Патенты автора Кузнецов Валерий Алексеевич (RU)

Изобретение относится к газотурбинным двигателям с силовой свободной турбиной. Силовая турбина содержит статор с размещенным в нем роликоподшипником и установленный в роликоподшипнике вал ротора турбины с дисками турбины. Внутреннее кольцо роликоподшипника силовой турбины установлено на промежуточной втулке, размещенной на валу силовой турбины и зафиксировано в осевом направлении с задней по потоку газа стороны установленной на валу гайкой через установленное на втулке пружинное кольцо. Гайка выполнена с кольцевым, осевым, направленным к роликоподшипнику ребром, размещенным с внешней стороны от пружинного кольца. Между промежуточной втулкой и валом выполнена кольцевая щелевая полость. С передней по потоку газа стороны на промежуточной втулке установлено лабиринтное кольцо с радиальными кольцевыми гребешками лабиринта, а также размещенное между лабиринтным кольцом и внутренним кольцом роликоподшипника регулировочное кольцо. К внешней поверхности регулировочного кольца обращено кольцевое радиальное ребро статорного фланца с образованием между ребром и гребешком лабиринтного кольца промежуточной кольцевой полости, соединенной на выходе радиальными каналами с масляной полостью опоры. Изобретение позволяет повысить надежность силовой турбины путем снижения напряжений, создаваемых во внутреннем кольце роликоподшипника валом силовой турбины, а также путем исключения попадания масла в воздушные полости и в газовый тракт турбины на пониженных режимах работы турбины. 3 ил.

Изобретение относится к газотурбинным двигателям с биротативным вентилятором авиационного применения. Газотурбинный двигатель с биротативным вентилятором содержит подпорные ступени, размещенные между рабочими колесами биротативного вентилятора, а также биротативную турбину, соединенную валами с рабочими колесами биротативного вентилятора. Лопатки переднего и заднего рабочих колес биротативного вентилятора выполнены поворотными вокруг радиальной оси, подпорные биротативные ступени на выходе выполнены с диффузорным каналом, первая лопатка внешнего ротора биротативной турбины выполнена с выпуклыми на продольном разрезе газотурбинного двигателя в осевом направлении входной и выходной кромками, а лабиринтное уплотнение между внешним ротором и статором биротативной турбины выполнено с внутренним и с внешним ярусами, с промежуточной воздушной полостью между ярусами, соединенной на входе с промежуточной ступенью компрессора, и оснащено системой активного управления радиальным зазором внешнего яруса уплотнения. Позволяет повысить надежность, экономичность и снизить вес газотурбинного двигателя. 4 ил.

Изобретение относится к газотурбинным двигателям с биротативным вентилятором авиационного применения. Газотурбинный двигатель с биротативным вентилятором содержит подпорные ступени, размещенные между рабочими колесами биротативного вентилятора, а также биротативную турбину, соединенную валами с рабочими колесами биротативного вентилятора. Лопатки переднего и заднего рабочих колес биротативного вентилятора выполнены поворотными вокруг радиальной оси, подпорные биротативные ступени на выходе выполнены с диффузорным каналом, первая лопатка внешнего ротора биротативной турбины выполнена с выпуклыми на продольном разрезе газотурбинного двигателя в осевом направлении входной и выходной кромками, а лабиринтное уплотнение между внешним ротором и статором биротативной турбины выполнено с внутренним и с внешним ярусами, с промежуточной воздушной полостью между ярусами, соединенной на входе с промежуточной ступенью компрессора, и оснащено системой активного управления радиальным зазором внешнего яруса уплотнения. Позволяет повысить надежность, экономичность и снизить вес газотурбинного двигателя. 4 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения. Газотурбинный двигатель содержит газогенератор, выход которого соединен с силовой свободной турбиной. Выход из газогенератора дополнительно соединен с реактивным соплом, выполненным в виде секторов и размещенным с внешней стороны от силовой свободной турбины. На входе в силовую свободную турбину и на входе в реактивное сопло установлены сопловые аппараты с поворотными сопловыми лопатками с возможностью полного перекрытия поворотными сопловыми лопатками проходной площади газового канала на входе как реактивного сопла, так и силовой свободной турбины. Поворотные сопловые лопатки реактивного сопла и свободной силовой турбины установлены на одной геометрической оси, соединены с одним поворотным механизмом. Поворот поворотных сопловых лопаток свободной силовой турбины на перекрытие ее газового канала соответствует полному открытию поворотными сопловыми лопатками газового канала реактивного сопла. Поворот поворотных сопловых лопаток на полное закрытие газового канала реактивного сопла соответствует полному открытию поворотными сопловыми лопатками газового канала на входе в силовую свободную турбину. Изобретение позволяет превращать энергию газового потока на выходе из газогенератора в работу на валу силовой свободной турбины или в реактивную тягу на реактивном сопле двигателя, уменьшить площадь поперечного сечения газотурбинного двигателя на его выходе, синхронизировать поворот всех поворотных сопловых лопаток при минимальной массе конструкции, исключить помпаж газотурбинного двигателя, что повышает его надежность. 2 з.п. ф-лы, 4 ил.

Изобретение относится к упругодемпферным опорам турбин газотурбинных двигателей авиационного и наземного применения. Упругодемпферная опора турбины, содержащая корпус опоры с установленными внутри корпуса внешним и внутренним упругими элементами с щелевой масляной полостью между ними, а также разделяющую масляную и воздушную полости обечайку, при этом внешняя поверхность корпуса опоры выполнена цилиндрической с установленным на ней телескопически в осевом направлении внутренним фланцем обечайки с уплотнительным элементом в кольцевой канавке, а щелевая масляная полость соединена равномерно расположенными по окружности каналами с кольцевыми канавками подвода масла в двух радиальных плоскостях. Изобретение позволяет исключить появление в разделительной обечайке изгибных напряжений вследствие различных температурных деформаций конструктивных элементов опоры, повысить надежность упругодемпферной опоры, обеспечить равномерный подвод масла в осевом и в радиальном направлениях в щелевую масляную полость, а также позволяет обеспечить заданные демпфирующие свойства опоры. 2 ил.

Изобретение относится к турбореактивным двигателям авиационного применения, предназначенным для длительной работы на сверхзвуковом самолете. Турбореактивный двигатель включает прямоугольное сопло, выполненное с удлиненной нижней стенкой сопла с выпукло-вогнутой трактовой поверхностью на выходе, а также канал наружного контура. С внешней стороны от канала наружного контура выполнен внешний канал, на выходе соединенный с внутренней полостью выходного сопла. Нижняя удлиненная стенка сопла выполнена из передней и задней створок с образованием между подвижными концами створок щелевой полости. На входе щелевая полость соединена с внутренней полостью сопла, а на выходе - со сверхзвуковой трактовой частью сопла, с возможностью изменения высоты щелевой полости по режимам работы двигателя. Отношение максимальной высоты щелевой полости к минимальной высоте щелевой полости составляет 5…15. Изобретение позволяет снизить уровень шума турбореактивного двигателя за счет экранирования газового потока низкоскоростным потоком холодного воздуха. 3 ил.

Изобретение относится к высоконапорным компрессорам газотурбинных двигателей авиационного и наземного применения. Высоконапорный компрессор включает в себя консольные лопатки поворотного направляющего аппарата, установленные внешними цапфами в Г-образном кольцевом ребре наружного корпуса. Внутренняя кольцевая обечайка Г-образного кольцевого ребра выполнена с передним осевым кольцевым выступом. Кольцевой выступ контактирует в осевом направлении с расположенным выше по потоку задним осевым кольцевым выступом рабочего кольца. Рабочее кольцо установлено внутри переднего наружного корпуса компрессора. Рабочее кольцо соединено с Г-образным кольцевым ребром через конический упругий элемент. Достигается повышение надежности и КПД компрессора путем уменьшения прогиба поворотных лопаток направляющего аппарата, установленных внешними цапфами в наружном корпусе компрессора. 4 ил.

Изобретение относится к авиационным турбореактивным двигателям, включая двигатели для сверхзвуковых многорежимных самолетов. В турбореактивном двигателе с внешней стороны от канала наружного контура выполнен канал третьего контура, образованный на входе в двигатель промежуточными полками входного направляющего аппарата вентилятора и внешним корпусом двигателя и далее ниже по потоку - разделительными полками рабочих и спрямляющих лопаток вентилятора совместно с внешним корпусом двигателя. Задние кромки входного направляющего аппарата вентилятора в канале третьего контура выполнены поворотными. Внешняя поверхность разделительных полок спрямляющих лопаток выполнена на большем диаметре по отношению к внешней поверхности разделительных полок рабочих лопаток с образованием уступа в проточной части канала третьего контура. Отношение радиальной величины h уступа между разделительными полками рабочей лопатки и спрямляющей лопатки вентилятора в канале третьего контура к осевому зазору δ между разделительными полками рабочих и спрямляющих лопаток вентилятора находится в пределах 0,5…1,5. Изобретение направлено на повышение надежности турбореактивного двигателя. 4 ил.

Изобретение относится к охлаждаемым рабочим лопаткам турбомашин газотурбинных двигателей авиационного и наземного применения. В охлаждаемой рабочей лопатке турбомашины между замковым соединением хвостовика и пером лопатки выполнена удлиненная ножка, внутренняя щелевая полость которой выполнена увеличенной высоты по отношению к высоте внутренней щелевой полости замкового соединения хвостовика лопатки. Щелевая полость удлиненной ножки соединена с щелевыми полостями замкового соединения и пера лопатки переходными щелевыми полостями с плавным изменением проходных площадей. Отношение высоты H внутренней щелевой полости удлиненной ножки к высоте h внутренней щелевой полости замкового соединения хвостовика лопатки находится в пределах 2…6. Угол α наклона стенки переходной щелевой полости между щелевой полостью замкового соединения и щелевой полостью удлиненной ножки к радиальной плоскости рабочей лопатки турбомашины находится в пределах 10…30°. Изобретение повышает надежность охлаждаемой рабочей лопатки за счет уменьшения тепловых потоков от пера лопатки в замковое соединение хвостовика путем снижения температуры замкового соединения хвостовика рабочей лопатки. 2 ил.

Изобретение относится к охлаждаемым рабочим лопаткам турбомашин газотурбинных двигателей авиационного и наземного применения. В охлаждаемой рабочей лопатке турбомашины между замковым соединением хвостовика и пером лопатки выполнена удлиненная ножка, внутренняя щелевая полость которой выполнена увеличенной высоты по отношению к высоте внутренней щелевой полости замкового соединения хвостовика лопатки. Щелевая полость удлиненной ножки соединена с щелевыми полостями замкового соединения и пера лопатки переходными щелевыми полостями с плавным изменением проходных площадей. Отношение высоты H внутренней щелевой полости удлиненной ножки к высоте h внутренней щелевой полости замкового соединения хвостовика лопатки находится в пределах 2…6. Угол α наклона стенки переходной щелевой полости между щелевой полостью замкового соединения и щелевой полостью удлиненной ножки к радиальной плоскости рабочей лопатки турбомашины находится в пределах 10…30°. Изобретение повышает надежность охлаждаемой рабочей лопатки за счет уменьшения тепловых потоков от пера лопатки в замковое соединение хвостовика путем снижения температуры замкового соединения хвостовика рабочей лопатки. 2 ил.

Охлаждаемая лопатка высокотемпературной турбины газотурбинного двигателя содержит во внутренней полости пера цилиндрические перемычки-турбулизаторы и радиальные ребра. На поверхностях внутренней полости пера лопатки, включая входную кромку и радиальные ребра, на выходе из перемычек-турбулизаторов по потоку охлаждающего воздуха и преимущественно перпендикулярно к направлению этого потока выполнены цилиндрические выступы, соединяющие между собой внутреннюю поверхность входной кромки, перемычки и ребра. Отношение диаметра D цилиндрической перемычки-турбулизатора к диаметру d цилиндрического выступа находится в пределах 1,5…10. Отношение диаметра d цилиндрического выступа к высоте h цилиндрического выступа находится в пределах 1,5…2,5. Изобретение повышает надежность охлаждаемой лопатки путем повышения эффективности конвективного охлаждения пера лопатки. 4 ил.

Изобретение относится к двухконтурным газотурбинным двигателям авиационного и наземного применения. Двухконтурный газотурбинный двигатель включает в себя валы (5) и (12) вентилятора (2) и турбины низкого давления (11), соединенные с помощью эвольвентных шлиц (13). Внутри вала (5) вентилятора установлен стяжной винт (14) на сферических кольцах (16) и (17) и ввернут в стяжную втулку (15). Втулка (15) установлена в валу (12) турбины низкого давления с помощью сферического кольца (19) и зафиксирована в окружном направлении шлицами (20) балансировочной втулки (21). Втулка (21) установлена внешними осевыми ребрами (22) во внутренней кольцевой канавке (23) вала (5) вентилятора и зафиксирована относительно осевых выступов (28) на его хвостовике (24) в осевом и в окружном направлениях радиальными выступами (25), выполненными на радиальном ребре (26), и стопорным кольцом (27) с возможностью установки в кольцевой канавке (23) вала в пазах (29) между осевыми ребрами (22) втулки (21) балансировочных грузиков (30). Боковые стенки (33) и (34) пазов (29) выполнены параллельными между собой. Путем устранения дисбаланса вала вентилятора и исключения изгибных напряжений в стяжном винте повышается надежность двухконтурного газотурбинного двигателя. 4 ил.

Изобретение относится к статорам компрессоров высокого давления газотурбинных двигателей авиационного и наземного применения. Статор компрессора высокого давления включает в себя внешний и внутренний корпусы, кольцевую обечайку (6), перфорированную отверстиями (7). Корпусы соединены между собой упругими элементами. В отверстиях (7) кольцевой обечайки (6) установлены сопла (8), выходной срез (9) которых направлен к поверхности (10) внутреннего корпуса. Присоединительный фланец (11) внутреннего корпуса выполнен с отверстиями (13) под болты (14) резьбовых соединений и открытыми к кольцевой обечайке (6) вырезами (15) между отверстиями (13). Отношение расстояния Т в окружном направлении между выходными срезами (9) сопел (8) к расстоянию Н в окружном направлении между центрами отверстий (13) под болты (14) резьбовых соединений равно 0,7-2,5. Путем повышения эффективности охлаждения внутреннего корпуса за счет минимизации расстояния между выходом из сопла и охлаждаемой поверхностью внутреннего корпуса повышается коэффициент полезного действия компрессора высокого давления. 2 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения. Газотурбинный двигатель включает компрессор и двухступенчатую турбину, компрессор низкого давления, на выходе которого установлен компрессор. В двухступенчатой турбине внутренняя полость сопловой лопатки второй ступени на входе соединена с промежуточной ступенью компрессора через заслонку регулирования расхода охлаждающего воздуха. Двухступенчатая турбина также снабжена системой обдува внешней поверхности ее наружного корпуса. Система обдува на входе подключена к механизму переключения потоков воздуха, вход которого соединен с выходом компрессора и выходом компрессора низкого давления. Изобретение позволяет повысить надежность и экономичность газотурбинного двигателя за счет уменьшения радиальных зазоров между статором и ротором турбины. 2 ил.

Изобретение относится к статорам компрессоров газотурбинных двигателей авиационного и наземного применения. Статор компрессора включает в себя внешний (2) и внутренний (3) корпуса, соединенные между собой передним (5) и задним (6) по потоку воздуха (4) упругими коническими фланцами, а также перфорированную кольцевую обечайку (7) с отверстиями (10) подачи воздуха, размещенную с внешней стороны от внутреннего корпуса (3). Кольцевая обечайка (7) выполнена с направленными к оси (8) статора компрессора выступами (9). Радиальный фланец (14) крепления внутреннего корпуса (3) к заднему упругому коническому фланцу (6) выполнен с вырезами со стороны кольцевой обечайки (7). Обращенная к оси (8) компрессора поверхность (17) выступов (9) кольцевой обечайки (7) выполнена эквидистантной поверхности вырезов радиального фланца (14). Отверстия (10) подачи воздуха расположены на выступах (9) кольцевой обечайки (7). Задний упругий конический фланец (6) выполнен с внешним осевым кольцевым ребром, снабженным радиальными каналами, расположенными напротив выступов (9) кольцевой обечайки (7). Предложенное изобретение позволяет повысить экономичность компрессора путем повышения эффективности обдува внутреннего корпуса компрессора охлаждающим воздухом. 3 ил.

Газотурбинный двигатель включает вентилятор и компрессор низкого давления, рабочие колеса которых установлены на общем валу с помощью осевых болтов с гайками. На осевые болты между гайкой и фланцем крепления рабочего колеса вентилятора к валу установлены балансировочные удлинительные втулки, во внутренней полости которых расположен участок перехода от резьбовой части хвостовика болта к цилиндрической. Головки болтов зафиксированы вокруг своей оси фланцем лабиринта, а в осевом направлении - кольцом, установленным на валу вентилятора с помощью промежуточных втулок. Отношение наружного диаметра балансировочной втулки к диаметру цилиндрической части хвостовика болта составляет 1,2…3, отношение диаметра цилиндрической части хвостовика болта к длине балансировочной втулки 1,0…3, а отношение длины промежуточной втулки к длине головки болта 1…1,2. Изобретение позволяет повысить надежность газотурбинного двигателя за счет исключения дисбаланса ротора вентилятора и повышения прочности затяжки и осевой фиксации болтов крепления рабочих колес вентилятора и компрессора низкого давления к валу вентилятора. 4 ил.

Изобретение относится к статорам турбин газотурбинных двигателей авиационного и наземного применения. Статор турбины включает в себя внешний корпус, на котором установлены стойки опоры с обтекателями (7), и расположенные по потоку (5) газа охлаждаемые сопловые лопатки (14) с нижними полками (15). Внутреннее радиальное ребро (8) каждого обтекателя (7) расположено в U-образном уплотнительном кольце (9), установленном на кольцевом цилиндрическом фланце (11) опоры. U-образное уплотнительное кольцо (9) выполнено с внешним (12) и внутренним (13) С-образными в поперечном сечении выступами, направленными в сторону сопловых лопаток (14). С-образные выступы (12) и (13) образуют соединения типа «щип-паз» с внутренним кольцом (16), установленным в радиальном направлении на нижних полках (15) сопловых лопаток (14). В обечайке (22) внутреннего кольца (16) выполнены каналы (23) для дозированной подачи охлаждающего воздуха в полость (20) пониженного давления. Изобретение позволяет повысить надежность статора турбины газотурбинного двигателя. 1 з.п. ф-лы, 2 ил.

Турбореактивный двигатель включает в себя вентилятор (2) с входным обтекателем (3) на рабочем колесе (4) и радиально-упорный подшипник (5) с лабиринтными уплотнениями масляной полости (7), а также компрессор низкого давления (8) и компрессор высокого давления (9). С передней стороны лабиринтных уплотнений последовательно расположены кольцевая полость охлаждающего воздуха повышенного давления и кольцевая полость обогревающего воздуха повышенного давления. Кольцевая полость охлаждающего воздуха на выходе через лабиринтные уплотнения соединена с масляной полостью, а на входе - через трубы, расположенные в каналах опоры масляной полости, незамкнутый коллектор и трубу в масляной полости - с периферийной полостью (17) проточной части (18) компрессора низкого давления (8) на его выходе (19). Кольцевая полость обогревающего воздуха соединена на выходе с воздушными полостями (23) входного обтекателя (3), а на входе - через разрыв незамкнутого коллектора и трубу (25) в масляной полости радиально-упорного подшипника вентилятора - с проточной частью (26) на выходе (27) компрессора высокого давления (9). Достигается повышение надежности двигателя за счет противообледенительного обогрева обтекателя вентилятора и повышения эффективности лабиринтного уплотнения масляной полости радиально-упорного подшипника вентилятора. 3 ил.

Газотурбинный двигатель (1) включает в себя диск (13) вентилятора (2) и конусный вал (8) компрессора низкого давления (3), закрепленные радиальными фланцами (9) и (16) на радиальном фланце (11) общего вала (12) вентилятора призонными болтами (19). Конусный вал (8) компрессора низкого давления установлен фланцем (9) на наружной поверхности (10) фланца (11) вала (12) вентилятора. Диск (13) вентилятора размещен фланцем (16) на внутренней поверхности (17) фланца (11) вала (12) вентилятора. Отношение толщины h радиального фланца диска вентилятора в месте размещения призонных болтов к толщине Н радиального фланца вала вентилятора находится в пределах 0,8…1,2. Отношение толщины h1 радиального фланца конусного вала компрессора низкого давления в месте размещения призонных болтов к толщине Н радиального фланца вала вентилятора находится в пределах 0,4…0,8. Путем исключения смятия призонных болтов, а также исключения появления дисбаланса роторов вентилятора и компрессора низкого давления при работе газотурбинного двигателя повышается его надежность. 2 ил.

В газотурбинном двигателе воздушные полости валов и подшипниковых опор соединены с кольцевыми коллекторами повышенного и пониженного давления воздуха, выполненными с возможностью переключения отбора воздуха с коллектора повышенного на коллектор пониженного давления воздуха. Коллектор пониженного давления воздуха на входе соединен с проточной частью газотурбинного двигателя за третьей ступенью компрессора низкого давления. Коллектор повышенного давления воздуха на входе соединен с проточной частью газотурбинного двигателя за третьей ступенью компрессора высокого давления. Между коллектором повышенного давления воздуха и воздушными полостями подшипниковых опор и валов установлен воздухо-воздушный теплообменник, размещенный в канале наружного контура газотурбинного двигателя. Изобретение повышает надежность газотурбинного двигателя путем снижения температуры воздуха, поступающего из коллектора повышенного давления на охлаждение валов газотурбинного двигателя и на наддув воздушных полостей подшипниковых опор. 4 ил.

Изобретение относится к двухконтурным газотурбинным двигателям авиационного применения. Двухконтурный двигатель включает рабочее колесо вентилятора, спрямляющие лопатки и компрессор низкого давления на выходе из рабочего колеса, а также разделитель потоков воздуха между наружным и внутренним контурами двухконтурного двигателя. Лопатки входного направляющего аппарата совместно с разделителем потоков установлены на переднем внешнем кольцевом радиальном ребре наружного корпуса компрессора низкого давления и зафиксированы осевыми болтами с удлиненными шестигранными головками. Болты расположены в кольцевой, открытой в сторону канала наружного контура полости между передним и задним кольцевыми ребрами наружного корпуса. Заднее ребро выполнено с соосными шестигранным головкам болтов осевыми отверстиями. Осевое перемещение шестигранной головки болта ограничено расположенной ниже по потоку внутренней полкой спрямляющей лопатки вентилятора. Лопатки входного направляющего аппарата зафиксированы также в разделителе потоков болтами с потайной головкой, ограниченной от осевого перемещения передним кольцевым ребром. Суммарное число болтов с шестигранной и с потайной головками равно числу лопаток входного направляющего аппарата компрессора низкого давления. Изобретение позволяет повысить надежность двухконтурного газотурбинного двигателя. 3 ил.

Изобретение относится к высокотемпературным газовым турбинам газотурбинных двигателей авиационного и наземного применения. Высокотемпературная газовая турбина включает в себя лабиринтное уплотнение по сотовому блоку на внутренней полке, выполненной с дефлектором и с внутренней воздушной полостью охлаждаемой сопловой лопатки. Воздушная полость на выходе из сопловой лопатки через дозирующее отверстие в дефлекторе и через расположенные во внутренней полке в окружном направлении раздаточный канал и систему осевых каналов соединена с перфорацией, выходящей во внутренние полости ячеек сотового блока. Осевые каналы дополнительно соединены перфорацией с наружной поверхностью внутренней полки сопловой лопатки. Изобретение повышает надежность и экономичность высокотемпературной газовой турбины посредством исключения перегрева и разрушения сотового блока лабиринтного уплотнения, а также уменьшения радиального зазора в уплотнении. 1 з.п. ф-лы, 3 ил.

Изобретение относится к упругодемпферным опорам турбин газотурбинных двигателей авиационного и наземного применения. В упругодемпферной опоре (1) турбины корпус (2) содержит радиальное ребро (7) с пристыкованными к нему ограничивающими масляную полость (10) фланцами (8) и (9) и стенку (11) с пристыкованными к ней трубами (18) подвода воздуха. Стенка (11) выполнена радиальной с плоской поверхностью (19) стыка с трубами (18) подвода воздуха. Между радиальной стенкой (11) и радиальным ребром (7) выполнена упругая цилиндрическая перемычка (20). Отношение среднего диаметра роликоподшипника D к осевой длине цилиндрической перемычки L находится в пределах 2…6. Отношение осевой длины цилиндрической перемычки L к минимальной толщине цилиндрической перемычки h находится в пределах 10…20. Путем снижения термических напряжений в корпусе упругодемпферной опоры повышается ее надежность, а также снижаются паразитные утечки охлаждающего воздуха. 1 ил.

Вентилятор (1) газотурбинного двигателя включает в себя радиально-упорный подшипник (9), внутреннее кольцо (14) которого закреплено гайкой (10) с радиальными выступами (22) под ключ на резьбовом хвостовике (13) и жиклер (26) подачи масла на смазку. Гайка (10) выполнена с конусным, направленным к оси (15) вентилятора, хвостовиком (16). На наружной поверхности (17) хвостовика (16) установлен в виде радиальных выступов (19) индуктор (18) датчика (20) частоты вращения. На внутренней поверхности (23) конусного хвостовика (16) выполнено радиальное кольцевое ребро (24) с образованием кольцевой полости (25) подвода масла. Полость подвода масла на входе соединена с жиклером (26), а на выходе - с радиальными каналами (30) во внутреннем кольце (14) подшипника. Отношение внутреннего диаметра D внутреннего кольца радиально-упорного подшипника вентилятора к осевому расстоянию L между радиальными выступами индуктора и радиальными выступами резьбового хвостовика гайки находится в пределах 3…6. Отношение внутреннего диаметра D к внутреннему диаметру d радиального кольцевого ребра на конусном хвостовике гайки находится в пределах 1,05…1,2. Путем равномерной подачи масла со стороны внутреннего кольца подшипника, а также путем исключения ложных сигналов на индуктивном датчике повышается надежность вентилятора газотурбинного двигателя. 2 ил.

Изобретение относится к статорам высокотемпературных турбин газотурбинных двигателей авиационного и наземного применения. Статор высокотемпературной турбины включает размещенную в промежуточном корпусе сопловую лопатку и установленные ниже по потоку газа сектора разрезного кольца, выполненные с внутренней воздушной полостью. На внешней стороне каждого сектора разрезного кольца размещен полый патрубок, передним осевым цилиндрическим хвостовиком установленный в промежуточном корпусе. Внутренняя полость патрубка на входе соединена с воздушной полостью промежуточного корпуса, а на выходе - с внутренней полостью сектора разрезного кольца. Передний хвостовик сектора разрезного кольца установлен в сопловой лопатке соединением щип - паз с радиальными зазорами, а патрубок размещен по оси симметрии сектора разрезного кольца. Изобретение позволяет повысить надежность статора высокотемпературной турбины, за счет исключения паразитных утечек охлаждающего воздуха, поступающего на охлаждение секторов разрезного кольца. 5 ил.

Газотурбинный двигатель (1) включает в себя корпус приводов (2) с расположенным за ним ниже по потоку воздуха (3) компрессором (4) с передними по потоку спрямляющими (8) и рабочими (9) титановыми лопатками. На переднем хвостовике (12) вала (13) компрессора установлено зубчатое колесо (14) привода агрегатов. На зубчатом колесе выполнен направленный к корпусу приводов (2) упорный радиальный торец (16), а на корпусе приводов выполнена ответная торцу (16) опорная радиальная поверхность (17). Отношение минимального осевого расстояния H между входной кромкой передней рабочей лопатки и выходной кромкой направляющей лопатки компрессора к осевому расстоянию h между упорным торцом зубчатого колеса и опорной поверхностью корпуса приводов находится в пределах 1,1…3. Путем исключения поломок титановых лопаток компрессора в случае разрушения его радиально-упорного подшипника повышается надежность газотурбинного двигателя. 2 ил.

Изобретение относится к роторам турбин низкого давления газотурбинных двигателей авиационного и наземного применения. Ротор турбины включает установленный на задней по потоку газа стороне обода диска лабиринт с внутренним радиальным ребром, а также установленный с передней стороны обода диска фланец. Фланец образует с ободом диска кольцевую воздушную полость, соединенную на выходе с газовой полостью, а на входе, через каналы в замковом соединении лопатки с диском, с внутренней полостью лабиринта. Лабиринт установлен на диске радиальным фланцем, соединенным с радиальным ребром упругим элементом. Внутренняя полость лабиринта соединена с каналами в замковом соединении через открытые к диску пазы в радиальном фланце лабиринта. Воздушная полость с передней стороны обода соединена с газовой полостью через фаски в замковом соединении лопатки с диском. Отношение осевой длины заднего кольцевого ребра лабиринта относительно внутреннего радиального ребра к осевой длине переднего кольцевого ребра лабиринта относительно внутреннего радиального ребра составляет 2…5. Отношение осевой длины переднего кольцевого ребра лабиринта относительно внутреннего радиального ребра к радиусу поверхности упругого элемента составляет 1,5…3. Изобретение позволяет повысить надежность ротора турбины низкого давления. 1 ил.

Изобретение относится к роторам турбомашин газотурбинных двигателей авиационного и наземного применения. Ротор турбомашины включает диск турбины, соединенный с валом компрессора болтовым соединением, и втулку, расположенную с внутренней стороны ступицы диска. Втулка состоит из подвижной и неподвижной частей. Хвостовик неподвижной части выполнен с кольцевым ребром и кольцевой канавкой. Подвижная часть расположена со стороны болтового соединения и выполненной с возможностью осевого сдвига. Передний хвостовик подвижной части втулки выполнен с уплотнительными кольцами и зафиксирован в радиальном направлении компрессорной втулкой. Задний хвостовик подвижной части втулки выполнен с осевыми пазами и радиальными выступами. Задний хвостовик подвижной части втулки зафиксирован в радиальном направлении кольцевым ребром неподвижной части втулки. В окружном направлении задний хвостовик подвижной части втулки зафиксирован радиальными ребрами хвостовика неподвижной части втулки, входящими в осевые пазы хвостовика подвижной части втулки. В осевом направлении задний хвостовик подвижной части втулки зафиксирован радиальными выступами, входящими во внутреннюю кольцевую канавку хвостовика неподвижной части втулки. Изобретение позволяет повысить надежность и технологичность конструкции ротора турбомашины. 5 ил.

Изобретение относится к статорам турбин низкого давления газотурбинных двигателей авиационного и наземного применения. Статор турбины низкого давления включает наружный корпус и разрезное кольцо. Разрезное кольцо состоит из секторов, расположенных между передней и задней сопловыми лопатками, и установлено на кольцевых ребрах наружного корпуса. Каждый сектор выполнен из слоев листового материала. Передняя по потоку газа часть сектора выполнена однослойной, центральная часть сектора - двухслойной и задняя часть сектора - частично двухслойной и частично трехслойной. Слои листового материала каждого сектора имеют одинаковую толщину, расположены радиально относительно друг друга и соединены между собой неразъемными соединениями. В переднем кольцевом ребре наружного корпуса выполнены каналы, соединяющие воздушную полость передней сопловой лопатки с воздушной кольцевой полостью между наружным корпусом турбины и передней однослойной частью сектора. Первый и второй от проточной части слои листового материала смещены относительно друг друга в окружном направлении с образованием уплотнительных козырьков. Третий от проточной части слой выполнен укороченным в окружном направлении и расположен в осевом пазу заднего кольцевого ребра наружного корпуса турбины. Изобретение позволяет повысить надежность статора турбины, а также его технологичность за счет выполнения секторов разрезного кольца из листового материала. 5 ил.

Изобретение относится к турбинам двухконтурных газотурбинных двигателей авиационного применения. Турбина двухконтурного газотурбинного двигателя включает турбины высокого и низкого давлений с опорами ротора турбин. Внутри ротора турбины низкого давления расположена воздушная полость повышенного давления, соединенная на входе с воздушной полостью первого соплового аппарата турбины низкого давления, а на выходе через заднее лабиринтное уплотнение - с проточной частью турбины низкого давления. Воздушная полость повышенного давления ограничена с внутренней стороны - первым и вторым лабиринтными уплотнениями. Уплотнения отделяют воздушную полость повышенного давления от воздушной полости пониженного давления. Воздушная полость пониженного давления разделена на переднюю и заднюю полости. Передняя полость расположена между опорой турбины высокого давления и конусным фланцем вала турбины низкого давления. Задняя полость расположена между конусным фланцем вала турбины низкого давления и опорой турбины низкого давления. Первое и второе лабиринтные уплотнения расположены друг относительно друга таким образом, чтобы отношение минимального диаметра по уплотнительным гребешкам первого лабиринтного уплотнения к минимальному диаметру по уплотнительным гребешкам второго лабиринтного уплотнения составляло 1,2…2,0. Изобретение позволяет повысить надежность и КПД турбины. 3 ил.

Изобретение относится к турбинам турбореактивных двигателей повышенной степени двухконтурности. Турбина турбореактивного двигателя включает статор, роторы высокого и низкого давлений с размещенным между ними межвальным уплотнением, содержащим установленный на валу ротора высокого давления фланец и ответный ему лабиринт на валу ротора низкого давления. Фланец выполнен S-образным в поперечном сечении и расположен с внутренней стороны роторного лабиринта, установленного на хвостовике вала ротора высокого давления и фиксирующего в осевом направлении посредством резьбового хвостовика внутреннее кольцо роликоподшипника ротора высокого давления. Фланец зафиксирован в радиальном направлении цилиндрической внутренней поверхностью роторного лабиринта, а в осевом направлении - торцевой поверхностью хвостовика вала ротора высокого давления, с одной стороны, и расположенным на роторном лабиринте стопорным разжимным кольцом, с другой стороны. Передний и задний по потоку газа хвостовики фланца посредством шлицов соединены соответственно с валом ротора высокого давления и роторным лабиринтом. Ответный фланцу лабиринт на валу ротора низкого давления выполнен с цилиндрическим осевым кольцевым ребром, пластически деформированным и установленным с упором в выемки вала ротора низкого давления. Изобретение позволяет повысить надежность и ремонтопригодность турбины турбореактивного двигателя. 3 ил.

Изобретение относится к роторам высокотемпературных турбин газотурбинных двигателей авиационного и наземного применения. Ротор высокотемпературной турбины включает диски первой и второй ступени, между которыми расположен промежуточный диск с радиальными выступами. Промежуточный диск фиксируется радиальными выступами в окружном направлении относительно осевых выступов, расположенных на полотне диска первой ступени. Осевые выступы на полотне диска первой ступени выполнены таким образом, что образуют в поперечном сечении U-образный выступ. Кольцевое ребро промежуточного диска, размещенное с внутренней стороны обода диска первой ступени, выполнено с пазами. Посредством пазов воздушные полости повышенного давления сообщаются с кольцевой воздушной полостью пониженного давления, ограниченной кольцевым ребром промежуточного диска, радиальными выступами промежуточного диска, U-образным выступом и полотном диска первой ступени. Отношение длины U-образного выступа в осевом направлении к глубине канавки U-образного выступа составляет 1,1 - 2. Изобретение позволяет повысить надежность и снизить вес ротора высокотемпературной турбины. 3 ил.

Изобретение относится к статорам турбин газотурбинных двигателей авиационного и наземного применения. Статор турбины включает наружный корпус и обтекатели стоек подшипниковой опоры, зафиксированные болтовыми соединениями в наружном корпусе. Внешние радиальные ребра обтекателей стоек подшипниковой опоры зафиксированы в осевом направлении относительно наружного корпуса U-образным в поперечном сечении стопорным кольцом. Переднее по потоку газа радиальное кольцевое ребро стопорного кольца установлено в кольцевой канавке наружного корпуса. Заднее радиальное кольцевое ребро стопорного кольца установлено с радиальным зазором относительно внешнего осевого кольцевого ребра наружного корпуса и выполнено с выемками. Отношение максимальной высоты стопорного кольца в поперечном сечении к величине радиального зазора между задним кольцевым ребром стопорного кольца и осевым кольцевым ребром наружного корпуса составляет 10-100. Отношение максимальной высоты стопорного кольца в поперечном сечении к осевой ширине стопорного кольца составляет 0,5-2. Изобретение позволяет повысить надежность статора турбины. 3 ил.

Изобретение относится к упругодемпферным опорам газотурбинных турбореактивных двигателей авиационного и наземного применения. Упругодемпферная опора турбореактивного двигателя включает внутреннюю втулку, соединенную с С-образным упругим элементом, опорное кольцо и задний фланец лабиринта. Опорное кольцо выполнено за одно целое с задним фланцем лабиринта. Между опорным кольцом и внутренней втулкой установлена перфорированная промежуточная втулка. А между перфорированной промежуточной втулкой и внутренней втулкой расположена демпферная полость. Отверстия промежуточной втулки выполнены с возможностью сообщения кольцевых каналов подвода масла в опорном кольце с щелевой демпферной полостью. Радиальные выступы на заднем хвостовике промежуточной втулки находятся в зацеплении с осевыми выступами заднего хвостовика внутренней втулки. На радиальном ребре перфорированной промежуточной втулки установлен Г-образный в поперечном сечении жиклер подвода масла. Радиальный хвостовик жиклера расположен между составными частями С-образного упругого элемента. Техническим результатом заявленного изобретения является повышение эффективности и надежности работы упругодемпферной опоры, а также снижение веса конструкции опоры. 2 ил.

Изобретение относится к статорам газовых турбин авиационного и наземного применения. Статор газовой турбины включает наружный корпус с установленными по газовому потоку блоками сопловых лопаток, между которыми расположены секторы разрезного кольца. Блоки сопловых лопаток в осевом направлении посредством радиальных ребер зафиксированы L-образным стопорным кольцом, а в окружном направлении - осевыми выступами наружного корпуса, расположенными между радиальными ребрами блоков сопловых лопаток. Секторы разрезного кольца посредством передних хвостовиков установлены в радиальном направлении между осевыми выступами L-образного стопорного кольца и осевыми выступами блоков сопловых лопаток. В окружном направлении секторы разрезного кольца установлены с образованием пазов между радиальными ребрами блоков сопловых лопаток и зафиксированы посредством осевых выступов. Выступы секторов разрезного кольца расположены со стороны проточной части и направлены навстречу осевым выступам наружного корпуса. Передний хвостовик каждого сектора разрезного кольца расположен таким образом, чтобы отношение расстояния между хвостовиком сектора разрезного кольца и дном паза к радиусу перехода от дна паза к боковой стенке радиального ребра блока сопловых лопаток составляет 1,1-3. Изобретение позволяет повысить надежность статора газовой турбины. 1 з.п. ф-лы, 3 ил.

Изобретение относится к роторам высокотемпературных турбомашин газотурбинных двигателей авиационного и наземного применения. В роторе (1) высокотемпературной турбомашины между первым (7) и вторым (8) и предпоследним (9) и последним (10) по потоку газа (11) уплотнительными гребешками в ободе (6) промежуточного диска 5 выполнены радиальные каналы (13) и (14), соединяющие воздушную междисковую полость (4) с газовой полостью (12) турбины. Радиальные стенки (15) и (16) каналов (13) и (14) выполнены плоскими, а соединяющие их стенки (17) и (18) выполнены цилиндрическими. Отношение длины L канала в окружном направлении к радиусу R цилиндрической стенки канала находится в пределах 2...6. Путем исключения загрязнения внутренней поверхности промежуточного диска и снижения концентрации напряжений в ободе диска повышается надежность ротора высокотемпературной турбомашины. 2 ил.

Ротор турбины высокого давления включает диск, установленный фланцем, расположенным со стороны выходной кромки рабочей лопатки, на размещенной на валу втулке. На противоположной от диска стороне втулки выступами радиального ребра установлен лабиринт с уплотнительными гребешками. Фланец диска совместно с выступами, выполненными на радиальном ребре лабиринта, зафиксирован на втулке шпильками с расположенными по краям шпилек передней и задней гайками. Между выступами радиального ребра выполнены открытые к периферии выборки с размещенными в них задними гайками крепления шпилек с установленными под гайками шайбами или балансировочными грузиками. Все шпильки выполнены одинаковой длины, а на каждом выступе и в каждой выборке расположена только одна задняя гайка. Толщина шайбы под гайкой, осевая толщина выступа радиального ребра лабиринта и толщина установочного фланца балансировочного грузика выполнены одинаковыми. Изобретение позволяет повысить надежность ротора турбины высокого давления, а также уменьшить его вес и осевые габариты. 5 ил.

Опора турбины газотурбинного двигателя содержит подшипник (4), вал (6) и лабиринт (11) с фланцем (10) между подшипником (4) и диском (8) турбины. С внешней стороны фланца (10) лабиринта (11) установлен дополнительный фланец (12) с образованием полости продувки (13). Полость (13) на входе соединена с воздушной полостью (14) кожуха вала (15), а на выходе, через наклонные к оси (16) опоры (1) пазы (17) и каналы (18) в лабиринте (11) и (19) в валу (6), с внутренней полостью (20) вала (6). Пазы (17) от входа (21) к выходу (22) направлены по направлению (23) вращения вала (6). С внешней стороны дополнительного фланца (12) установлен дефлектор (25) с байонетным креплением (26) внутреннего хвостовика (27) на дополнительном фланце (12) с образованием щелевой воздушной полости (28). Ближний к диску (8) турбины лабиринт (31) опоры выполнен с уплотнительными микрогребешками (34) на рабочей поверхности (35) обода (33) увеличенной толщины. Отношение высоты h микрогребешка (34) к величине радиального зазора δ в ближнем к диску (8) лабиринте (31) находится в пределах 1,5…2,5. Отношение максимального диаметра D ближнего к диску лабиринта (31) к минимальной толщине Н обода (33) лабиринта (31) находится в пределах 20...40. Путем снижения поступающих в масляную полость опоры тепловых потоков повышается надежность опоры турбины, а также снижаются термические напряжения в ближнем к диску турбины лабиринте опоры. 4 ил.

Высокотемпературная газовая турбина содержит рабочую лопатку первой ступени, первую сопловую лопатку и установленную на внутреннем корпусе камеры сгорания опору соплового аппарата. Первая сопловая лопатка верхней полкой установлена в наружном корпусе камеры сгорания, а радиальными ребрами нижней полки установлена в канавках внутреннего кольца первого соплового аппарата. Внутреннее кольцо выполнено с U-образным в поперечном сечении упругим элементом с креплением центральной части упругого элемента к опоре соплового аппарата. Передняя по потоку газа часть внутреннего кольца выполнена с каналами подвода охлаждающего воздуха на сопловую лопатку. Задняя по потоку часть внутреннего кольца выполнена с кольцевым осевым ребром лабиринтного уплотнения по нижней полке первой рабочей лопатки. Угол наклона внутренней поверхности кольцевого ребра к оси турбины находится в пределах 20…40°. Отношение высоты радиальной стенки упругого элемента к толщине радиальной стенки упругого элемента находится в пределах 6…10. Изобретение уменьшает напряжение в первой сопловой лопатке и уменьшает температуры нижней полки первой сопловой лопатки, повышая тем самым надежность высокотемпературной газовой турбины. 3 ил.

Высокотемпературный газотурбинный двигатель включает турбину, в которой внутренняя полость охлаждаемой сопловой лопатки второй ступени на входе через заслонку регулирования расхода охлаждающего воздуха соединена с промежуточной ступенью компрессора. Рабочая лопатка второй ступени турбины выполнена охлаждаемой с внутренней полостью, на входе соединенной с промежуточной ступенью компрессора через дополнительную заслонку регулирования расхода охлаждающего воздуха. Отношение проходной площади Fс.взл. заслонки регулирования расхода охлаждающего воздуха на сопловую лопатку второй ступени на взлетном режиме к проходной площади Fс.кр. заслонки регулирования расхода охлаждающего воздуха на сопловую лопатку второй ступени на крейсерском режиме находится в пределах 1,5…2,5. Отношение проходной площади Fр.взл. заслонки регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени на взлетном режиме к проходной площади Fp.кр. заслонки регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени на крейсерском режиме находится в пределах 2…4. Изобретение направлено на повышение надежности и экономичности высокотемпературного газотурбинного двигателя путем уменьшения расхода воздуха на охлаждение рабочей лопатки второй ступени турбины на крейсерском режиме работы газотурбинного двигателя по отношению к взлетному режиму. 1 ил.

Статор турбомашины включает фланцевое соединение корпусов, состоящих из радиальных кольцевых ребер и присоединенных к ним обечаек. В стыке фланцевого соединения со стороны проточной части установлено дополнительное, состоящее из секторов, разрезное кольцо. Разрезное кольцо зафиксировано кольцевым радиальным ребром в осевом направлении между передним и задним по потоку газа радиальными ребрами фланцевого соединения корпусов статора. В радиальном направлении разрезное кольцо зафиксировано кольцевым осевым ребром, направленным против потока газа и размещенным в кольцевой канавке передней обечайки, а в окружном направлении - осевыми выступами на конической стенке относительно передней по потоку газа сопловой лопатки. Торцевой поверхностью конической стенки кольца зафиксированы передние сопловые лопатки в осевом направлении. С внутренней стороны от заднего по потоку газа корпуса расположен задний кольцевой выступ разрезного кольца, на внутренней стороне которого установлены уплотняющие элементы лабиринтного уплотнения по верхней полке рабочей лопатки. Изобретение позволяет повысить надежность статора турбомашины. 1 ил.

Турбина низкого давления, в которой с внутренней стороны корпуса установлено секторное разрезное кольцо с уплотняющей сотовой вставкой, расположенной со стороны верхней полки рабочей лопатки турбины. Разрезное кольцо выполнено из листового материала одинаковой толщины. Передний и задний по газовому потоку хвостовики кольца выполнены двухслойными, а центральная часть кольца с сотовой вставкой выполнена однослойной. Передний же хвостовик кольца выполнен с направленным к оси турбины ребром. Ребро установлено в пазу промежуточного кольца, размещенного между передним и задним по потоку газа радиальными фланцами корпуса. Изобретение позволяет повысить надежность турбины. 4 ил.

Статор турбомашины включает фланцевое соединение корпусов, состоящих из радиальных кольцевых ребер и присоединенных к ним обечаек. В стыке фланцевого соединения со стороны проточной части установлено дополнительное, состоящее из секторов, разрезное кольцо. Разрезное кольцо зафиксировано кольцевым радиальным ребром в осевом направлении между передним и задним по потоку газа радиальными ребрами фланцевого соединения корпусов статора. В радиальном направлении разрезное кольцо зафиксировано кольцевым осевым ребром, направленным против потока газа и размещенным в кольцевой канавке передней обечайки, а в окружном направлении - осевыми выступами на конической стенке относительно передней по потоку газа сопловой лопатки. Торцевой поверхностью конической стенки кольца зафиксированы передние сопловые лопатки в осевом направлении. С внутренней стороны от заднего по потоку газа корпуса расположен задний кольцевой выступ разрезного кольца, на внутренней стороне которого установлены уплотняющие элементы лабиринтного уплотнения по верхней полке рабочей лопатки. Изобретение позволяет повысить надежность статора турбомашины. 1 ил.

Турбина низкого давления, в которой с внутренней стороны корпуса установлено секторное разрезное кольцо с уплотняющей сотовой вставкой, расположенной со стороны верхней полки рабочей лопатки турбины. Разрезное кольцо выполнено из листового материала одинаковой толщины. Передний и задний по газовому потоку хвостовики кольца выполнены двухслойными, а центральная часть кольца с сотовой вставкой выполнена однослойной. Передний же хвостовик кольца выполнен с направленным к оси турбины ребром. Ребро установлено в пазу промежуточного кольца, размещенного между передним и задним по потоку газа радиальными фланцами корпуса. Изобретение позволяет повысить надежность турбины. 4 ил.

Изобретение относится к лабиринтным уплотнениям турбин газотурбинных двигателей авиационного и наземного применения. Лабиринтное уплотнение турбины состоит из размещенного на сопловой лопатке статорного фланца и установленного между дисками и турбиной лабиринта. На внешней поверхности лабиринта размещены уплотнительные гребешки. Каждый из гребешков состоит из обращенных к фланцу внешних прямоугольной и конической частей. На противоположной внутренней поверхности лабиринта также расположена прямоугольная в поперечном сечении внутренняя часть уплотнительного гребешка. Лабиринт состоит из переднего лабиринта, установленного на переднем по потоку газа диске турбины, и заднего лабиринта, установленного на заднем по потоку диске, со стыком лабиринтов и по внутренней поверхности прямоугольной части уплотнительного гребешка заднего лабиринта. Отношение общей высоты Н уплотнительного гребешка, включая его прямоугольную часть, расположенную на внутренней поверхности лабиринта, к радиальному зазору у между лабиринтом и фланцем находится в пределах 6....12. Отношение общей высоты Н к радиальной высоте h внутренней прямоугольной части гребешка находится в пределах 2…5. Отношение общей высоты Н к осевой толщине L прямоугольной части гребешка находится в пределах 2…6. Путем снижения температуры уплотнительных гребешков лабиринта повышается надежность лабиринтного уплотнения. 2 ил.

Высокотемпературная турбина газотурбинного двигателя, в наружном корпусе которой установлены сопловая лопатка и ниже по потоку газа разрезное секторное кольцо, а также рабочая лопатка и уплотнительные гребешки на верхней полке. Полка образует с внутренней поверхностью разрезного кольца лабиринтное уплотнение. Между корпусом турбины и осевым кольцевым выступом стопорного кольца сопловой лопатки установлена лента с образованием кольцевых замкнутых полостей между лентой и корпусом. Разрезное кольцо выполнено с коническим, направленным к сопловой лопатке ребром с образованием кольцевой воздушной полости. На входе полость соединена с воздушной полостью охлаждения сопловой лопатки, а на выходе - с проточной частью турбины через щелевую кольцевую полость. Кольцевая полость образована верхней полкой сопловой лопатки и коническим ребром. Щелевая полость расположена с внутренней стороны от верхней полки рабочей лопатки. Отношение шага кольцевых микрогребешков на внутренней поверхности разрезного кольца к радиальному зазору между передним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом составляет 1…2. Отношение высоты кольцевых микрогребешков к радиальному зазору 0,8…1,8. Отношение длины торцевой поверхности кольцевого микрогребешка к радиальному зазору 0,3…0,8. Отношение радиального зазора между задним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом к радиальному зазору между передним по потоку гребешком на верхней полке рабочей лопатки и разрезным кольцом 1,5…2,5. Изобретение позволяет повысить надежность турбины. 2 ил.

Изобретение относится к способам организации горения при раздельной подаче газообразного топлива, например природного газа, и воздуха, образующих при воспламенении диффузионный факел. Способ регулирования параметров факела горения с помощью двухпроводной горелки, по центральному и кольцевому каналам которой, снабженными соосными соплами, одновременно подают газообразное топливо, соотношение выходных площадей центрального и кольцевого сопел выдерживают в пределах 1,5…2,5, через кольцевое сопло подают не менее половины общего расхода топлива, а угол наклона горелки по вертикали вниз от продольной оси печи изменяют в пределах от 2 до 12° при возрастании расхода топлива через центральное сопло. Вылет топлива по окружности кольцевого сопла осуществляют в виде отдельных струй, чередующихся с участками, закрытыми для выхода топлива. Технический результат - расширение диапазона регулирования размеров, формы и положения факела в рабочем пространстве печи, обеспечивающее полноту сгорания газообразного топлива и эффективность теплоотдачи. 1 з.п. ф-лы, 1 ил.

Изобретение относится к статорам турбин высокого давления газотурбинных двигателей авиационного и наземного применения. Статор турбины включает установленные на внутреннем корпусе камеры сгорания опору соплового аппарата и передний хвостовик упругого фланца, а также диафрагму. Диафрагма закреплена болтовым соединением на опоре соплового аппарата своим внешним радиальным ребром. Внутренним радиальным ребром диафрагма соединена болтовым соединением с внешним и внутренним сотовыми фланцами и с задним хвостовиком упругого фланца. Центральная часть диафрагмы между внешним и внутренним ребрами выполнена упругой в радиальном направлении и цилиндрической в поперечном сечении, выпуклой в сторону внешнего сотового фланца. Между упругим фланцем и опорой соплового аппарата установлен Г-образный в поперечном сечении фланец, образующий совместно с опорой соплового аппарата щелевую кольцевую полость. Кольцевая полость на входе соединена с воздушной полостью камеры сгорания, а на выходе через каналы в опоре соплового аппарата - с воздушной полостью статора, образованной опорой соплового аппарата, упругим фланцем и диафрагмой. Величина отношения расстояния между болтовыми соединениями крепления диафрагмы к радиусу цилиндрической внутренней поверхности диафрагмы составляет 3…4. Изобретение позволяет повысить надежность статора турбины высокого давления. 1 ил.

Лабиринтное уплотнение турбины содержит примыкающий к диску турбины лабиринт и ответный ему фланец с сопловым аппаратом закрутки охлаждающего воздуха. Лабиринт установлен на осевом кольцевом выступе диска и выполнен охватывающим сопловой аппарат закрутки с образованием между лабиринтом и боковой поверхностью ступицы диска щелевой полости. В полости размещено уплотнительное кольцо. На внутренней поверхности лабиринта установлено разжимное демпфирующее кольцо, охватывающее кольцевое радиальное ребро лабиринта. На цилиндрическом выступе кольца выполнены радиальные отверстия. Изобретение позволяет повысить эффективность и надежность лабиринтного уплотнения. 1 ил.

Изобретение относится к турбинам низкого давления газотурбинных двигателей авиационного применения. Турбина низкого давления газотурбинного двигателя включает ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами на задней опоре статора. Лабиринтное уплотнение турбины выполнено двухъярусным. Внутренний ярус образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины. Внешний ярус образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины. Уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо. Внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью. Между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора. Рабочая поверхность внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы отношение внутреннего диаметра на выходе из проточной части турбины к диаметру рабочей поверхности внутреннего фланца лабиринтного уплотнения составляло 1,05…1,5. Изобретение позволяет повысить надежность турбины низкого давления газотурбинного двигателя. 3 ил.
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх