Патенты автора Орлов Сергей Александрович (RU)

Изобретение относится к испытательной технике, в частности к испытаниям на высокоинтенсивные ударные воздействия приборов и оборудования и может быть использовано для испытаний приборов и оборудования в авиационной и ракетно-космической технике. Способ заключается в выборе стенда в соответствии с требованиями по созданию нагрузок в месте крепления объекта испытаний, нагружении объекта испытаний ударным воздействием с последующим получением требуемых ударных спектров ускорений в контрольных точках. Затем с использованием метода конечных элементов строят модели стендов с установленными на них моделями объекта испытаний, проводят численный эксперимент, нагружая объект испытаний требуемыми воздействиями, создаваемыми стендами. После этого выбирают точки с максимальными уровнями нагружения силовой конструкции и комплектующих объекта испытаний при испытаниях на всех типах стендов и сравнивают с допустимыми значениями. Причем стенды, для которых на приборы и оборудование превышены допустимые значения по напряжениям в элементах конструкции или ударным спектрам ускорений на комплектующих, исключают из дальнейшего рассмотрения. Выбор метода нагружения объекта испытаний и типа стенда для ударных испытаний при ограничениях по ударным спектрам ускорений на комплектующие приборов и оборудования проводят по формуле. Затем на выбранный ударный стенд устанавливают динамический макет объекта испытаний, нагружают, поэтапно увеличивая нагрузку, проводят верификацию модели «стенд – объект испытаний», и при совпадении расчетных и экспериментальных данных в пределах допустимой погрешности заменяют динамический макет объекта испытаний на объект испытаний, после чего проводят ударные испытания объекта испытаний на выбранном стенде. Технический результат заключается в более точном воспроизведении допустимой нагрузки при ударных испытаниях, исключение повреждений объектов испытаний, приборов и оборудования. 9 ил.

Изобретение относится к стендам для испытаний приборов и оборудования на ударные воздействия высокой интенсивности и может быть использовано при испытаниях на ударные воздействия приборов и оборудования для авиационной, ракетной и космической техники. Для проведения испытаний применяется стенд, состоящий из молота, подвески молота, поворотной траверсы, станины, фиксирующего устройства, виброизолирующих прокладок, регистрирующих датчиков, наковальни. При этом наковальня выполнена в виде короба, состоящего из прямоугольных металлических панелей с вырезами, жестко соединенных между собой, и сменного днища с установленным на его внутренней поверхности объектом испытаний и скрепленного с коробом. Между коробом и днищем, а также между коробом и силовым полом установлены сменные виброизолирующие прокладки, а крешеры установлены на внешней поверхности днища в разных местах, при этом наковальня в виде короба с днищем и объектом испытаний закреплена к силовому полу струбцинами. Регистрирующие датчики установлены на днище на минимальном расстоянии от точек крепления объекта испытаний, определяемом техническими условиями установки регистрирующих датчиков, как с внутренней, так и с внешней стороны днища, при этом датчики, контролирующие нагружение в одной и той же точке крепления, установлены на одной линии, перпендикулярной днищу. Технический результат заключается в возможности более точного воспроизведения ударной нагрузки. 9 ил.

