Патенты автора Глинкин Евгений Иванович (RU)

Изобретение относится к измерительной технике, в частности к измерению температуры и давления. Способ измерения давления и температуры тензомостом включает подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U+. При смене направления тока питания тензомоста измеряют напряжение U-. В отличие от прототипа действительные значения температуры Т и давления P измеряют по калибровочным характеристикам от сопротивления R, параметрами которых служат предельные сопротивления температуры RT, давления RP и соответствующие им предельные температура Т0 и давление Рo, калибровочные характеристики строят априори по известным образцам с нормируемыми мерами верхней и нижней границ адаптивного диапазон Тi, Pi, где i=1, 2, а из отношения действительных значений Т, P калибровочных характеристик сопротивления от температуры и давления находят объем V. В системе измерения давления и температуры тензомостом, содержащей стандартный мостовой датчик давления с тензорезисторами, соединенный через четырехпроводную линию связи с измерительно-вычислительным устройством, в отличие от прототипа включен инвертор в питающую диагоналъ тензомоста, измерительная диагональ которого соединена с информационными входами измерительно-вычислительного устройства, управляющие выходы последнего подключены к соответствующим входам инвертора постоянного тока в двуполярные импульсы. В предлагаемом способе, в отличие от прототипа, измеряют действительные значения температуры, давления и объема по калибровочным характеристикам, что в итоге не превышает методическую погрешность автоматического измерения характеристик климата (температуры, давления и объема) 0,06% от натурного эксперимента. Технический результат - автоматизация измерения давления, температуры и объема за счет использования калибровочных характеристик, снижающих до минимума методическую погрешность. 2 н. и 3 з.п. ф-лы, 9 ил.

Изобретение относится к области медицины, а именно к эндокринологии. Для неинвазивного определения концентрации глюкозы в крови человека по электрическим характеристикам кожи и ткани проводят определение действительного значения концентрации глюкозы крови по калибровочной глюкосименсграмме (ГСГ), тождественной экспериментальному эквиваленту за счет оптимизации ее предельных параметров: глюкозы и проводимости структуры, - нормированными значениями границ адаптивного диапазона известных пациентов: глюкозы и диффузионными проводимостями с кратным отношением, вольтамперных характеристик (ВАХ) с оптимальными параметрами: диффузионным напряжением и диффузионным током, которые калибруют по измеренным токам, заданным двумя напряжениями и бинарным, по которым находят диффузионные проводимости пациентов как отношение диффузионных параметров их вольтамперных характеристик. Способ повышает достоверность, объективность и точность определения концентрации глюкозы в крови человека за счет исключения методической погрешности. 4 ил.

Изобретение относится к области медицины, а именно к физиологии и кардиологии. Для измерения артериального давления регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают до момента появления волн ОСГ. Определяют величину диастолического и систолического давления по величине давления в пережимной измерительной манжете. При этом определяют предельное значение амплитуды и постоянной времени. Для определения систолического давления на систолической части осциллограммы регистрируют текущую амплитуду в любой момент времени. По значению амплитуды и моменту времени находят, последовательным приближением к регламентированной погрешности итерационного вычисления, предельное значение амплитуды и постоянную времени, по которым определяют систолическое давление, затем аналогично находят диастолическое давление. Способ повышает точность измерения артериального давления за счет определения амплитуды и времени в одной точке. 4 ил., 3 табл.

Изобретение относится к области медицины, а именно к эндокринологии. Для экспресс-анализа концентрации глюкозы крови накладывают термисторы над поверхностной веной головы испытуемого и измеряют натощак и после приема пищи температуру и концентрацию глюкозы в крови. Определяют концентрацию глюкозы крови по двум калибровочным характеристикам: глюкограмме и термограмме, параметры которых априори отождествляют с верхней и нижней границами адаптивного диапазона двух известных пациентов с нормированными параметрами. Максимальные время и температуру термограммы находят по измеренным избыточным температурам в два момента времени. Предельные температуру и концентрацию глюкозы крови, глюкограммы регистрируют по измеренным концентрациям глюкозы для двух максимальных температур термограммы. Способ повышает точность определения концентрации глюкозы крови за счет исключения методической и динамической погрешности в адаптивном диапазоне. 4 табл., 8 ил.

