Патенты автора Ясьян Юрий Павлович (RU)

Группа изобретений относится к процессам очистки газов и может быть использовано в нефтегазовой, нефтеперерабатывающей, химической и нефтехимической промышленности для абсорбционной очистки технологических газов от кислых компонентов с использованием водных растворов алканоламинов. Устройство содержит сепаратор очищаемого газа, абсорбер колонного типа с устройством для охлаждения абсорбента с двухсекционным с каплеулавливающим устройством, верхней насадочной массообменной секцией, оснащенной распределительным устройством, и нижней секцией, оснащенной блоком тепломассообменных элементов спирально-радиального типа с распределительным устройством и патрубками ввода и вывода хладагента. Также содержит трехсекционный десорбер колонного типа, каждая секция которого оснащена блоками тепломассообменных элементов спирально-радиального типа с распределительными устройствами и патрубками ввода и вывода теплоносителя или хладагента в каждой секции. Низ абсорбера расположен выше точки ввода насыщенного абсорбента в десорбер (с учетом разницы давлений в абсорбере и десорбере), а на линии подачи газа в абсорбер размещен смеситель очищаемого газа с абсорбентом. На байпасной линии подачи абсорбента в абсорбер установлено устройство для очистки абсорбента от продуктов разложения, насос подачи абсорбента, редукционный клапан, подводящие и отводящие трубопроводы газа, а также технологические трубопроводы. На линии подачи очищаемого производственного газа установлен трехфазный сепаратор с линией отвода очищаемого газа, линией отвода углеводородного конденсата и с линией отвода воды, соединенной с линией подачи насыщенного абсорбента в десорбер, а на линии отвода очищенного производственного газа размещен дополнительно дроссель и низкотемпературный сепаратор с линией отвода очищенного газа и с линией отвода разбавленного водного раствора алканоламина, соединенной с линией подачи насыщенного абсорбента в десорбер. А также заявлен способ для аминовой очистки производственного газа, осуществляемый на заявленном устройстве. Заявленная группа изобретений обеспечивает ресурсосбережение устройства для аминовой очистки производственного газа и способа ее осуществления, вследствие получения добавочного количества воды и разбавленного раствора алканоламина и снижения расхода деминерализованной воды. 2 н.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к области газовой промышленности, а именно к технике и технологии подготовки природного газа, и может быть использовано в газовой, нефтяной и других отраслях промышленности на адсорбционных установках подготовки углеводородных газов. Установка для подготовки природного газа включает регулирующий клапан, входной сепаратор, адсорберы, верх которых соединен с линией подачи газа, линией подачи газа охлаждения и линией отвода отработанного газа регенерации, а низ соединен с линией отвода подготовленного газа, линией отвода газа охлаждения и линией подачи газа регенерации, фильтрующее устройство, печь, сепаратор высокого давления. Линия отвода подготовленного газа соединена с фильтрующим устройством. Линия отвода газа охлаждения соединена с печью. Линия отвода отработанного газа регенерации соединена с сепаратором высокого давления, а линия подачи газа охлаждения соединена с линией подачи исходного газа перед дросселем. Входной сепаратор установлен после дросселя. Выход газа из входного сепаратора соединен с первым рекуперативным теплообменником. Линия отвода газа охлаждения соединена с печью через второй рекуперативный теплообменник. Линия отвода отработанного газа регенерации последовательно соединена со вторым и первым рекуперативными теплообменниками и сепаратором высокого давления, а линия отвода отработанного газа регенерации из сепаратора высокого давления соединена с линией подачи исходного газа перед входным сепаратором. Линия подачи газа охлаждения соединена с фильтром-сепаратором, выход из которого соединен с верхом адсорберов. Сепаратор высокого давления последовательно соединен с сепараторами среднего и низкого давления, а линия отвода газа дегазации с сепаратора среднего давления соединена с линией топливного газа. Линия отвода сбросного низконапорного газа дегазации от сепаратора низкого давления соединена с факельной линией, и на линии отвода отработанного газа регенерации между первым рекуперативным теплообменником и сепаратором высокого давления установлен пропановый холодильник. На линии отвода отработанного газа регенерации и на линии отвода газа охлаждения перед вторым рекуперативным теплообменником установлены фильтры. Линия отвода газа дегазации от сепаратора среднего давления через регулирующий клапан соединена с дополнительно установленным третьим рекуперативным теплообменником, который сообщен последовательно с дополнительно установленным вторым пропановым холодильником через первую охлажденную линию отвода газа дегазации от сепаратора среднего давления и далее через вторую охлажденную линию отвода газа дегазации от сепаратора среднего давления с дополнительно установленным первым низкотемпературным сепаратором топливного газа, в котором линия отвода ШФЛУ соединена с резервуарным парком. Линия первого отвода топливного газа соединена через регулирующий клапан с топливной сетью на собственные нужды, и также линия подготовленного газа соединена через дроссель с линией отвода части подготовленного газа, которая последовательно соединена с дополнительно установленным третьим рекуперативным теплообменником и далее через охлажденную линию отвода части подготовленного газа с дополнительно установленным вторым низкотемпературным сепаратором топливного газа, у которого линия отвода углеводородного конденсата через дроссель соединена с линией отвода углеводородного конденсата от сепаратора среднего давления в сепаратор низкого давления. Линия второго отвода топливного газа соединена через регулирующий клапан с топливной сетью на собственные нужды. Изобретение обеспечивает возможность ресурсосбережения установки за счет выработки добавочной продукции широкой фракции легких углеводородов (ШФЛУ) и получение дополнительного количества стабильного конденсата и топливного газа. 1 ил.

Изобретение относится к области газовой промышленности, а именно к технике и технологии подготовки природного газа, и может быть использовано в газовой, нефтяной и других отраслях промышленности на адсорбционных установках подготовки углеводородных газов. Установка включает дроссель, входной сепаратор, адсорберы, верх которых соединен с линией подачи газа, линией подачи газа охлаждения и линией отвода отработанного газа регенерации, а низ соединен с линией отвода подготовленного газа, линией отвода газа охлаждения и линией подачи газа регенерации, фильтрующее устройство, печь, сепаратор высокого давления, в которой линия отвода подготовленного газа соединена с фильтрующим устройством, линия отвода газа охлаждения соединена с печью, линия отвода отработанного газа регенерации соединена с сепаратором высокого давления, а линия подачи газа охлаждения соединена с линией подачи исходного газа перед дросселем, входной сепаратор установлен после дросселя, выход газа из входного сепаратора соединен с первым рекуперативным теплообменником, выход газа из которого соединен с адсорберами, линия отвода газа охлаждения соединена с печью через второй рекуперативный теплообменник, линия отвода отработанного газа регенерации последовательно соединена со вторым и первым рекуперативными теплообменниками и сепаратором высокого давления, а линия отвода отработанного газа регенерации из сепаратора высокого давления соединена с линией подачи исходного газа перед входным сепаратором, при этом линия подачи газа охлаждения соединена с фильтром-сепаратором, выход из которого соединен с верхом адсорберов, сепаратор высокого давления последовательно соединен с сепараторами среднего и низкого давления, а линия отвода газа дегазации с сепаратора среднего давления соединена с линией топливного газа, а линия отвода сбросного низконапорного газа дегазации от сепаратора низкого давления соединена с факельной линией, и на линии отвода отработанного газа регенерации между первым рекуперативным теплообменником и сепаратором высокого давления установлен пропановый холодильник, а на линии отвода отработанного газа регенерации и на линии отвода газа охлаждения перед вторым рекуперативным теплообменником установлены фильтры, при этом линия отвода газа дегазации от сепаратора среднего давления через регулирующий клапан соединена с дополнительно установленным третьим рекуперативным теплообменником, который через охлажденную линию отвода газа дегазации от сепаратора среднего давления сообщен с дополнительно установленным низкотемпературным сепаратором топливного газа, в котором линия отвода углеводородного конденсата через дроссель соединена с линией отвода углеводородного конденсата от сепаратора среднего давления в сепаратор низкого давления, а линия отвода топливного газа соединена через регулирующий клапан с топливной сетью на собственные нужды, и также линия подготовленного газа соединена через дроссель с линией отвода части подготовленного газа, которая последовательно соединена с дополнительно установленным третьим рекуперативным теплообменником и далее через охлажденную линию отвода части подготовленного газа с дополнительно установленным низкотемпературным сепаратором топливного газа. Техническим результатом является обеспечение возможности ресурсосбережения установки за счет выработки дополнительного количества стабильного углеводородного конденсата и топливного газа. 1 ил.

Изобретение относится к области получения синтез-газа путем термохимической переработки комбинированного сырья, состоящего из растительного сырья и тяжелого углеводородного сырья, и может быть использовано в промышленности (энергетике, нефтехимии) для производства целевых продуктов синтеза. Проводят нагрев воды с введенными в нее в количестве 0,25-2,0 мг/л примесями до температуры 80-100°С. После чего нагретую воду с примесями подвергают воздействию электромагнитным полем сверхвысокой частоты 2450 МГц, мощностью 0,1-1,0 кВт при давлении 1,5-3,0 МПа, температуре 80-100°С в течение 10-90 с. Проводят измельчение биомассы растительного сырья до среднего размера частиц не более 200 мкм. Затем смешивают измельченную биомассу с водой с примесями, прошедшей электромагнитную обработку, и тяжелым углеводородным сырьем с последующей гомогенизацией и получением смеси, содержащей мас.%: биомасса растительного сырья 40-60, тяжелое углеводородное сырье 20-30, вода с примесями, прошедшая электромагнитную обработку - остальное (до 100). После этого осуществляют газификацию указанной смеси при 700-800°С, охлаждение продуктов газификации с выделением газа и очистку последнего с получением целевого синтез-газа. Причем в воду вводят примеси, выбранные из ряда хлорид железа (III) - FeCl3, оксид железа (III) - Fe2O3, гидроксид железа (III) - Fe(OH)3, внутрикомплексное соединение фенольного основания Шиффа и Fe3+. Технический результат изобретения заключается в интенсификации процесса газификации за счет использования воды с примесями и ее соответствующей обработки электромагнитным полем сверхвысокой частоты. 1 пр., 1 табл.

Изобретение относится к области получения синтез-газа путем переработки биомассы растительного происхождения и может быть использовано в нефтепереработке, нефтехимии, энергетике. Способ осуществляют путем измельчения исходной биомассы, смешивания ее с мелкодисперсным горючим сланцем с содержанием серы 4,1-16,0 мас.%, имеющим размер частиц 10-100 мкм, и водой, взятых в количестве, мас.%: сланец 3,0-5,0, вода 10,0-30,0, биомасса - остальное, до 100. Затем образованную смесь подвергают диспергированию с получением суспензии, последующей газификацией полученной суспензии при температуре 800-1000°С и направления образовавшегося газового потока на очистку с получением синтез-газа. Технический результат заключается в повышении эффективности способа переработки биомассы с целью получения синтез - газа, а именно в упрощении его технологии, предотвращении явления отложения соединений щелочных металлов на поверхностях оборудования и эффективного предотвращения щелочной коррозии оборудования. 2 табл., 4 пр.
Изобретение относится к области переработки биомассы с получением синтез-газа и золы - биочара. Способ осуществляют путем измельчения исходной биомассы до размера частиц 100-200 мкм, смешивания с водной эмульсией тяжелого углеводородного сырья с содержанием воды 18,0-25,0 мас.%, имеющей размер частиц воды 10-30 мкм. Затем полученную смесь подвергают диспергированию, образованную суспензию смеси измельченной биомассы и водной эмульсии тяжелого углеводородного сырья подвергают газификации при температуре 800-1200°С, коэффициенте недостатка кислорода от 0,2 до 0,5 с последующим направлением продуктов газификации на разделение и очистку с получением синтез-газа и золы. При этом для получения синтез-газа с соотношением Н2:СО не менее 1,5 газификации подвергают суспензию с соотношением биомасса:водная эмульсия тяжелого углеводородного сырья, равным 1,5-2,5:1, а для получения золы с содержанием углерода от 25 до 60 мас.% газификации подвергают суспензию с соотношением биомасса:водная эмульсия тяжелого углеводородного сырья, равным 5,0-7,5:1. Технический результат заключается в обеспечении получения целевых продуктов с заданными характеристиками путем регулирования выхода и качества продуктов газификации. 6 пр.

Изобретение относится к газовой и нефтяной промышленности, а именно к установкам подготовки газа к транспорту адсорбционным способом, и может быть использовано в газовой, нефтяной, нефтехимической, химической отраслях промышленности. На адсорбционных установках при осушке и отбензинивании углеводородного газа выделенную ВМС из трехфазных сепараторов направляют в дренаж, а при низкотемпературных процессах на адсорбционных установках выделенную ВМС регенерируют с выделением высокотоксичного метанола, применяемого в качестве ингибитора гидратообразования, и полученный стабильный углеводородный конденсат после отделения в трехфазных сепараторах от газообразных компонентов С1…С4 и ВМС отводят с установки и отгружают потребителю. Техническим результатом является обеспечение возможности ресурсосбережения установки, а также повышение экологической безопасности и расширение ассортимента продукции за счет получения добавочных жидких продуктов - высокооктанового бензина, пропан-бутановой фракции (ПБФ), подготовленной воды и выработки дополнительного количества топливного газа. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области газовой промышленности, а именно к технике и технологии подготовки углеводородного газа, и может быть использовано в газовой, нефтяной и других отраслях промышленности на адсорбционных установках подготовки углеводородных газов. На адсорбционных установках при осушке и отбензинивании углеводородного газа выделенную ВМС из трехфазных сепараторов направляют в дренаж, а при низкотемпературных процессах на адсорбционных установках выделенную ВМС регенерируют с выделением высокотоксичного метанола, применяемого в качестве ингибитора гидратообразования, и полученный стабильный углеводородный конденсат после отделения в трехфазных сепараторах от газообразных компонентов С1…С4 и ВМС отводят с установки и отгружают потребителю. Техническим результатом является обеспечение возможности ресурсосбережения установки, а также повышение экологической безопасности и расширение ассортимента продукции за счет получения добавочных жидких продуктов - высокооктанового бензина, пропан-бутановой фракции (ПБФ), подготовленной воды и выработки дополнительного количества топливного газа. 1 з.п. ф-лы, 3 ил.
Изобретение относится к области получения синтез-газа путем термохимической переработки растительного сырья и тяжелого углеводородного сырья. Способ включает нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы и полукокса с тяжелым углеводородным сырьем. Затем осуществляют диспергирование данной смеси в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2, времени обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт, времени обработки 1,0-8,0 ч при температуре 50-70°С с образованием обработанной суспензии, которую направляют на газификацию при 800-1400°С с получением второго потока газа, отделение от второго потока газа водной суспензии сажи. Затем смешение первого потока газа и второго потока газа после отделения от него водной суспензии сажи и очистку образованной смеси с получением целевого синтез-газа. Техническим результатом изобретения является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.
Изобретение относится к области получения синтез-газа путем термохимической переработки растительного и тяжелого углеводородного сырья. Способ включает нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2, временем обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт, временем обработки 1,0-8,0 ч при температуре 50-70°С, с образованием обработанной суспензии. Затем суспензию направляют на газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем. Диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии и проведение газификации полученной суспензии с получением третьего потока газа и водной суспензии сажи. Далее смешение первого потока газа со вторым и третьим потоками газа после отделения водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа. Техническим результатом изобретения является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.
Изобретение относится к способу получения синтез-газа путем термохимической переработки комбинированного сырья, состоящего из растительного сырья и тяжелого углеводородного сырья. Способ осуществляется путем нагрева тяжелого углеводородного сырья до температуры 60-90°С, а растительное сырье подвергают измельчению до степени помола не менее 100 мкм. После чего осуществляют смешение указанных тяжелого углеводородного сырья и растительного сырья с последующим диспергированием полученной смеси в присутствии воды и сажи с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2 при температуре 50-70°С и времени обработки 1-3 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч. Затем осуществляют газификацию обработанной суспензии при температуре 800-1200°С с получением синтез-газа, который подвергают очистке с отделением сажи, используемой на стадии диспергирования. Технический результат заключается в повышении соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.

Изобретение относится к газовой и нефтяной промышленности, а именно к установкам подготовки газа адсорбционным способом, и может быть использовано в газовой, нефтяной, нефтехимической, химической отраслях промышленности на установках подготовки газа. Техническим результатом является увеличение выхода жидких углеводородов и исключение образования гидратов. Установка подготовки газа включает регулирующий клапан, входной сепаратор, адсорберы, фильтрующее устройство, печь, сепаратор высокого давления. Верх адсорберов соединен с линией подачи исходного газа, линией подачи газа охлаждения и линией отвода насыщенного газа регенерации. Низ соединен с линией отвода подготовленного газа, линией отвода газа охлаждения и линией подачи газа регенерации. Сепаратор высокого давления последовательно соединен с сепараторами среднего и низкого давления. Линия подачи исходного газа проходит через регулирующий клапан и соединена с входным сепаратором. Выход газа из входного сепаратора соединен с первым рекуперативным теплообменником, выход газа из которого соединен с верхом адсорберов. Линия отвода подготовленного газа соединена с фильтрующим устройством. При этом линия подачи газа охлаждения соединена с линией подачи исходного газа перед регулирующим клапаном и соединена с фильтром-сепаратором. Линия отвода газа охлаждения последовательно соединена с фильтрующим устройством, вторым рекуперативным теплообменником и печью. Линия подачи газа регенерации соединена с низом адсорберов. Линия отвода насыщенного газа регенерации последовательно соединена с фильтрующим устройством, вторым рекуперативным теплообменником, первым рекуперативным теплообменником, пропановым холодильником и сепаратором высокого давления. Линия отвода газового конденсата из сепаратора высокого давления через дроссель соединена с сепаратором среднего давления, в котором линия отвода газового конденсата через дроссель соединена с сепаратором низкого давления. Линия отвода отработанного газа регенерации из сепаратора высокого давления соединена с линией подачи исходного газа после регулирующего клапана перед входным сепаратором. Установка подготовки газа дополнительно содержит подпиточную емкость, выход которой соединен через линию подачи метанола с линией насыщенного газа регенерации между первым рекуперативным теплообменником и пропановым холодильником. Блок регенерации метанола, вход которого соединен с линией отвода технической воды из сепаратора высокого давления, а выход соединен через линию подачи регенерированного метанола с линией насыщенного газа регенерации между первым рекуперативным теплообменником и пропановым холодильником и содержит сообщенные между собой входной рекуперативный теплообменник. Верхняя часть ректификационной колонны сообщена с аппаратом воздушного охлаждения, рефлюксной емкостью и насосом, сообщенным с ректификационной колонной и линией отвода регенерированного метанола. Нижняя часть ректификационной колонны через линию отвода технической воды последовательно сообщена с ребойлером, насосом и входным рекуперативным теплообменником. 2 ил.

Изобретение относится к области газовой промышленности, а именно к технике и технологии подготовки углеводородного газа. Способ подготовки углеводородного газа включает сепарацию газа с отводами отделенного углеводородного конденсата и воды, адсорбционную осушку и отбензинивание газа, отвод подготовленного газа, регенерацию адсорбента, стабилизацию углеводородного конденсата, отделенного при сепарации газа и полученного при охлаждении и сепарации газа после проведения регенерации адсорбента, с отводом стабильного конденсата и газов стабилизации, выделившиеся газы стабилизации направляют на собственные нужды или на компримирование с последующей подачей или в поток исходного газа, или в поток подготовленного газа, а отработанный газ регенерации охлаждают дросселированием с последующей ректификацией для дополнительного получения стабильного конденсата, при этом при стабилизации углеводородного конденсата, отделенного при сепарации газа и полученного при охлаждении и сепарации газа после проведения регенерации адсорбента, для охлаждения используют подвергнутый дросселированию отработанный газ регенерации. Техническим результатом является снижение потерь тяжелых углеводородов (С5+выше). 2 н.п. ф-лы, 3 ил.

Изобретение относится к промышленности нефтехимического синтеза, в частности к способу получения полимерного связующего

Изобретение относится к области нефтедобычи, в частности к составам для удаления асфальтено-смолопарафиновых отложений (АСПО), и может быть использовано для растворения и удаления АСПО из призабойной зоны пласта, насосно-компрессорных труб, выкидных линий, трубопроводов, резервуаров и оборудования нефтеперерабатывающих предприятий

Изобретение относится к технологии получения высокооктановых компонентов автомобильных бензинов и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности

 


Наверх