Данное изобретение относится к области испытаний на ударные воздействия и может быть использовано в первую очередь при проведении испытаний на высокоинтенсивные ударные воздействия различных устройств, приборов и оборудования. Техническим результатом изобретения является возможность более точного воспроизведения ударной нагрузки. Указанный результат достигается тем, что для создания ударных воздействий используется пиротехническое устройство, состоящее из полого корпуса с резьбой на внешней поверхности, пиропатрона, поршня с уплотнением, на который с помощью резьбы установлен съемный боек, контрящего элемента, фиксирующего поршень в корпусе. Устройство от известных отличается тем, что резьба на корпусе разделена фланцем, выполненным в виде гайки, а в корпусе рядом с фланцем в виде гайки со стороны бойка выполнены сквозные отверстия перпендикулярно оси корпуса. При этом на сам корпус с помощью резьбы устанавливают гайку в виде стакана с отверстием в днище и резьбой по внутренней поверхности стакана, а высота стенки стакана во внутренней ее части меньше расстояния от торца корпуса до сквозного отверстия. Поршень с бойком устанавливают в днище гайки с помощью контрящего элемента, причем на поршне со стороны бойка и на бойке со стороны поршня выполнены лыски, которые используются при сборке устройства. На противоположной бойку стороне поршня выполнены буртики, между которыми установлены уплотнения, а расстояние от торца корпуса до сквозных отверстий больше, чем размер буртиков с уплотнениями на поршне, что обеспечивает свободный сброс давления из полости. Кроме того, в корпусе со стороны, противоположной бойку, на резьбе устанавливают профилированный вкладыш с уплотнениями, внешний фланец которого через уплотнительное кольцо переменной толщины, выполненное из мягкого металла, упирается в торец корпуса, что обеспечивает герметичность устройства при изменении объема полости внутри устройства. На самом фланце вкладыша выполнены лыски, а внутри вкладыша выполнено сквозное отверстие переменного диаметра, причем в отверстие малого диаметра устанавливают газогенератор цилиндрической частью с воспламенительным составом, который имеет разную массу. Фиксируют газогенератор в отверстии большего диаметра с помощью резьбы, причем сам корпус с поршнем, вкладышем и газогенератором устанавливают на резьбе в днище стакана и фиксируют корпус с помощью контрящей гайки, при этом на противоположной торцевой стороне стакана на внешней его части выполнен фланец с отверстиями, позволяющий стыковать устройство с объектом испытаний. 6 ил.

Изобретение относится к области испытаний аппаратуры на механические воздействия и может быть использовано при отработочных и приемных испытаниях аппаратуры для авиационной, ракетной и космической техники. Способ заключается в предварительном определении собственных частот аппаратуры и нагружении заранее заданным нормированным воздействием с последующей корректировкой задающего воздействия из условия непревышения допустимых режимов нагружения аппаратуры. При этом точки с максимальными откликами бортовой аппаратуры получают расчетным путем с использованием метода конечных элементов, после чего из результатов конечно элементного моделирования и физической возможности установки контрольных датчиков определяют места для установки контрольных датчиков при вибрационных испытаниях. Затем вычисляют передаточные функции от точек с максимальными откликами к точкам контроля в каждом из частотных поддиапазонов, выбирают количество и места установки контрольных датчиков в каждом из трех взаимно перпендикулярных направлений. После этого устанавливают контрольные датчики, затем проводят нагружение бортовой аппаратуры на минимальном уровне, обеспечивающем регистрацию откликов в местах установки контрольных датчиков, оценивают нагружение бортовой аппаратуры в точках с максимальными откликами, сравнивают с допустимыми и при ожидаемом превышении допустимых уровней последовательно проводят корректировку входного воздействия в каждом из трех взаимно перпендикулярных направлений с учетом полученных передаточных функций по формуле. После этого вибрационные испытания бортовой аппаратуры проводят последовательно в каждом из трех взаимно перпендикулярных направлениях на сформированных режимах. Технический результат заключается в возможности более точного воспроизведения допустимой вибрационной нагрузки при вибрационных испытаниях, исключении при испытаниях недопустимого нагружения (перегружения) электронных компонентов и конструкции бортовой аппаратуры. 9 ил.

Изобретение относится к методам испытаний приборов и оборудования на ударные воздействия высокой интенсивности и может быть использовано при испытаниях на ударные воздействия приборов и оборудования по методу ударных спектров ускорений. Для проведения испытаний, заключающихся в создании импульсов ускорений с помощью ударного стенда, регистрации ускорений и получении ударного спектра ускорений в точках крепления объекта испытаний, требуемое ударное воздействие в форме ударных спектров ускорений формируют в виде нестационарной вибрации на динамическом макете объекта испытаний, а ударные спектры ускорений одновременно получают для положительных и отрицательных значений ускорений нестационарной вибрации. При этом формируют необходимый режим, подбирая нужное воздействие; затем динамический макет объекта испытаний заменяют на испытуемый объект и проводят ударные испытания на сформированном режиме. Причем количество создаваемых ударных воздействий на объекте испытаний уменьшают вдвое относительно требуемого количества ударных воздействий вдоль каждой из осей, для которых сформированы положительные и отрицательные ударные спектры ускорений, отличающиеся от требуемых ударных спектров ускорений во всем заданном частотном диапазоне на величину, меньшую, чем допустимая погрешность. 7 ил.

Изобретение относится к упаковочной технике, в частности к оборудованию автоматической упаковки сыпучих и мелкоштучных пищевых и непищевых продуктов в картонную коробку. Установка для упаковки продуктов в картонные коробки состоит из рамы, главного привода, механизма захвата с доводчиком, держателя коробки, верхней плиты, системы формирования дна коробки, загрузочных воронок или воронок дозатора объемного, системы формирования верха коробки, пульта управления, ограничителя коробок, защитных ограждений нижних и верхних, электрошкафа, расплавителя клея с подставкой, механизма загрузки и конвейера отводящего, причем на раму установлены опорные плиты, на которых закреплены основные узлы машины. Технический результат заключается в повышении уровня надежности, уменьшении суммарных трудоемкости и себестоимости изготовления установки, материалоемкости, повышении ремонтопригодности при сокращении затрат на эксплуатационное обслуживание и ремонт. 22 з.п. ф-лы, 13 ил.

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и пьезоприводах. Технический результат состоит в увеличении жесткости конструкции и конструктивной независимости двигателя от величины стержня. Линейный шаговый пьезоэлектрический двигатель содержит основание, приводной механизм, левый и правый прижимающие механизмы, включающие пьезоэлементы и гибкие шарниры, направляющий и выходной стержни. Направляющий и выходной стержни выполнены в виде единого цилиндрического стержня. Приводной механизм представляет собой одноконтурный механический преобразователь, состоящий из рамки с гибкими шарнирами, внутри которой установлены два пьезоэлемента и проставка между ними. Прижимающие механизмы представляют собой двухконтурные механические преобразователи, состоящие из внешней и внутренней рамок, расположенных перпендикулярно друг к другу и содержащие гибкие шарниры. Внешняя рамка содержит два пьезоэлемента, каждый из которых с одной стороны имеют проставку, а с другой стороны опорную площадку, которая крепится к рамке. На внутренней рамке закреплены губки захвата стержня с возможностью их перемещения внутри проставки. Прижимающие и приводной механизмы являются единым неразъемным элементом. 5 ил.

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и пьезоприводах. Технический результат состоит в реализации возможности обратного хода в конструкции вибродвигателя. Линейный реверсивный вибродвигатель содержит ведомый элемент, вибратор, выполненный на основе пьезоэлемента, один конец которого упирается через демпфирующую прокладку в держатель, а другой через стержень жестко упирается в насадку, контактирующую с ведомым элементом. Насадка представляет собой реверсивный контактный захват, выполненный в виде пластины с охватывающим ведомый элемент отверстием. Держатель закреплен на корпусе вибродвигателя. Реверсивный контактный захват касается ведомого элемента верхней или нижней кромкой отверстия. Он одним концом жестко закреплен на стержне. Через охватывающее отверстие пропущен ведомый элемент. Величина перемещения ведомого элемента определяется из соотношения: X=(l-а)⋅cosα, где a=ΔХ/sin α - ход реверсивного контактного захвата до контакта с поверхностью ведомого элемента, X - величина перемещения ведомого элемента, l - величина хода пьезоэлемента, ΔХ - величина зазора между ведомым элементом и реверсивным контактным захватом, α - угол между осями симметрии ведомого элемента и пьезоэлемента. 5 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия, и может быть использовано при испытаниях на ударные воздействия различных приборов и оборудования, требования к которым задаются в виде спектра удара. Устройство состоит из молота, подвески молота, поворотной траверсы, станины, фиксирующего устройства, наковальни для монтажа оборудования, регистрирующих датчиков. При этом наковальня выполнена в виде прямоугольной сменной металлической панели, жестко закрепленной к станине стенда с помощью стержней с резьбой, при этом сменная металлическая панель выполнена с вырезами прямоугольной формы и ребрами между вырезами. Причем все ребра одинаковые, а расстояние от кромки металлической панели, к которой прикладывается ударное воздействие, до вырезов не менее чем в 2 раза больше продольного размера выреза, но не менее чем в 2 раза меньше расстояния до противоположного относительно точки приложения ударного воздействия торца металлической панели. При этом собственные частоты поперечных колебаний ребер не совпадают с частотами продольных колебаний плиты до и после вырезов, а оси стержней, обеспечивающих крепление сменной металлической панели к станине, проходят через вырезы и не совпадают с осями ребер, причем между сменной металлической панелью и станиной устанавливают виброизолирующую прокладку. Технический результат заключается в повышении точности и стабильности воспроизведения ударного воздействия, заданного спектром ускорений. 11 ил., 2 табл.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной платформы, выполненной в виде резонансной плиты, поперечная собственная частота которой соответствует частоте перехода на требуемом ударном спектре ускорений, и рамы для крепления маятника с бойком, состоящим из стержня с профилированным торцом и резьбой, для установки и фиксации дополнительных грузов. На резонансной плите в месте максимального отклика установлена дополнительная плита в виде параллелепипеда, стороны которого параллельны сторонам резонансной плиты, предназначенная для закрепления на ее поверхности объекта испытаний, а на торцах - контрольных регистрирующих датчиков по трем взаимно перпендикулярным направлениям. Резонансная плита не менее чем по двум ее сторонам установлена на амортизаторы, которые перпендикулярны ее плоскости и занимают не более половины длины каждой стороны. По торцам резонансной плиты в ее плоскости установлены фиксаторы-ограничители из упругого материала, жесткость которых не менее чем на порядок меньше жесткости амортизаторов. Дополнительная плита установлена от противоположной стороны относительно места крепления маятника на расстоянии от половины до одной четвертой длины стороны резонансной плиты. На резонансной плите в узел формы колебаний установлен крешер, профиль которого совпадает с профилем торцевой части стержня бойка. Технический результат: возможность уменьшить габариты стенда, а также обеспечить более точное воспроизведение ударной нагрузки, создавая ударное воздействие одновременно по трем взаимно перпендикулярным направлениям. 2 з.п. ф-лы, 1 табл., 7 ил.

Изобретение относится к электротехнике и может быть использовано в приборах и системах автоматики, приборостроения, робототехники, авиакосмической, автомобильной отраслях. Технический результат состоит в повышении кпд, удельной мощности уменьшении габаритных размеров, возможности обратного вращения, в увеличении ресурса и надежности конструкции за счет уравновешенности конструкции и вращательно-фрикционного режима передачи момента на ротор. Вращательный пьезоэлектрический двигатель содержит неподвижный корпус, ротор с валом в подшипниковых опорах неподвижного корпуса. Внутри неподвижного корпуса коаксиально размещен подвижный корпус, который соединен с неподвижным корпусом упругими элементами. На подвижном корпусе жестко закреплены два пьезоэлемента с толкателями для прямого вращения ротора и два пьезоэлемента с толкателями для обратного вращения ротора. Пьезоэлементы с толкателями с одним направлением вращения размещены диаметрально противоположно. Источник питания пьезоэлементов с толкателями имеет один выходной канал для прямого вращения ротора и один выходной канал для обратного вращения ротора. Один из пьезоэлементов с толкателем для обоих направлений вращения подключен через фазовращатель источника питания. 2 ил.

Изобретение относится к электротехнике и может быть использовано в приборах и системах автоматики, приборостроения, робототехники, авиакосмической, автомобильной отрасли. Технический результат состоит в повышении КПД, в уменьшении его габаритных размеров, возможности обратного хода, в увеличении удельной мощности, ресурса и надежности конструкции за счет уравновешенности конструкции и фрикционного режима передачи момента на ведомый элемент. В двигателе, содержащем неподвижный корпус, ведомый элемент в подшипниковых опорах, пьезоэлементы с рычагами (ПР) прямого и обратного хода, источник питания пьезоэлементов дополнительно внутри неподвижного корпуса коаксиально размещен подвижный корпус, который соединен с неподвижным корпусом упругими элементами. На подвижном корпусе жестко закреплены два ПР прямого хода и два ПР обратного хода ведомого элемента. ПР одного и того же направления перемещения расположены оппозитно вокруг ведомого элемента. Источник питания пьезоэлементов имеет один выход для питания пьезоэлементов прямого хода и один выход для питания пьезоэлементов обратного хода. Один из двух ПР для каждого из направлений перемещения ведомого элемента подключен к источнику питания через фазовращатель. 3 ил.

Изобретение относится к устройствам для испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных, в том числе и пространственных систем. Стенд состоит из приспособления в виде панели с установленными на ней испытуемой аппаратурой и регистрирующими датчиками, пиротехнических устройств, при этом панель выполнена в виде сменной металлической плиты, установленной на пневмоопоры с помощью зажимов, а пиротехнические устройства выполнены неразделяемыми с резьбой на цилиндрическом корпусе и подвижным сменным бойком, которые установлены в переходные элементы, выполненные в виде полого цилиндра с днищем с одной стороны цилиндра, причем в днище цилиндра выполнено отверстие с резьбой для крепления пиротехнического устройства, и с фланцем с отверстиями с противоположной стороны для крепления переходных элементов с пиротехническими устройствами на регулируемые опоры, при этом оси симметрии бойков лежат в срединной плоскости панели или перпендикулярны к ней, а сами бойки расположены от торцов верхней и нижней плоскостей плиты на расстоянии, меньшем хода бойка. Технический результат заключается в повышении качества испытаний приборов и оборудования на ударные воздействия высокой интенсивности в более широком диапазоне воспроизводимых нагрузок. 5 ил., 1 табл.

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на надежность электронных плат (ЭП) и их компонентов к комбинированным механическим и тепловым воздействиям. Целью изобретения является разработка комбинированного способа испытаний на механические и тепловые воздействия ЭП при задаваемой нагрузке. Указанная цель достигается тем, что испытания проводят в два этапа. На первом этапе точки приложения нагрузки и точку с максимальным перемещением (прогиб) определяют расчетным путем по огибающим максимальных значений перемещений из результатов испытаний предварительно разработанной конечно-элементной модели прибора с ЭП на всех этапах штатной эксплуатации, а величину нагрузки в каждой из выбранных точек определяют по формуле: где δj(xi, yi) - перемещение в j точке, под влиянием нагрузки, приложенной в i точке; Pi(xj, yj) - нагрузка, приложенная в точке i; G - коэффициент пропорциональности, связывающий перемещение с нагрузкой и цилиндрической жесткостью платы; - цилиндрическая жесткость платы (E - модуль упругости материала ЭП, h - толщина ЭП, ν - коэффициент Пуассона материала ЭП), а также нагружение выбранных точек проводят последовательно, контролируя перемещения в остальных точках, и при необходимости увеличивают перемещение в последующих точках, определяя максимальное перемещение по формуле где δmax(xj, yj) - максимальное перемещение в точке j; ∑ i = 1 N δ j ( x i , y i ) - суммарное перемещение в j точке; N - количество точек приложения нагрузки (N≥1); j - номер точки с максимальным перемещением; i - номер текущей точки с перемещением; Δ - погрешность задания перемещения, при этом в оснастке для установки ЭП обеспечивают граничные условия, аналогичные условиям крепления ЭП в составе прибора и напряжения, возникающие в ЭП, не превышают допустимых значений для материала ЭП и установленных на ЭП комплектующих элементов, а при проведении приемных испытаний максимальное перемещение определяют по формуле где η - коэффициент запаса прочности материала по перемещению. При этом с использованием метода акустической эмиссии (АЭ) в процессе деформирования контролируют возникновение повреждений в конструкции ЭП. При отсутствии повреждений в конструкции ЭП переходят ко второму этапу. Оснастку с ЭП устанавливают в термокамеру и проводят испытания на термоциклирование, причем количество термоциклов и диапазон изменения температур, действующих на ЭП, соответствует требованиям приемных испытаний ЭП, при этом с использованием метода АЭ в процессе термоциклирования ЭП контролируют возникновение повреждений на ЭП, а по окончании испытаний на термоциклирование выполняют проверку работоспособности ЭП. Дополнительный эффект получают за счет того, что по окончании первого этапа проводят термоциклирование с половиной числа термоциклов, соответствующих требованиям приемных испытаний ЭП, затем извлекают оснастку с ЭП из термокамеры и переустанавливают ЭП в оснастке, поворачивая ее к инденторам обратной стороной, вновь создают прогиб ЭП и проводят повторное термоциклирование с половиной числа термоциклов, соответствующих требованиям приемных испытаний ЭП. 2 з.п. ф-лы, 4 ил.

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении). Устройство содержит силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной механизм, измерительный щуп и индикатор. Силовой каркас выполнен из четырех опорных стоек, соединенных стержнями по периметру, причем к двум противоположным стержням крепятся поперечины с установленными на них креплениями для ЭП, с возможностью перемещения ЭП вдоль параллельных стержней и вдоль поперечен. Над ЭП на опорные стойки размещен кондуктор, выполненный из кольца с верхней и нижней сетками, в ячейки которых установлены инденторы до упора в поверхность платы. Над кондуктором на опорные стойки закреплен нажимной механизм, состоящий из крестовины с плитой, а измерительный щуп и индикатор зафиксированы в подвесной узел на поперечинах под ЭП. Количество точек установки инденторов определяется по формулам. Технический результат: разработка простого нагрузочного устройства для испытаний на механические воздействия ЭП. 1 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на устойчивость электронных плат (ЭП) и их компонентов к механическим воздействиям, например, в космической промышленности. Сущность: осуществляют закрепление платы в оснастке, приложение к ней локальной нагрузки перпендикулярно поверхности платы с последующей проверкой работоспособности и определением максимального перемещения (прогиба) платы. Точки приложения нагрузки и точку с максимальным перемещением определяют расчетным путем по огибающим максимальных значений перемещений из результатов испытаний предварительно разработанной конечно-элементной модели прибора с платой на всех этапах штатной эксплуатации, а величину нагрузки в каждой из выбранных точек определяют по формуле. Нагружение выбранных точек проводят последовательно, контролируя перемещения в остальных точках, и при необходимости увеличивают перемещение в последующих точках, определяя максимальное перемещение по формуле. В оснастке для установки платы обеспечивают граничные условия, аналогичные условиям крепления платы в составе прибора. Технический результат: разработка универсального способа испытаний на механические воздействия электронных плат при задаваемой обобщенной нагрузке. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области испытаний на механические воздействия (вибрационные испытания) аппаратуры

Изобретение относится к области испытаний блоков хранения и подачи топлива на основе сильфонных баков и может быть использовано при отработке блоков хранения и подачи топлива на механические воздействия

Изобретение относится к устройствам снижения вибрационных и ударных воздействий

Изобретение относится к области испытаний на ударные воздействия и может быть использовано при проведении испытаний на высокоинтенсивные ударные воздействия различных устройств, приборов и оборудования

Изобретение относится к области испытаний аппаратуры на ударные воздействия и может быть использовано при отработке приборов и аппаратуры различного назначения, транспортируемых в амортизированных контейнерах

Изобретение относится к областям авиационной и ракетно-космической техники, может быть использовано при проектировании различных разделяющихся систем и устройств

Изобретение относится к области испытаний амортизаторов и может быть использовано при проектировании вибрационной защиты различных технических систем и устройств

Изобретение относится к области испытаний на ударные воздействия и может быть использовано в первую очередь при проведении испытаний на высокоинтенсивные ударные воздействия различных устройств, приборов и оборудования

Изобретение относится к области испытаний космических аппаратов на механические воздействия и может быть использовано при отработочных и приемных испытаниях космических аппаратов

Изобретение относится к области авиационной и ракетно-космической техники и может быть использовано при проектировании различных разделяющихся систем и устройств

Изобретение относится к области испытаний аппаратуры на механические воздействия и может быть использовано при отработочных и приемных испытаниях аппаратуры для авиационной, ракетной и космической техники

Изобретение относится к методам испытаний конструкций на ударные воздействия и может быть использовано при испытаниях космических аппаратов (КА) на ударные воздействия

Изобретение относится к области авиационной и ракетно-космической техники, может быть использовано при проектировании различных разделяющихся систем и устройств

Изобретение относится к области испытаний на ударные воздействия и может быть использовано в первую очередь при проведении испытаний на высокоинтенсивные ударные воздействия различных устройств, имеющих в своем составе многослойные устройства в виде, например, пакетов пластин из композиционных материалов, сотовых панелей и т.д

Изобретение относится к испытательной технике и может быть использовано для испытаний на механические воздействия емкостей

Изобретение относится к области испытаний и может быть использовано при отработочных и приемных испытаниях аппаратуры КА

Изобретение относится к области испытаний и может быть использовано для испытаний на механические воздействия, в частности, сотовых панелей

Изобретение относится к области испытаний аппаратуры космических аппаратов на механические воздействия и может быть использовано при автономных испытаниях аппаратуры

Изобретение относится к испытательной технике и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных приборов и аппаратуры

Изобретение относится к способам испытаний и может быть использовано для испытаний на высокоинтенсивные ударные воздействия ракетных и космических систем

Изобретение относится к области испытаний космических аппаратов на виброакустические воздействия и может быть использовано при отработочных и приемных испытаниях космического аппарата (КА)

Изобретение относится к области определения одной из основных метрологических характеристик акустических камер и может быть использовано при аттестации акустических реверберационных камер различного объема с большими рабочими значениями уровней звукового давления

Изобретение относится к методам испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных технических систем

Изобретение относится к оборудованию для испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия протяженных систем, состоящих из функционально связанных приборов

Изобретение относится к методам испытаний на эксплуатационные нагрузки и может быть использовано в первую очередь при проведении испытаний специальных грузов на случай авиационного транспортирования

Изобретение относится к методам испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных приборов и оборудования

Изобретение относится к испытательной технике и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных систем, состоящих из функционально связанных приборов

Изобретение относится к оборудованию для испытаний на ударные воздействия и может быть использовано при испытаниях на высокоинтенсивные ударные воздействия различных, в первую очередь, приборов и оборудования, имеющих пространственное крепление

Изобретение относится к областям авиационной и ракетно-космической техники, может быть использовано при проектировании различных разделяющихся систем и устройств

Изобретение относится к области устройств снижения вибрационных и ударных воздействий и может быть использовано при проектировании вибрационной и ударной защиты различных технических систем и устройств

Изобретение относится к области испытаний амортизаторов и может быть использовано при проектировании вибрационной защиты различных технических систем и устройств

Изобретение относится к области испытаний космических аппаратов на механические воздействия

 


Наверх