Изобретение относится к области медицины, а именно к способу определения динамики изменения скорости оседания эритроцитов. Способ определения динамики изменения скорости оседания эритроцитов, включает смешивание исследуемой пробы крови с антикоагулянтом, забор полученного раствора крови с антикоагулянтом в капилляр, размещение его вертикально, при этом раствор крови с антикоагулянтом разливают с помощью автоматического дозатора в гематокритный капилляр, нижний конец которого герметично закупоривают, размещают капилляр вертикально в гнездо центрифуги и осуществляют измерение высоты слоя плазмы, свободной от эритроцитов, в режиме вращения центрифуги с угловой скоростью не более 50 об/мин, далее по трем импульсным динамическим характеристикам определяют высоту слоя плазмы, скорость оседания эритроцитов, ускорение эритроцитов, которые фиксируют в единственный момент времени, по которым определяют действительную характеристику скорости оседания эритроцитов с использованием дифференциального уравнения. Вышеописанный способ обеспечивает повышение точности определения динамики изменения скорости оседания эритроцитов на несколько порядков. 4 ил., 1 табл.

Изобретение относится к области медицины, а именно к диагностике. Для определения концентрации глюкозы в крови регистрируют отношения измеренных натощак значений систолического и диастолического артериальных давлений на левой и правой руках: n01 - минимальное систолическое к максимальному диастолическому, n11 - максимальное систолическое к максимальному диастолическому, n00 - минимальное систолическое к минимальному диастолическому и n10 - максимальное систолическое к минимальному диастолическому, по которым оценивают соответствующие значения глюкозы: Р01 и Р11, Р00 и Р10, используя калибровочную характеристику с известными предельными параметрами. Формируют комплексную оценку всех результатов концентрации глюкозы и нормированный эквивалент их максимальной величины, отношение которых служит адаптивной нормированной точностью. За действительное значение принимают адаптивную меру нормированного эквивалента, представляемого средним арифметическим измеренных результатов концентрации глюкозы и расположенного в границах адаптивного диапазона, с погрешностью, регламентируемой адаптивной нормированной точностью. Способ повышает метрологическую эффективность, точность и достоверность определения концентрации глюкозы в крови за счет снижения методической и инструментальной погрешности путем введения регулируемой нормируемой меры точности, автоматически отслеживающей адаптивный диапазон. 1 табл., 1 ил.

Изобретение относится к области медицины, а именно к кардиологии, кардиохирургии, функциональной диагностике. Для определения ударного объема сердца проводят наложение двух электродов на участки тела, регистрацию сопротивления R между электродами при снятии реограммы (РГ), измерение гемоглобина крови Hb. Ударный объем сердца определяют по калибровочной характеристике Q отношения сопротивления R к предельному значению R0 между электродами РГ с функцией Q0i нормированного объема от гемоглобина крови (Hb): где R0 - предельное значение сопротивления, зарегистрированное на верхней и нижней границах значениям сопротивления Ri пациентов, нормированным объемам сердца Q0i и значениям ударных объемов сердца пациентов Qi, с различной калибровкой для мужчин и женщин, при этом i=1, 2, а Функцию Q0i нормированного объема калибруют по измеренному значению гемоглобина Hb одного пациента с известным значением ударного объема сердца Q, по которым рассчитывают последовательным приближением параметры: значения предельного объема сердца Q0 и предельного гемоглобина крови Hb0. Способ повышает точность измерения ударного объема сердца, за счет адаптации сопротивления по границам диапазона и калибровке нормированного объема по одной мере гемоглобина крови. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области медицины. Для определения составляющих импеданса биологического объекта осуществляют подачу на биообъект импульса стабилизированного тока I и измерение напряжения u. В момент времени t после начала импульса тока в качестве составляющих импеданса биообъекта определяют активное сопротивление R и эквивалентную емкость С тканей биообъекта. Дополнительно измеряют в тот же момент времени ток I и поток g. Составляющие импеданса определяют по трем импульсным динамическим характеристикам (ИДХ): ИДХ напряжения u(t), ИДХ тока i(t), ИДХ потока g(t), по которым регистрируют параметры ИДХ: установившееся напряжение Е и постоянную времени T=-i/g, а также стабилизированный ток I и поток G как отношения I=Е/Т и G -I/T. По параметрам рассчитывают активное сопротивление R=E/I и эквивалентную емкость C=T/R тканей биологического объекта. Способ повышает точность и оперативность измерения составляющих комплексного сопротивления биообъекта за счет устранения методической и динамической погрешностей. 2 ил., 3 табл.

Изобретение относится к автоматике и может быть использовано в чистых помещениях для поддержания постоянной оптимальной температуры. В способе автоматического управления системами выходную переменную исполнительного механизма подают на вход управляемого объекта, измеряют фактическую величину выходной переменной управляемого объекта, которую вместе с командной величиной входной переменной управляемого объекта используют для формирования управляющего сигнала, который подают на вход исполнительного механизма за счет использования отрицательной обратной связи по выходной переменной управляемого объекта. Согласно изобретению автоматически управляют в адаптивном диапазоне коэффициентом k=ε2/ε2 регулирования за счет тождественности исследуемой погрешности ε1 нормируемому эквиваленту ε2 желаемой погрешности, которую адаптируют по диапазону при сравнении в каждый момент времени произведения величин входной Е и выходной U переменных с нормированным эквивалентом их максимальных величин, соответствующим степенному полиному средней арифметической величины командной входной и выходной переменных управляемого объекта. В результате достигается автоматизация регулирования системами в адаптивном диапазоне за счет адаптивной оценки сигнала по программно управляемой нормируемой мере. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного определения концентрации глюкозы в крови. Для этого накладывают термисторы над поверхностной веной головы испытуемого и измеряют температуру и концентрацию глюкозы в крови. При этом определяют концентрацию глюкозы крови по двум калибровочным характеристикам: глюкограмме и термограмме, параметры которых априори отождествляют с верхней и нижней границами адаптивного диапазона двух известных пациентов с нормированными параметрами. Расчет проводят по определенным математическим формулам. Способ обеспечивает повышение точности и метрологической эффективности неинвазивного определения концентрации глюкозы за счет исключения методической и динамической погрешностей для автоматизации компьютерных анализаторов глюкозы в адаптивном диапазоне нормируемых мер при повышении оперативности. 8 ил., 4 табл.

Предлагаемое изобретение относится к медицине, в частности к измерению внутриглазного давления, и может быть использовано для измерения офтальмотонуса в раннем посттравматическом периоде. Организуют исследуемый и опорный сигналы при воздействии на глаз и лобную часть лица вибрирующим датчиком, который приближают к глазу и лобной части лица до наступления контакта с ними и действуют на глаз и лобную часть лица до момента исчезновения сигнала на выходе вибрирующего датчика. Отводят вибрирующий датчик от глаза и лобной части лица, костная ткань которой служит стабильной мерой. При этом нормируемым эквивалентом служит амплитудно-временная калибровочная характеристика с предельными параметрами, для определения которых последовательно измеряют две амплитуды исследуемого и опорного сигналов в моменты времени t1 и t2, по которым рассчитывают предельные параметры исследуемой и опорной характеристик: предельную амплитуду и постоянную времени, по которым аппроксимируют исследуемую и опорную характеристики, из разницы которых находят действительную характеристику, по которой судят об офтальмотонусе. Способ позволяет повысить метрологическую эффективность, а именно точность тонометрии, за счет устранения методической и динамической погрешности. 1 табл., 4 ил.

Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ определения составляющих импеданса биологического объекта состоит в измерении напряжения на биообъекте на границах диапазона, при этом определяют активное сопротивление и эквивалентную емкость тканей биообъекта по информативным параметрам амплитудно-частотной характеристики (АЧХ), а именно - предельному напряжению и резонансной частоте, которые определяют по двум значениям напряжений на двух фиксированных частотах, являющихся границами диапазона. Из отношения предельного напряжения к резонансной частоте находят предельный ток исследуемой АЧХ, информативные и искомые параметры которой нормируют относительно эталонной АЧХ за счет определения известных составляющих импеданса образцового биологического объекта. Использование изобретения позволяет повысить точности измерения составляющих комплексного сопротивления биообъекта. 4 ил., 1 табл.

Изобретение относится к вычислительной технике. Технический результат - повышение энергетической эффективности оборудования, минимизация влияния субъективного фактора путем возможности автоматического принятия решений и реализации адаптивных управляющих воздействий по результатам анализа состояний исследуемого объекта. Для этого предложена система цветового представления и анализа динамики состояния многопараметрического объекта или процесса, которая дополнительно содержит ПЗУ последовательности когнитивных образов, ПЗУ матрицы-диаграммы когнитивных образов, дешифратор, мультиплексор, устройство контроля параметров силовых элементов, выходы фазовых координат объекта управления объединены в общую шину с анализатором и задатчиком параметров, выход которого управляет группой старших разрядов ПЗУ последовательности когнитивных образов, выход первой группы данных которого подключен к генератору временной зависимости, который синхронизирует задатчик параметров и управляет младшими адресными группами ПЗУ матрицы-диаграммы когнитивных образов и ПЗУ последовательности когнитивных образов. 6 ил., 3 табл.

Изобретение относится к автоматике и может быть использовано в чистых помещениях для поддержания постоянной оптимальной температуры. Технический результат - автоматизация регулирования системами в адаптивном диапазоне за счет адаптивной оценки сигнала по программно-управляемой нормируемой мере. Поставленная задача достигается тем, что в системе автоматического управления, содержащей контроллер, последовательно соединенный через исполнительный механизм с управляемым объектом, в отличие от прототипа исполнительным механизмом служит цифроаналоговый преобразователь и дополнительно введен аналого-цифровой преобразователь, включенный между выходом управляемого объекта и входом контроллера, который состоит из задатчика командной величины, последовательно соединенных с ним сумматоров, выходы которых через делитель связаны с блоком возведения в степень, выход которого является выходом контроллера, входами которого являются вторые входы сумматоров, служащие для выходной переменной управляемого объекта. 2 н. и 2 з.п. ф-лы, 8 ил., 5 табл.

Группа изобретений относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Способ определения влажности капиллярно-пористых материалов заключается в том, что осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, на фиксированном расстоянии друг от друга. Прикладывают напряжение на измерительную ячейку, регистрируют время сравнения текущей амплитуды с пороговым значением и определяют влажность. Причем определяют влажность по частоте калибровочных характеристик, длительность которой в каждом цикле определяется интервалом измерения, фронт которого формируют в момент сравнения порогового напряжения с линейным напряжением динамической характеристики измеренной ячейки, состоящей из последовательно включенных влажного материала и эталонной емкости. После чего организуют срез за счет изменения полярности порогового напряжения. Калибровочными характеристиками служат функция нормированной влажности и функция предельной частоты импульсов сухого материала, которые определяют в процессе измерения предельных частот, соответствующих нижней и верхней границам измеряемого диапазона, и по которым определяют нормированные меры: предельную частоту и нормированную влажность. Устройство для определения влажности капиллярно-пористых материалов по динамической характеристике состоит из измерительной ячейки, состоящей из последовательного соединения исследуемого материала и эталонной емкости. При этом организуют мультивибратор за счет включения измерительной ячейки в отрицательную обратную связь операционного усилителя, в положительную обратную связь которого включен эталонный делитель напряжения на резисторах, а выходным индикатором служит частотомер. Технической задачей способа являются повышение метрологической эффективности, а именно точности измерений, за счет устранения нелинейности. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к медицине, а именно к гемокоагулогии, и может быть использовано для выявления лиц группы риска развития гемокоагуляционных осложнений. Сущность способа: проводят измерение амплитуды записи процесса свертывания крови в его начале, определяют показатели начала и конца процесса свертывания электрокоагулограммы крови и сравнивают их с одноименными показателями процесса свертывания крови в норме и при разнонаправленных отклонениях диагностируют нарушения функционального состояния системы гемостаза. Определяют постоянную времени по калибровочной характеристике, калибровку проводят априори для двух измеренных U1, U2 и известных U01, U02 значений нижней t1 и верхней t2=kt1 границ адаптивного диапазона, калибровочной характеристикой U0i служит функция предельного напряжения крови, компенсирующая неопределенность постоянной времени Т0, выбранной произвольно T*, и связывающая эталонную Uэi и измеренную Ui характеристики за счет нормирования измеренных значений известными по калибровочной характеристике U0i находят действительные значения постоянной времени Т0 и предельного напряжения U0 крови по которым последовательно строят калибровочную характеристику предельного напряжения крови, эталонную характеристику Uэi и определяют показатели начала Тн и конца Тк процесса свертывания крови где Uн, Uк - нормированные пороги напряжения начала и конца процесса свертывания крови. Изобретение позволяет снизить методическую погрешность на десятки порядков, повысить точность времени свертывания на 4 порядка, а оперативность сокращает в три раза, что в итоге повышает метрологическую эффективность компьютерных анализаторов для автоматизации выявления лиц группы риска развития гемокоагуляционных осложнений. 4 ил.

Изобретение относится к области медицины, а именно к лабораторной клинической диагностике, и касается способа определения динамики изменения скорости оседания эритроцитов. Способ включает: смешивание исследуемой пробы крови с антикоагулянтом; забор полученного раствора крови с антикоагулянтом в капилляр; размещение его вертикально, при этом раствор крови с антикоагулянтом разливают с помощью автоматического дозатора в гематокритный капилляр, нижний конец которого герметично закупоривают; размещают капилляр вертикально в гнездо центрифуги и осуществляют измерение высоты слоя плазмы, свободной от эритроцитов, в режиме вращения центрифуги с угловой скоростью не более 50 об/мин. По полученным данным определяют максимальную величину оседания эритроцитов, измеряют высоту слоя плазмы по импульсной динамической характеристике, амплитуду которой фиксируют в два кратных момента времени, по которым регистрируют максимальную величину оседания эритроцитов и постоянную времени, а также предельную скорость, как их отношение, по которым определяют действительную характеристику скорости оседания эритроцитов. Применение способа обеспечивает повышение точности определения действительной характеристики скорости оседания эритроцитов за счет исключения методической и динамической погрешностей измерения. Также способ обеспечивает повышение точности определения динамики изменения скорости оседания эритроцитов на несколько порядков, а оперативность не менее чем в 3 раза. 1 табл., 4 ил.

Изобретение относится к медицине, а именно к кардиологии, кардиохирургии и функциональной диагностике. Осуществляют наложение двух токовых и двух измерительных электродов на определенные участки тела. Производят регистрацию реограммы и дифференциальной реограммы. Определяют площади между изолинией и кривой реограммы слева и справа от точки реограммы, соответствующей окончанию систолы и началу диастолы левого желудочка сердца. Измеряют гемоглобин крови. При этом ударный объем сердца определяют по калибровочной характеристике отношения площадей между изолинией и кривой реограммы с функцией нормированного объема от гемоглобина крови. Способ позволяет повысить точность более чем в 3 раза на адаптивном диапазоне, априори регламентируемом нормируемыми значениями гемоглобина двух пациентов с известными значениями ударного объема сердца. 1 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ заключается в подаче на биообъект импульса стабилизированного тока, измерении напряжения на биообъекте в фиксированные два момента времени после начала импульса тока и дополнительном измерении амплитуды стабилизированного тока I0. Моменты времени фиксации напряжения представляют собой t1 и t2, причем t2=2t1. В качестве составляющих импеданса биообъекта определяют активное сопротивление R и эквивалентную емкость C тканей биообъекта, которые рассчитывают по формулам: где E - установившееся значение потенциала с постоянной времени T, причем где U1 и U2 - соответственно напряжение на биообъекте в моменты времени t1 и t2; при этом C=T/R. Способ обеспечивает повышение точности и оперативности определения составляющих комплексного сопротивления биообъекта за счет устранения методической и учета динамической погрешности, имеющих место в ближайшем аналоге изобретения. 4 ил., 1 табл.

Изобретение относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Предложен способ определения влажности древесины, в котором осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, на фиксированном расстоянии друг от друга, прикладывают напряжение на измерительную ячейку, состоящую из последовательно включенных влажного материала и эталонного сопротивления, измеряют падение напряжения на эталонном сопротивлении и определяют влажность, при этом в фиксированный момент времени измеряют амплитуду напряжения, тока и крутизны соответствующих импульсных динамических характеристик, по которым регистрируют их комплекс информативных параметров: постоянную времени и предельное напряжение, начальный ток и его крутизну, которые служат для определения влажности по калибровочной характеристике, а калибровку проводят априори на границах адаптивного диапазона по образцу с известной влажностью и нормируемыми параметрами: постоянной времени и предельным напряжением, начальным током и крутизной при измерении в фиксированный момент времени амплитуд напряжения, тока и крутизны соответствующих нормированных импульсных динамических характеристик. Способ согласно изобретению обеспечивает повышение точности и расширение диапазона контроля при заданных метрологических характеристиках. 1 табл., 6 ил.

Изобретение относится к измерительной технике, в частности к измерению концентрации ионов водорода

Изобретение относится к области медицины, в частности к эндокринологии

Изобретение относится к области оптимального управления динамическими объектами и может быть использовано в системах энергосберегающего управления динамическими объектами, электроприводами на основе двигателей постоянного и переменного тока, химико-технологическими процессами

Изобретение относится к области медицины

Изобретение относится к медицине, в частности к физиологии и кардиологии

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для определения функционального состояния системы гемостаза

Изобретение относится к измерительной технике, в частности к отображению диагностической информации управления технологическим оборудованием

Изобретение относится к электроизмерительной технике и служит для контроля состояния изоляции силовых трансформаторов

Изобретение относится к измерительной технике, к измерению концентрации ионов водорода (рН)

Изобретение относится к измерительной технике, в частности к измерению температуры различных объектов и сред
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх