.

Изобретение относится к способам получения катализаторов для дегидрирования парафиновых углеводородов. В соответствии со способом берут алюмооксидный носитель - гидроксид алюминия, дозируют раствор предшественника модификатора - оксида кремния, и проводят пропитку носителя этим раствором, после пропитки катализатор сушат, далее дозируют водные растворы предшественников активного вещества и промотора - оксида хрома и оксида калия, проводят пропитку носителя указанными растворами, его сушку и прокалку в течение 4-6 часов после пропитки активным веществом. В качестве алюмооксидного носителя берут гидроксид алюминия со структурой гиббсита. Перед нанесением компонентов проводят прокалку исходного гидроксида алюминия при температуре 450-1000°C в течение 40-120 минут, затем прокаленный носитель подвергают гидротермальной обработке острым паром через рубашку в течение 1-5 часов при соотношении воды и твердой фазы в диапазоне 1:1÷3:1 для получения фазы бемита γ-AlO(OH) в смеси с различными оксидами алюминия, получают суспензию носителя в воде, проводят фильтрование полученной суспензии многофазного носителя с фазой бемита γ-AlO(OH) и сушку, далее проводят модифицирование носителя, нанесение активного вещества проводят до нанесения промотора, прокалку катализатора после операции сушки проводят при температуре 600-1000°C с последующим нанесением промотора. Технический результат - увеличение активных центров катализатора и частичное подавление кислотных центров, сформированных на поверхности носителя катализатора после нанесения активного компонента. 3 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к полиэтиленовой композиции для наружного слоя покрытия стальных труб. Композиция содержит ПЭВП, представляющий собой гомополимер этилена и/или сополимер этилена с альфа-олефином с плотностью 0,940 до 0,964 г/см3, ПЭНП, представляющий собой разветвленный полиэтилен высокого давления с плотностью от 0,91 до 0,925 г/см3, или сополимер этилена с альфа-олефином с плотностью от 0,904 до 0,935 г/см3, или сополимер этилена с винилацетатом с содержанием от 5 до 30 мас.% винилацетатных групп и имеющий плотность от 0,925 до 0,955 г/см3. Кроме того, композиция содержит синтетический эластомер и/или синтетический каучук. Использование такой композиции обеспечивает получение покрытий на стальных трубах, обладающих морозостойкими свойствами при температурах ниже -45°С и высокими физико-механическими свойствами, такими как прочностные свойства, и стойкостью к растрескиванию в агрессивной среде, а также высоким сопротивлением вдавливанию. 5 табл., 56 пр.

Изобретение относится к ингибиторам коррозии и солеотложений и может быть использовано при обработке водных сред систем теплоснабжения, водооборотного снабжения химических, нефтехимических, металлургических, промышленных и энергетических предприятий, а также в коммунальном хозяйстве. Ингибитор включает фосфонаты щелочных металлов, фосфонокарбоксильные кислоты и водорастворимые полимеры, при этом в качестве фосфонатов щелочных металлов содержит оксиэтилидендифосфонаты, и/или нитрилотриметилфосфонаты, и/или аминометиленфосфонаты, и/или метилендифосфонаты, и/или гексаметилендиаминтетраметиленфосфонаты щелочных металлов при следующем соотношении компонентов, мас. %: фосфонаты щелочных металлов 5-50, фосфонокарбоксильные кислоты 5-45, водорастворимые полимеры 1-10. Изобретение позволяет создать ингибитор коррозии и солеотложений для водных сред, обладающий высокой эффективностью предотвращения солевых отложений и защиты от коррозии технологического оборудования, изготовленный из стали и латуни и одновременно характеризующийся низким содержанием фосфора. 3 з.п. ф-лы, 2 табл., 31 пр.

Изобретение относится к способу получения изопрена на железооксидных катализаторах в адиабатическом реакторе дегидрированием изоамиленов с подачей пара в слои катализатора. При этом подачу пара осуществляют одновременно двумя потоками, первый направляют на смешение с сырьем в соотношении 1:(4,02-5,7) перед подачей в реактор, а второй поток пара в количестве 5-33% масс. от всей части поступающего в реактор перегретого пара направляют непосредственно в слой катализатора, причем температура пара, поступающего на смешение с сырьем, составляет 650-750°С, а температура пара, поступающего непосредственно в слой катализатора, 700-800°С, пар в катализаторный слой направляют через распределительное устройство, расположенное на высоте 5-95% от общей высоты катализаторного слоя, внешний диаметр которого соотносится с внутренним диаметром реактора как 0,5-0,98:1,0. Использование настоящего изобретения позволяет повысить конверсию, селективность процесса и снизить энергозатраты при одновременном упрощении технологии. 4 пр., 1 табл.

Изобретение относится к способу получения катализатора для процесса получения изобутилена скелетной изомеризацией. В соответствии с данным способом в качестве исходного продукта для катализатора используют модифицированный цеолит феррьерит, заформованный со связующим, в качестве которого используют оксиды/гидроксиды алюминия, с содержанием связующего 15-50 мас.% от катализатора, модифицирование цеолита проводят деалюминированием с отмывкой его водным раствором кислоты и сушкой. При этом деалюминирование цеолита проводят в автоклаве в присутствии твердого безводного гексафторсиликата аммония химической формулы (NH4)2SiF6 при температуре 220-400°С в течение 0,5-10 часов, массовое соотношение цеолит/безводный гексафторсиликат аммония составляет 7÷70, промывку цеолита проводят раствором кислоты 1-50% в течение 15-400 минут при температуре 20-100°С. Предлагаемый способ позволяет получать катализаторы с меньшим количеством дефектов в виде внерешеточного алюминия в каналах цеолита, а также позволяет снять диффузионные барьеры для прохождения молекул бутенов в каналах катализатора. Изобретение также относится к способу получения изобутилена в присутствии катализатора, полученного таким способом. 2 н.п. ф-лы, 1 ил., 1 табл., 8 пр.
Настоящее изобретение относится к химической технологии производства катализаторов селективного гидрирования ацетиленовых и диеновых углеводородов в C2-C5+-углеводородных фракциях. Состав катализатора сформирован в следующем соотношении, мас.%: палладий 0,005-1, промотор 0,005-5, сопромотор при необходимости 0,005-5, носитель - остальное. Промотор на носителе закреплен в оксидной форме до активного компонента. Частицы палладия закреплены на носителе в нулевой степени окисления в электронном состоянии валентных орбиталей своих атомов. Катализатор характеризуется полосой поглощения комплекса монооксида углерода с палладием с волновым числом 2060-2100 см-1 в инфракрасном спектре адсорбированного монооксида углерода. В качестве носителя взят высокопористый ячеистый носитель, изготовленный из металла или оксида алюминия, характеризующийся пористостью не менее 85%, средним размером пор 0,5-6,0 мм. На высокопористом ячеистом носителе размещен слой оксида алюминия с образованием вторичного носителя, на котором последовательно размещены промотор и активный компонент палладий. Вторичный носитель оксид алюминия характеризуется толщиной от 10 мкм до 500 мкм, удельной поверхностью не менее 20 м2/г, объемом пор от 0,1 до 1,0 см3/г и выполнен с порами диаметром более 5 нм, объем которых составляет 50-98% общего объема пор. Вторичный носитель в общем составе катализатора составляет не менее 5 мас%. Технический результат - улучшение тепло- и массообмена и диффузионных характеристик с исключением возможности формирования локальных перегревов катализаторного слоя и диффузных ограничений транспорта исходных соединений и продуктов реакции. 4 табл., 22 пр.

Изобретение предназначено для обработки и обеззараживания различных типов водных сред с целью их защиты от микроорганизмов, в частности охлаждающей воды градирен, теплообменного оборудования для предотвращения биологического обрастания теплопередающих поверхностей и других промышленных систем. Биоцидная композиция для обработки водных сред включает соединения полигексаметиленгуанидина, соединения изотиазолинона и неионогенные ПАВ. Изобретение позволяет получить композицию с высокой биоцидной активностью одновременно в отношении бактерий, грибов и водорослей. 5 табл., 9 пр.

Изобретение относится к области каталитической химии, в частности к катализатору дегидрирования C4-C5 парафиновых углеводородов. Данный катализатор дегидрирования представляет собой алюмооксидный носитель, модифицированный оксидом кремния, на котором распределены активный компонент оксид хрома и промотор оксид калия. При этом оксид кремния закреплен на оксиде алюминия в форме окиснокремниевых структур Si(OSi)n(O-)4-n, где n от 1 до 4, в которых кремний в спектре ЯМР MAS 29Si характеризуется наличием линий с химическими сдвигами от -95 до -105 м.д. (линия Q3) и от -107 до -124 м.д. (линия Q4) при соотношении интегральных интенсивностей Q3/Q4 от 0,5 до 1,5, причем хром в активном компоненте характеризуется в УФ-Вид-спектре диффузного отражения полосой поглощения d-d электронного перехода октаэдрического катиона Cr(III) с волновым числом от 16500 до 17000 см-1. Катализатор имеет величину удельной поверхности от 10 до 250 м2/г, объем пор не менее 0,15 см3/г, при этом его состав сформирован в следующем соотношении, мас.%: оксид хрома - 8-20, оксид калия - 0,1-5, оксид кремния - 0,1-5, алюмооксидный носитель - остальное. Предлагаемый катализатор дегидрирования C4-C5 парафиновых углеводородов обладает высокой активностью, селективностью и термической стабильностью. 2 з.п. ф-лы, 2 ил., 1 табл., 17 пр.
Изобретение относится к области защиты металлов от коррозии и может быть использовано для систем оборотного водоснабжения и теплоснабжения промышленных предприятий. Способ включает смешение продукта взаимодействия оксиэтилидендифосфоновой кислоты и аскорбиновой и/или глюконовой кислоты с триполифосфатами щелочных металлов и продукта взаимодействия ортофосфорной кислоты с гидрооксидом щелочного металла при массовом соотношении продукта взаимодействия оксиэтилидендифосфоновой кислоты и аскорбиновой и/или глюконовой кислоты с триполифосфатами щелочных металлов и продукта взаимодействия ортофосфорной кислоты с гидрооксидом щелочного металла 1:1-3 соответственно. Технический результат: получение ингибитора коррозии, обладающего высокой эффективностью защиты от коррозии технологического оборудования в водных средах различной минерализации с широким интервалом значений водородного показателя, повышение стабильности антикоррозионных свойств и устойчивости состава ингибитора при хранении. 3 пр.
Изобретение относится к области защиты металлов от коррозии и может быть использовано для систем оборотного водоснабжения и теплоснабжения промышленных предприятий. Способ включает смешение продукта взаимодействия оксиэтилидендифосфоновой кислоты и аскорбиновой и/или глюконовой кислоты с триполифосфатами щелочных металлов и продукта взаимодействия ортофосфорной кислоты с гидрооксидом щелочного металла при массовом соотношении продукта взаимодействия оксиэтилидендифосфоновой кислоты и аскорбиновой и/или глюконовой кислоты с триполифосфатами щелочных металлов и продукта взаимодействия ортофосфорной кислоты с гидрооксидом щелочного металла 1:1-3 соответственно. Технический результат: получение ингибитора коррозии, обладающего высокой эффективностью защиты от коррозии технологического оборудования в водных средах различной минерализации с широким интервалом значений водородного показателя, повышение стабильности антикоррозионных свойств и устойчивости состава ингибитора при хранении. 3 пр.

Настоящее изобретение относится к способам комплексной переработки отработанных катализаторов. Заявлен способ, в котором извлечение молибдена и церия проводят в две стадии, на первой стадии проводят извлечение соединения молибдена, после чего проводят стадию извлечения соединения церия. На первой стадии проводят измельчение катализатора, добавляют раствор выщелачивающего агента в массовом соотношении к отработанному катализатору (0,5-10):1, в концентрации не менее 0,1 моль/л, проводят перемешивание суспензии в течение 4-10 часов при температуре 90-95°C, фильтрование смеси с выделением осадка, промывание его водой. Далее готовят смесь из фильтрата и промывных вод осадка, содержащих молибден, смесь упаривают до получения товарного продукта. После этого проводят второй этап извлечения соединения церия, для чего проводят полное растворение остатка измельченного катализатора в соляной кислоте, добавляют воду и упаривают ее затем до первоначального объема раствора, отделяют нерастворившуюся часть фильтрованием, оставшийся раствор нейтрализуют до pH 3,5-4,5 с его контролем, раствор нагревают до 90-100°C с перемешиванием и последовательно добавляют раствор соли кальция в соотношении кальций: катализатор от 1:100 до 5:100 и насыщенный раствор щавелевой кислоты в соотношении к катализатору от 5:1 до 10:1, ведут перемешивание при температуре 70-100°C в течение 2-6 часов, проводят выдержку раствора для осаждения соединения церия в течение 4-24 часов при комнатной температуре, осадок отделяют от маточного раствора фильтрованием, промывают его и сушат до постоянной массы. Также заявлены способ извлечения только молибдена из указанного катализатора и способ извлечения только церия из указанного катализатора. Технический результат - извлечение молибдена и церия с высоким процентом их выхода и чистотой путем устранения взаимного влияния извлекаемых компонентов друг на друга. 3 н. и 15 з.п. ф-лы, 2 табл., 18 пр.

Настоящее изобретение относится к способу извлечения церия из отработанных железокалиевых катализаторов дегидрирования олефиновых углеводородов. Способ заключается в том, что извлечение церия осуществляют после предварительной подготовки катализатора. При этом проводят измельчение отработанного катализатора. Измельченный катализатор подвергают прокаливанию при температуре 650-800°C в течение 3-6 часов. После прокаливания катализатор охлаждают до комнатной температуры и проводят извлечение соединения церия растворением прокаленного катализатора в концентрированной соляной кислоте. Полученный раствор со взвешенными частицами диоксида церия нагревают до кипения, выдерживают при температуре кипения 100-110°C в течение 30-120 минут и в течение 3-12 часов при температуре 0-20°C с получением осадка. Полученный осадок отделяют от маточного раствора фильтрованием путем слива раствора с поверхности осадка на фильтр с размером пор фильтрующего материала не более 2 мкм. Осадок на фильтре промывают от соединения железа и сушат до постоянной массы диоксида церия. Техническим результатом является извлечение церия с высокой чистотой путем устранения взаимного влияния извлекаемых компонентов друг на друга. 1 з.п. ф-лы, 1 ил., 1 табл., 11 пр.

Настоящее изобретение относится к способу извлечения церия из отработанных железокалиевых катализаторов дегидрирования олефиновых углеводородов. Способ заключается в том, что извлечение церия осуществляют после предварительной подготовки катализатора. При этом проводят измельчение отработанного катализатора. Измельченный катализатор подвергают прокаливанию при температуре 650-800°C в течение 3-6 часов. После прокаливания катализатор охлаждают до комнатной температуры и проводят извлечение соединения церия растворением прокаленного катализатора в концентрированной соляной кислоте. Полученный раствор со взвешенными частицами диоксида церия нагревают до кипения, выдерживают при температуре кипения 100-110°C в течение 30-120 минут и в течение 3-12 часов при температуре 0-20°C с получением осадка. Полученный осадок отделяют от маточного раствора фильтрованием путем слива раствора с поверхности осадка на фильтр с размером пор фильтрующего материала не более 2 мкм. Осадок на фильтре промывают от соединения железа и сушат до постоянной массы диоксида церия. Техническим результатом является извлечение церия с высокой чистотой путем устранения взаимного влияния извлекаемых компонентов друг на друга. 1 з.п. ф-лы, 1 ил., 1 табл., 11 пр.

Настоящее изобретение относится к способу извлечения церия из отработанных железокалиевых катализаторов дегидрирования олефиновых углеводородов. Способ заключается в том, что извлечение церия осуществляют после предварительной подготовки катализатора. При этом проводят измельчение отработанного катализатора. Измельченный катализатор подвергают прокаливанию при температуре 650-800°C в течение 3-6 часов. После прокаливания катализатор охлаждают до комнатной температуры и проводят извлечение соединения церия растворением прокаленного катализатора в концентрированной соляной кислоте. Полученный раствор со взвешенными частицами диоксида церия нагревают до кипения, выдерживают при температуре кипения 100-110°C в течение 30-120 минут и в течение 3-12 часов при температуре 0-20°C с получением осадка. Полученный осадок отделяют от маточного раствора фильтрованием путем слива раствора с поверхности осадка на фильтр с размером пор фильтрующего материала не более 2 мкм. Осадок на фильтре промывают от соединения железа и сушат до постоянной массы диоксида церия. Техническим результатом является извлечение церия с высокой чистотой путем устранения взаимного влияния извлекаемых компонентов друг на друга. 1 з.п. ф-лы, 1 ил., 1 табл., 11 пр.

Настоящее изобретение относится к способу извлечения церия из отработанных железокалиевых катализаторов дегидрирования олефиновых углеводородов. Способ заключается в том, что извлечение церия осуществляют после предварительной подготовки катализатора. При этом проводят измельчение отработанного катализатора. Измельченный катализатор подвергают прокаливанию при температуре 650-800°C в течение 3-6 часов. После прокаливания катализатор охлаждают до комнатной температуры и проводят извлечение соединения церия растворением прокаленного катализатора в концентрированной соляной кислоте. Полученный раствор со взвешенными частицами диоксида церия нагревают до кипения, выдерживают при температуре кипения 100-110°C в течение 30-120 минут и в течение 3-12 часов при температуре 0-20°C с получением осадка. Полученный осадок отделяют от маточного раствора фильтрованием путем слива раствора с поверхности осадка на фильтр с размером пор фильтрующего материала не более 2 мкм. Осадок на фильтре промывают от соединения железа и сушат до постоянной массы диоксида церия. Техническим результатом является извлечение церия с высокой чистотой путем устранения взаимного влияния извлекаемых компонентов друг на друга. 1 з.п. ф-лы, 1 ил., 1 табл., 11 пр.

Изобретение относится к производству ионитных формованных катализаторов. Описан ионитный формованный катализатор органического синтеза, содержащий смесь сополимеров с макропористой и гелевой структурой сульфированного сополимера стирола и дивинилбензола, и термопластичный связующий компонент-полипропилен, причем массовое соотношение гелевой и макропористой составляющих выбрано равным (3.7÷14.0):1 соответственно в расчете на сухой катализатор, количество связующего компонента составляет 20-30 мас.% в расчете на сухой катализатор, исходные компоненты взяты с остаточной влажностью не более 10 мас.% и фракционным составом не менее 95% фракции частиц с размером в области 50-200 мкм. Описан способ получения указанного выше катализатора. Технический результат - получен катализатор, в котором исключено блокирование адсорбционного пространства катализатора и преждевременное испарение воды. 2 н. и 2 з.п. ф-лы, 2 табл., 12 пр.

Изобретение относится к нефтехимической промышленности и может быть использовано в производстве галобутилкаучуков

Изобретение относится к области нефтехимии, точнее к устройствам, используемым в производстве мономеров для синтетического каучука

Изобретение относится к способам получения цеолита типа А, используемого в качестве адсорбента для осушки различных газов, очистки газовых сред от примесей
Изобретение относится к области производства катализаторов, конкретно, к производству катализаторов для процесса дегидрирования изоамиленов

Изобретение относится к области защиты металлов от коррозии и может быть использовано в системах оборотного водоснабжения и теплоснабжения химических, нефтехимических, энергетических и других промышленных предприятий
Изобретение относится к способу совместного получения изобутена и бутадиена дегидрированием С4-углеводородов на алюмохромовом катализаторе при повышенной температуре с дальнейшим разделением полученных продуктов дегидрирования методами абсорбции-десорбции и экстрактивной ректификации и выделением товарного изобутена и бутадиена-1,3

Изобретение относится к способу приготовления двухкомпонентной системы на основе дициклопентадиена (ДЦПД) для получения термореактивного гомополимера - полициклопентадиена

Изобретение относится к технологии получения синтетических каучуков, в частности к способу выделения синтетических каучуков из углеводородных растворов

Изобретение относится к области получения этиленпропиленовых каучуков и может быть использовано в нефтехимической промышленности
Изобретение относится к способам получения полимеров и сополимеров сопряженных диенов (со)полимеризацией и может найти применение в промышленности синтетического каучука

Изобретение относится к усовершенствованному способу выделения диэтиленгликоля и триэтиленгликоля, которые широко используются в процессах получения полиуретанов и смол, для осушки природного газа, в качестве пластификаторов и компонентов антифризов, вакуумной ректификацией из смеси этиленгликолей, обработанной щелочным алкоголятом полиалкиленгликоля или простого полиэфира на основе оксида алкилена

Изобретение относится к получению каучуков, в частности к способу получения бутилкаучука, который используется в производстве ездовых камер и камер форматоров-вулканизаторов
Изобретение относится к области нефтехимии, конкретно к технологии получения бутадиенового каучука стереоспецифической растворной полимеризацией бутадиена или бутадиена и изопрена в присутствии комплексного катализатора на основе редкоземельных элементов и может быть использовано в промышленности синтетического каучука

Изобретение относится к области получения каучуков растворной полимеризацией полибутадиена и статистических сополимеров бутадиена со стиролом, которые используются в производстве шин с высокими эксплуатационными характеристиками, резинотехнической промышленности и в производстве пластических масс

Изобретение относится к области получения каучуков растворной полимеризации полибутадиенов, от жидких до высокомолекулярных

Изобретение относится к способам регулирования молекулярных характеристик бутадиеновых каучуков и может быть использовано в нефтехимической и химической отраслях промышленности в процессах производства этих полимеров
Изобретение относится к способу очистки низших алканов от метанола путем контакта сырья с катализатором, содержащим оксид алюминия при повышенных температуре и давлении, характеризующемуся тем, что в качестве катализатора используют алюмоплатиновый катализатор и контакт проводят при температуре 180-400°С, давлении 1,5-4,0 МПа, объемной скорости подачи сырья 0,4÷4 ч-1 , объемном соотношении сырье : водород =1:(5÷900)

Изобретение относится к процессам пиролиза углеводородов в присутствии водяного пара под действием электромагнитного излучения сверхвысокочастотного диапазона, при этом водяной пар перед подачей на смешение в проточном режиме предварительно обрабатывают электромагнитным излучением сверхвысокочастотного диапазона мощностью 1000-1600 Вт

Изобретение относится к способам получения цеолита типа А, используемого в качестве адсорбента

Изобретение относится к термопластичным резинам, получаемым методом динамической вулканизации, которые могут быть использованы для изготовления различных эластичных резинотехнических изделий, таких как шланги, уплотнения, прокладки, эластичные изделия интерьера и экстерьера автомобиля, различных гофрированных эластичных изделий
Изобретение относится к области получения синтетических каучуков, в частности этиленпропиленовых каучуков, и может быть применено в нефтехимической промышленности

Изобретение относится к области получения каучуков, а именно к способу получения бутилкаучука

Изобретение относится к способу дегидрирования изопентана и изопентан-изоамиленовых фракций, проводимому при атмосферном давлении в среде водяного пара циклами дегидрирование-регенерация в стационарном слое катализатора на основе платины и олова, нанесенных на алюмоцинковую шпинель, характеризующемуся тем, что используют катализатор со средним размером кристаллитов 22-35 нм при следующем содержании компонентов, мас.%: платина - 0,05-2,0, олово - 0,1-6,0, алюмоцинковая шпинель - остальное, процесс дегидрирования осуществляют при температуре 560-620°С, объемной скорости подачи сырья 300-500 ч-1 в присутствии водорода и водяного пара, соотношение сырье:водород:пар составляет 1:0,5-2,0:5-20 моль:моль:моль

Изобретение относится к области органической химии и нефтехимии, в частности к разработке и использованию катализаторов

Изобретение относится к области нефтехимии и, в частности, к области производства олефиновых С3-С5 углеводородов дегидрированием соответствующих парафиновых углеводородов в реакторах с псевдоожиженным слоем микросферического алюмохромового катализатора

Изобретение относится к способу выделения изобутилена из изобутиленсодержащей фракции путем гидратации изобутиленсодержащей фракции с получением трет-бутанолсодержащей фракции и ее последующей дегидратации, характеризующемуся тем, что процесс дегидратации проводят в две стадии, при этом на первой стадии выдерживают температуру 90-120°С и давление 1-3 кгс/см2 и выделяют концентрированный изобутилен и водный раствор трет-бутилового и втор-бутилового спиртов, из которого на второй стадии выделяют концентрированный втор-бутиловый спирт и изобутиленсодержащую фракцию, направляемую на гидратацию, причем на второй стадии процесс проводят при температуре 100-130°С и давлении 2-6 кгс/см

Изобретение относится к технологии получения катализаторов полимеризации и сополимеризации сопряженных диенов и может быть использовано в промышленности синтетических каучуков

Изобретение относится к технологии получения бутилкаучука, применяемого для производства автомобильных камер, резинотехнических изделий, галобутилкаучука, и может быть применено в нефтехимической промышленности

Изобретение относится к области получения каучуков растворной полимеризации полибутадиена и статистических сополимеров бутадиена со стиролом, которые используются в производстве шин с высокими эксплуатационными характеристиками и пластических масс
Изобретение относится к катализатору для процессов дегидрирования алкилароматических углеводородов

Изобретение относится к нефтепереработке и каталитической химии, в частности к способу синтеза катализатора дегидрирования легких парафиновых углеводородов, предпочтительно изобутана и изопентана, для процессов получения изобутилена и изоамиленов - мономеров синтетических каучуков
Изобретение относится к способу получения изопрена дегидрированием изоамиленовой фракции в присутствии перегретого водяного пара и катализатора на основе оксида железа и характеризуется тем, что в качестве катализатора используют катализатор, имеющий насыпную плотность не менее 1.0 г/см3 и не более 2.00 г/см3, и кажущуюся плотность не менее 2.0 г/см3 и не более 3.5 г/см 3, и следующий состав, мас.%: Соединение калия5-30 Оксид магния0,5-10 Оксид церия (4)5-20 Карбонат кальция 1-10Оксид молибдена 0,5-5Оксид железа (3) остальноеДанный способ позволяет повысить селективность процесса дегидрирования, а также увеличить активность и межрегенерационный цикл работы катализатора

Изобретение относится к области автоматизации технологических процессов производства синтетического каучука и может быть использовано в производстве бутилкаучука для различного оформления процессов, например, при получении химических модифицированных каучуков
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх