Патенты автора Чернявец Владимир Васильевич (RU)

Изобретение относится к области ракетной техники, в частности к области автоматического управления невращающимися ракетами с аэродинамическим управлением. Ракета содержит спутниковую навигационную систему, выполненную в виде четырехканального приемника, адаптивный робастный фильтр, программный сверхузкостробовой коррелятор, процессор серии NeuroMatrix. На борту ракеты установлены по крайней мере четыре антенны приемника спутниковой навигационной системы. Приемник спутниковой навигационной системы содержит 40 каналов слежения за навигационными космическими аппаратами спутниковых навигационных систем GPS, ГЛОНАСС, ГАЛИЛЕО. Посредством приемника навигационной системы определяют значения уклонения отвесной линии ракеты и при выходе этих значений за заданные пределы принимают решение о самоликвидации ракеты. Достигается повышение оперативности и безопасности применения ракет при возникновении аварийных ситуаций на борту ракеты в процессе испытаний и в боевых условиях.

Изобретение относится к области навигации и может найти применение для обеспечения навигационной безопасности плавания и выработки требуемых данных корабельным потребителям. В состав комплекса навигации и управления введены экспертная система, обеспечивающая выработку решений возникающих проблем судовождения, с формированием рекомендаций вахтенному помощнику, и автоматическую активацию в критических ситуациях процедур для обеспечения безопасности, с формированием оценок индекса доверия к принятию решений, которая выполнена на основе морского компьютера и включает массивы информации, систем кодирования, конвертации форматов, сжатия информации, включая средства раскодирования и декомпрессии файлов электронных карт, и включает средства для выбора методов ввода данных в машинную среду, упорядочивания сведений, изменения содержания информационных массивов, составления различных списков и каталогов по учету данных, информационную модель системы управления и сведения, составляющие информационную модель внешней среды, лазерную систему информационно-координатного обеспечения. Повышается надежность и достоверность представления навигационной информации.

Изобретение представляет собой комплекс для осуществления подводных работ и может быть использовано для проведения подводных осмотровых и обследовательских работ в прибрежных морских и внутренних водах с наличием препятствий в виде подводных объектов на пути. Носитель ТНПА выполнен в виде обитаемого подводного аппарата, снабженного гаражом для размещения ТНПА, который дополнительно снабжен лазерными указателями, гидроакустическим маяком - ответчиком, системой аварийной обстановки, двумя источниками аварийного питания, маяком проблесковым, процессорным модулем, модулем сопряжения, системой энергообеспечения, преобразователем интерфейса, устройством съема тока информации и модулем решения задач реального времени, в комплект измерительных датчиков введен гидролокатор, датчики крена и дифферента, обзорная видеокамера выполнена с десяти кратным приближением изображения, светильники выполнены на светодиодах с мощностью светового потока более 2000 люмен с возможностью изменения цветовой температуры и плавной регулировки яркости свечения для уменьшения эффекта засветки от взвешенных в воде частиц, манипулятор выполнен в виде одностепенного манипулятора с тросорезом. Повышается надежность и безопасность эксплуатации ТНПА. 2 ил.

Изобретение относится к области судовождения, а именно к способам и системам генерации линии предварительной прокладки с использованием систем искусственного интеллекта, и может быть использовано для повышения безопасности плавания в концепции Е-навигации. Построение маршрута движения судна происходит итерационно и поэтапно, при этом вследствие логических преобразований, происходящих в ячейках матриц, навигационные параметры, включающие и навигационные параметры судов, находящихся в районе плавания, учитываются в виде значения функции принадлежности конкретной ячейки к кластеру опасных. Для осуществления алгоритма используется система, состоящая из блока кластеризации, блока генерации предварительной прокладки, блока контроля и устройства кодирования видеоинформации с использованием прогнозирования вектора движения на основе истории, получаемой от АИС (AIS) и системы Marine Traffic. Повышается безопасность плавания. При этом судоводитель получает карту, на которой наглядно показаны опасные области. 2 н.п. ф-лы, 1 ил.
Изобретение относится к области морской техники и добычи полезных ископаемых на морском шельфе в арктических условиях. Предложен способ предотвращения смещения или разрушения морского сооружения вследствие воздействия на него поля дрейфующих льдин, заключающийся в том, что перед морским сооружением устанавливают судно ледового класса, оснащенное расположенной в носу по меньшей мере одной винторулевой колонкой. При этом с работающими в корме основным движителем или движителями и с включенными носовыми винторулевыми колонками осуществляют возвратно-поступательные движения судна вдоль его диаметральной плоскости (ДП), смещая в оба конца от него набегающие на судно дрейфующие льдины и направляя их в обход корпуса морского сооружения. При этом используют судно, имеющее длину по ДП не менее ширины В морского сооружения, и располагают его, ориентируя ДП судна под углом α 45-75° к направлению дрейфа льдин. Размещают упомянутое судно от морского сооружения на расстоянии S, равном 0,7-0,9 длины судна. Дополнительно создают регулируемые по направлению и скорости движения гидродинамические струи в направлении движения поля дрейфующих льдин посредством судовой системы пневмообмыва, перед размещением судна ледового класса определяют скорость и направление движения дрейфующих льдин и их массогабаритные характеристики. Изобретение позволяет повысить надежность и эффективность защиты морского сооружения от силового воздействия на него поля дрейфующих льдин и предотвратить его смещение или разрушение.

Система прогнозирования безопасного расхождения судов предназначена для обеспечения безопасного расхождения с окружающими судами. Система включает блок комплексирования целевой обстановки, блок формирования и передачи ограничений плавания, блок сбора и передачи навигационной обстановки, блок обработки и маршрутизации данных, блок анализа обстановки и выработки решений, блок математической модели движения судна и блок ведения по маршруту. В состав дополнительно введены круговой излучатель звукового сигнала, секторные приемники приема внешних звуковых сигналов, вычислитель маневра последнего момента, блок анализа обстановки и выработки решений и АИС, авторулевой. Система позволяет избегать столкновения судов при чрезмерном сближении, тем самым повышает безопасность судовождения в различных критических ситуациях. 1 ил.
Изобретение относится к области сейсмологии и может найти применение в национальных системах наблюдения геофизических измерений для прогнозирования землетрясений. Предложена дрейфующая буйковая гидроакустическая станция для определения предвестников сильных землетрясений и цунами на акваториях с ледовым покровом, оснащенная вертикальной гирляндой гидрофонов, которая включает в себя аппаратурный модуль, состоящий из герметичного цилиндрического аппаратурного модуля в составе блока управления, источника питания, блок спутниковой системы связи и навигации, блок управления и источники питания. При этом станция дополнительно содержит трехкомпонентный геофон, регистратор, цифровой GPS-компас, наклономер, датчик температуры и вольтметр, установленный на источнике питания. Блок анализа выполнен с возможностью обнаружения сверх низкочастотных амплитудных модуляций гидроакустических сигналов - предвестников сильных землетрясений, а также с возможностью отбора импульсных сигналов по амплитуде, частоте повторений, длительности и скорости нарастания фронта сейсмических волн и Т-волн сильных землетрясений. При этом трехкомпонентный геофон выполнен с активными обратными связями, блок анализа выполнен в виде регистратора, работающего в режиме непрерывной регистрации по обнаружению сейсмического события с выдачей сообщения на управляющий компьютер о превышении заданного порога или в заранее заданные промежутки времени ("по календарю") с записью результатов на "твердотельную" память объемом до 32 гигабайт. Кроме того блок анализа содержит четыре сейсмических канала регистрации с мгновенным динамическим диапазоном более 136 дБ, высокостабильный кварцевый генератор с долговременной нестабильностью 10-7 и выполнен с возможностью управления через встроенный интерфейс "Ethernet 10/100" и диапазоном регистрируемых частот 0,1…240 Гц. Сейсмическая информация конвертируется в форматы CSS, MiniSEED. Технический результат - повышение надежности и достоверности регистрации сейсмических сигналов в морях Арктического бассейна. 6 з.п. ф-лы.

Использование: изобретение относится к области гидролокации и может быть использовано при съемке нижней поверхности ледяного покрова на морских акваториях, в том числе и на шельфе в условиях высоких широт. Сущность: устройство для съемки подводной поверхности айсберга включает средство гидроакустического зондирования гидросферы, работающее в полярной системе координат PSS-2, и конструктивно состоящее из антенны, немагнитной штанги с анкерным устройством, кабель-трос, поворотную платформу, прецизионный датчик вращения, двухканальный приемопередатчик, станцию обработки данных на базе портативного компьютера, мониторы, спутниковую навигационную систему GPS, систему электроснабжения. При этом немагнитная штанга выполнена двухсекционной, первая секция немагнитной штанги одним своим концом закреплена на палубе плавательного средства, посредством седла, второй конец первой секции немагнитной сочленен со второй секцией немагнитной штанги, на противоположном конце которой на поворотной платформе установлена антенна МЛЭ, работающая в режиме излучения EQUI-ANGLE, кабель-трос проложен внутри немагнитной штанги, станция обработки данных информационно сопряжена с судовым датчиком динамических перемещений, двумя GPS-компасами, с судовой НРЛС, на поворотной платформе параллельно антенне МЛЭ установлен измеритель вертикального распределения скорости звука в воде. Технический результат: упрощение конструкции устройства съемки нижней поверхности ледовых образований, в частности, одиноких айсбергов. 3 ил.
Группа изобретений относится к разведке ледовой обстановки. Способ разведки ледовой обстановки с использованием дистанционно управляемых беспилотных летательных аппаратов (БЛА) заключается в том, что разведку выполняют двумя БЛА, первым производят определение характеристик ледовой обстановки и передают данные на обеспечивающее судно через второй БЛА, являющийся ретранслятором. При этом выполняют лазерное сканирование и тепловизионную съемку ледовых полей, воздействуют на них когерентным импульсным протонным спиновым эхом, определяют прочностные характеристики ледовых полей и грунта, определяют объем и внешнюю конфигурацию ледового образования, определяют длину корреляции динамических переменных, выполняют томографическое восстановление изображения торосистого ледового образования на уровне решетки льда-тридимита с выявлением трещин и изломов, производят топологический анализ опасных областей и формируют массивы координат точек границ опасных ледовых областей, выполняют кластеризацию многомерных данных. Также заявлен комплекс наблюдения, содержащий два беспилотных аппарата и мобильный пульт контроля и управления. Технический результат заключается в расширении функциональных возможностей разведки ледовой обстановки. 2 н. и 5 з.п. ф-лы.
Изобретение относится к области подводной техники. Малогабаритный телеуправляемый подводный аппарат содержит раму модульной конструкции, блок плавучести, установленный в верхней части подводного аппарата, движители горизонтального и вертикального хода, светильники, обзорную видеокамеру, установленную посредством кронштейна над поверхностью блока плавучести, стационарную черно-белую видеокамеру. В верхней части подводного аппарата соосно с его вертикальной осью установлен перфорированный контейнер для сбора подводных образцов. Подводный аппарат содержит также снабженный охватом манипулятор и герметичный привод, при этом манипулятор установлен на выходном валу привода. На свободном конце выходного вала привода манипулятора установлена видеокамера таким образом, что ее ось визирования постоянно направлена в центр охвата манипулятора. Малогабаритный телеуправляемый подводный аппарат дополнительно снабжен лазерными указателями, системой изменения плавучести, гидроакустическим маяком-ответчиком, мини-гидролокатором кругового обзора, инерционным измерительным устройством, несущей рамой с блоками плавучести. Обзорная видеокамера установлена на устройстве, обеспечивающем наклон и поворот камеры в диапазоне ±30 градусов, и выполнена с десятикратным приближением изображения. Светильники выполнены на светодиодах с мощностью светового потока не менее 2000 люмен с возможностью изменения цветовой температуры и плавной регулировки яркости свечения для уменьшения эффекта засветки от взвешенных в воде частиц. Достигается повышение эффективности сбора подводных образцов и подъема их на поверхность без ухудшения при этом остойчивости и маневренных качеств самого аппарата. 14 з.п. ф-лы.

Группа изобретений относится к навигации морских районов. Способ установки навигационного оборудования морского района в арктической подводной навигационной системе заключается в том, что укладывают на дно подводную навигационную систему с ведущим кабелем и создают электромагнитный коридор судовождения. Самоходный подводный аппарат содержит бортовую систему управления, навигационное оборудование, средства радио- и звукоподводной связи, оборудование подводной навигационной системы с ведущим кабелем, светильники, обзорную и стационарную видеокамеры, датчики глубины и температуры, компенсаторы давления, блок плавучести, лазерные указатели, систему изменения плавучести, гидроакустический маяк-ответчик, минигидролокатор кругового обзора, инерционное измерительное устройство, одностепенный манипулятор с тросорезом. Также заявлена арктическая подводная навигационная система для вождения и навигационного обеспечения надводных и подводных объектов навигации, содержащая проложенный по дну ведущий кабель, береговой генератор тока и судовую аппаратуру. Технический результат заключается в повышении точности определения местонахождения плавательного средства. 3 н.п. ф-лы, 2 табл.

Группа изобретений относится к навигации морских районов. Самоходный гидроакустический буй-маяк содержит источник тока, аппаратуру управления, антенну и приемник спутниковой системы навигации типа ГЛОНАСС, аппаратуру подводной связи, приема и излучения гидроакустических сигналов, приемный усилитель и дешифратор, электронную аппаратуру маяка, якорное устройство с якорем, якорным канатом и вьюшкой, бортовую систему управления, радиопередатчик, запоминающее устройство, вычислительное устройство, датчики гидростатического и гидродинамического давления, фиксатор вытравленного с вьюшки якорного каната и устройство отделения коренного конца якорного каната от крепления на вьюшке. Также заявлен способ для навигационного обеспечения судовождения, при котором рассчитывают необходимое количество гидроакустических буев-маяков, определяют точки их установки, готовят на базе к установке, проверяют их работоспособность и загружают на плавсредство, доставляют их в заданный морской район и в расчетных точках сбрасывают в воду, после приводнения переводят гидроакустические буи-маяки в рабочее положение. Технический результат заключается в повышении достоверности определения координат подводных объектов. 2 н.п. ф-лы, 4 ил.
Теплица // 2765488
Теплица включает фундаментное основание, скатные светопрозрачные ограждения, панели которых обращены к югу и ориентированы по возможному направлению солнечных лучей, рабочий проход на тыльной теплоизолированной панели и устройства для обогрева и орошения. Лицевые и тыльные панели обрамлены каркасом, выполненным из электропроводного материала в виде граней четырехугольной пирамиды, вершины основания которой ориентированы по сторонам света и заземлены. Панели и перемычки между ними выполнены из диэлектрического материала. Вершина пирамиды снабжена молниеотводом и/или электрически соединена с преобразователем и аккумулятором. Автоматическая система управления указанными устройствами включает по меньшей мере по одному датчику температуры и влажности, выходы которых соединены с частью входов арифметико-логического устройства, выполненного с функцией приема сигналов с датчиков сравнения полученных данных с контрольными и выдачи управляющих сигналов на включение указанных устройств. Другая часть входов арифметико-логического устройства соединена с выходами сменного постоянного запоминающего устройства, на котором записаны программа выбранной климатической зоны и программа выращивания выбранного растения этой климатической зоны. Третья часть входов соединена с выходами датчиков положения элементов указанных устройств, входы которых соединены через автоматическую систему управления с выходами арифметико-логического устройства и входами блока индикации. Скатные светопрозрачные ограждения по нижнему периметру оснащены полиэтиленовым желобом, сочлененным с системой орошения. Скатные светопрозрачные ограждения в нижней своей части оснащены очистительными щетками, установленными на телескопическом устройстве и приводимыми в движение посредством электропривода, соединенного с автоматической системой управления. Вдоль тыльных панелей над грунтом размещены мультикультиваторы, исполнительный механизм которых соединен с автоматической системой управления, снабженные пульверизаторами, которые соединены посредством металлокерамических трубок, расположенных внутри оси мутьтикультиватора, с устройством орошения. Датчик влажности выполнен в виде мобильного СВЧ устройства, размещенного в крайних рабочих органах мультикультиватора. Устройства для обогрева включают тепловые панели, расположенные по периметру и по площади теплицы. Жалюзи выполнены из стекла с нанесенным на него покрытием, выполненным с возможностью регулирования притока солнечного тепла. Система облучения растений в теплице содержит в качестве основных источников света натриевые лампы, а в качестве дополнительных источников света светодиодные светильники, включающие несколько типов светодиодов, максимумы излучения которых лежат в пределах синего 400-500 нм и дальнекрасного 700-800 нм спектральных диапазонов, при этом пики излучения синих светодиодов приходятся на длины волн 440-460 нм и 480-490 нм. В крайних рабочих органах мультикультиватора размещен пенетрометр. Ход роста растений контролируют при помощи модуля мониторинга роста растений, включающего радиовысотомер с линейной частотной модуляцией, установленный на дроне. Изобретение обеспечивает повышение эффективности использования теплицы.

Изобретение относится к области судостроения, а именно к средствам для определения осадки судна. Предложен способ определения осадки судна путем определения высоты подводного борта судна, заключающийся в замерах параметров в нескольких точках судна, в котором замеры осуществляют с помощью геодезической аппаратуры ГЛОНАСС/GPS, антенна первого ровера которой установлена на палубе судна с возможностью перемещения в горизонтальной плоскости, а антенна второго ровера размещена на плавающем основании в воде, при этом высоту подводного борта судна определяют по формуле T=H2-(H1+ΔH12), где Т - высота подводного борта судна; H1 - высота уровня расположения антенны второго ровера относительно уровня воды; Н2 - высота уровня расположения антенны первого ровера относительно киля судна; ΔН12 - разность высот расположения антенны первого ровера относительно антенны второго, при этом полученные результаты поступают, обрабатываются и сохраняются в переносной ЭВМ (ноутбуке/компьютере), причем плавающее основание выполнено с переменной подводной парусностью, характеристики осадки которого автоматически регулируются в соответствии с изменениями характеристик осадки судна, дополнительно определяют скорость хода судна по формуле VC=Vo+VБ, где VC -скорость судна относительно грунта; Vo - скорость судна относительно воды; VБ - скорость плавающего основания. Техническим результатом является повышение достоверности при определении осадки судна и расширение функциональных возможностей способа определения осадки судна. 1 ил.

Изобретение относится к области сейсмологии, а именно к способам определения предвестников цунами и тропических циклонов. Заявлен способ определения предвестника цунами, включающий размещение групп устройств регистрации сейсмических сигналов на глубинных горизонтах наблюдений в прибрежной зоне и на удалении от нее с целью поэтапного определения опасности возникновения цунами, cоединение их трактом связи с внешними станциями приема и обработки сейсмических сигналов, регистрацию сейсмических сигналов. Дополнительно регистрируют скорость и направление ветра и морского волнения, влажность воздуха, атмосферное давление, барический градиент электрических разрядов в атмосфере, частоту звуковых волн в атмосфере, определяют коэффициент корреляции для измеренных значений скорости и направления ветра и морского волнения, влажности воздуха, атмосферного давления, барического градиента электрических разрядов в атмосфере, частоты звуковых волн в атмосфере, по которому оценивают возможность появления волны цунами. Дополнительно выделяют длинные волны в диапазоне 4-28 Гц, фазовые скорости, которых варьируются в диапазоне 350-700 м/с, выделяют свободные гравитационные волны, возбуждаемые сейсмическими поверхностными волнами по различию фазовых скоростей, которые служат сигналом о приближении цунами. При обнаружении волны цунами в открытом океане высотой до 1 м и двигающейся со скоростью 500-700 км/час измеряют скорость и высоту этой волны. По изменению скорости до 30-60 км и увеличению высоты волны до 30-40 м судят о ее приближении к береговой линии. Дополнительно выделяют длинные волны, возникающие при тропических приливах, которые проявляются при наибольшем склонении Луны и при увеличении неравенства приливов по времени и высоте, и возникающие при экваториальных приливах, которые наблюдаются при склонении Луны, близком к нулю. Формируют архив полей приводного атмосферного давления и гидростатического давления по срочным данным в районе формирования тропических циклонов по измерениям, выполненным посредством датчиков, размещенных на дрейфующих буях, находящихся между тропиками. Классифицируют тип облачности и дождевых осадков, по результатам измерений, посредством метеорологических радиолокационных станций с двойной поляризацией, СВЧ-радиометров и альтиметрических метеорологических спутников. По результатам измерений выделяют зоны с барическим градиентом 20-30 мб, скоростью ветра 40-100 м/с, атмосферным давлением в центре тропического циклона 900 мб и менее. Связь между дрейфующими буями и опорными пунктами осуществляют посредством радиометеорного канала связи. Выполняют оценку погрешности прогноза путем построения базовой интерполяционной модели типа кригинг. При сравнении статистических характеристик погоды строят сетку гексанов в виде равных правильных шестиугольников, которые получают путем триангуляции сферы методом рекурсивного разбиения. При составлении прогнозов для районов, подверженных влиянию местных признаков погоды, вносят соответствующую корректуру в прогностические значения. Технический результат - повышение достоверности прогноза цунами с одновременным расширением функциональных возможностей способа определения предвестника цунами. 1 табл.

Изобретение относится к области швартовки судов с использованием спутниковой навигационной системы. Система швартовки судна включает в себя приемник спутниковой навигационной системы (СНС), рулевой привод, носовое подруливающее устройство, датчик руля, датчик тяги, блок программного управления, датчик угловой скорости и вычислителя, в который вводят из приемника СНС сигналы координат судна, скорость хода судна, производную скорости хода судна и путевой угол, из датчика руля - сигнал угла руля, из датчика угловой скорости - сигнал угловой скорости и из датчика тяги - сигнал тяги, дополнительно используют радары и регулятор оборотов гребного винта. Вводят в блок программного управления сигналы координат центральной точки швартовки судна и длину вектора путевого угла в точке начала второго этапа швартовки, по сигналам координат судна и сигналам координат центральной точки швартовки судна в вычислителе формируют сигналы заданного путевого угла и длины вектора путевого угла. Сигнал длины вектора путевого угла вводят в блок программного управления, где формируют в зависимости от длины вектора путевого угла сигналы программной скорости хода судна, программного курса и разности сигналов длины вектора путевого угла и длины вектора путевого угла точки начала второго этапа швартовки, сравнивают эти сигналы, если разность сигналов положительна, в вычислителе формируют три сигнала управления первого этапа швартовки. При этом посредством радаров измеряют расстояние, и/или пеленг, и/или курс, по крайней мере, до трех оптических угловых отражателей, установленных на причальном основании с известными координатами, рассчитывают координаты точки установки радара на судне с последующим их преобразованием в географическую систему координат, вычисляют координаты точки установки антенны приемника СНС, вычисляют эталонные координаты точки установки антенны приемника СНС, вычисляют погрешности расстояний, пеленга и курса, вычисляют поправки, которые вводят в вычислитель. Достигается повышение точности швартовки. 2 н.п. ф-лы, 10 ил.

Изобретение относится к нефтедобывающей и нефтеперерабатывающей промышленности, а именно к облегчению перемещения вязких продуктов воздействием на изменение их течения с помощью электрических средств или механических колебаний. Устройство управляемого распыления вязкого потока в трубопроводе, содержащее трубопровод с внутренним распылителем потока. В устройство введены соосно и последовательно расположенные за отверстием проходного канала распылителя в выходной камере опорное тело с поверхностью обтекаемой криволинейной формы, подвижный стержень и упругая опора. Опора закреплена в выходной камере и соединена через подвижный стержень с опорным телом. Форма выходной части отверстия проходного канала распылителя потока выполнена согласованной с формой поверхности опорного тела, установленного на подвижном стержне. Технический результат: расширение функциональных возможностей устройства путем его использования непосредственно в потоке нефти в широком диапазоне изменения скоростей движения вязкого потока с повышением эффективности действия и возможностью управления в реальном времени параметрами режима распыления вязкого потока. 1 ил.
Изобретение относится к способам сейсмического микрорайонирования и может быть использовано для обнаружения возможности наступления катастрофических явлений. Согласно заявленному способу размещают исследуемые и опорные пункты наблюдений на участках с различными инженерно-геологическими условиями. В указанных пунктах наблюдений регистрируют сейсмические колебания от землетрясений из потенциально опасных и других очаговых зон. Определяют динамические параметры сейсмических колебаний и их вариаций в каждом исследуемом пункте наблюдений относительно опорных в заданном частотном диапазоне. Дополнительно проводят трехкомпонентную регистрацию сейсмических колебаний по ортогональной, ориентированной на потенциально опасные очаговые зоны сети профилей. Кроме того, на материковом склоне и шельфе вдоль линии подножия континентального склона размещают донные сейсмографы с широкополосными сейсмическими каналами 0,003-20 Гц. Регистрируют при помощи указанных сейсмографов давление волн цунами на дно на частотах 0,003-0,01 Гц. Зарегистрированные сигналы транслируют по гидроакустическому каналу связи на опорные пункты. В местах установки донных сейсмографов также определяют временные вариации геомагнитного поля посредством измерения параметров гравитационного и магнитного полей. Дополнительно регистрируют приливные колебания морской поверхности путем измерения высоты и направления волн с последующим вычислением фазовых скоростей волн, движущихся от эпицентра подводного землетрясения в сторону побережья, для разных видов волновых движений, при этом выполняют учет внешних сил приливного потенциала, переменного атмосферного давления поля напряженности ветра и гидростатического давления по трассе распространения волн. По линейным масштабам подвижки морского дна, зарегистрированным посредством кварцевых датчиков на глубоководных сейсмических станциях определяют размеры образующих при этом волновых изменений методом начальных параметров и/или интерполяционно - разностным методом. Измерения высоты и направления волн с последующим вычислением фазовых скоростей волн в открытом океане выполняют посредством штатных радиовысотомеров, установленных на рейсовых самолетах. Прогноз возникновения волны цунами выполняют по двум выделенным уединенным волнам в форме холмов, следующих друг за другом с периодом колебаний от 15 до 60 минут, и значениям наклона для выделенных волн, при этом если значения наклонов в течение 2-3 циклов превысят 4-5 угл. сек, то данная волна определяется как волна цунами. На опорных пунктах выделяют волны Ляви и Рэлея, по которым определяют свободные гравитационные волны по возрастанию спектральной плотности при приближении к берегу в низкочастотной области, которые служат сигналом о приближении цунами. На опорных пунктах также выполняют моделирование колебаний уровня океана, вызываемых атмосферными возмущениями с выделением сигнала цунами на шельфе с учетом неоднородной береговой линии и в открытом океане на фоне естественного длинноволнового шума с выделением длинных волн, для которых возникает эффект резонансного отражения, включая уединенные волны в форме холмов с периодом колебаний от 15 до 60 минут. Технический результат - расширение функциональных возможностей. 4 з.п. ф-лы.

Изобретение относится к области геофизики. Технический результат заключается в повышении достоверности прогнозирования цунами. Способ основан на определении параметров волнения с помощью устройств, соединенных трактом связи с наземными станциями приема и обработки сейсмических сигналов службы предупреждения о цунами, установленными в прибрежных зонах цунамигенных регионов. В качестве устройств определения параметров волнения используют устройства, установленные на борту летательных аппаратов, выполняющих регулярные рейсы в цунамигенных регионах, с возможностью их взаимодействия с навигационными спутниковыми аппаратами (ГЛОНАСС или GPS) и с водной поверхностью цунамигенных регионов (океанов), при этом для определения параметров волнения при измерении высоты от летательного аппарата до водной поверхности вычисляют геодезические координаты летательного аппарата (ϕо, λо, Hо) со смещением, обусловленным наклоном отражающей водной поверхности (океанов) относительно референц-эллипсоида, при этом исключают ионосферную погрешность путем обработки спутниковой навигационной информации методом PrecisePointPosition, в свою очередь, на наземных станциях приема и обработки сейсмических сигналов службы предупреждения о цунами по измеренным параметрам выполняют моделирование колебаний уровня водной поверхности океана, вызываемых атмосферными возмущениями с выделением сигнала цунами на шельфе с учетом неоднородной береговой линии и в открытом океане на фоне естественного длинноволнового шума с выделением длинных волн, для которых возникает эффект резонансного отражения, включая уединенные волны в форме холмов. Прогноз возникновения волны цунами составляют по двум выделенным уединенным волнам в форме холмов, следующих друг за другом. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к области радиотехнических измерений и может быть использована для определения уклонений отвесной линии (УОЛ), уточнения параметров вращения Земли и для решения других геодезических задач на акваториях. В способе, включающим этапы: приема антенной с диаграммой направленности вверх на борту подвижной платформы (самолета, аэростата) над поверхностью Земли прямых сигналов, имеющих по меньшей мере две разные несущие частоты, передаваемых спутниками ГНСС, приема антенной с диаграммой направленности вниз на борту платформы сигналов, отраженных водной поверхностью Земли и имеющих, по меньшей мере, две разные несущие частоты, сравнения несущих фаз принятых прямых сигналов и отраженных сигналов на несущих частотах, и определение от сравнений участка высоту поверхности, при определении высоты поверхности вычисляют геодезические координаты нижней антенны со смещением, обусловленным наклоном отражающей морской поверхности относительно референц-эллипсоида, при этом приемники передаваемых спутниками сигналов ГНСС устанавливают на n самолетах, пересекающих воздушное пространство над акваторией, по вычисленным геодезическим координатам подвижной платформы вычисляют значения проекций УОЛ по широте и долготе, при этом исключают ионосферную погрешность путем обработки спутниковой навигационной информации методом Precise Point Position, дополнительно размещают в регионе опорные станции для измерения эфемеридных погрешностей и погрешностей расхождения шкал времени. Технический результат – расширение функциональных возможностей в части определения УОЛ с одновременным повышением производительности съемки при выполнении высотометрии Земли над водной поверхностью. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области гидрографии, в частности к способам и техническим средствам определения поправок к глубинам, измеренных многолучевым эхолотом при съемке рельефа дна акватории. Техническим результатом является существенное упрощение процесса и уменьшение трудоемкости определения поправок к глубинам, измеренным многолучевым эхолотом по всему его измеряемому диапазону, за счет отсутствия по сравнению с прототипом необходимости использования в заявленном изобретении нормированных измерительных приборов (двух датчиков гидростатического давления и температуры воды) для обеспечения получения метрологических характеристик измеренных эхолотом глубин. Заявленное устройство снабжено вычислительным комплексом для определения искомых глубин и искомых геодезических координат их места, а также искомых поправок к измеренным глубинам, реализующим новые формульные зависимости, вход которого через блок управления соединен с выходами измерительного приемного блока, приемника спутниковой радионавигационной системы типа GPS или «ГЛОНАСС», морской интегрированной малогабаритной системы типа «Кама», датчика скорости распространения звука в воде типа ТЗО-2, а выход его с входом блока определения поправок к глубинам, измеренных многолучевым эхолотом при съемке рельефа дна акватории. 2 н.п. ф-лы, 2 ил.

Изобретение относится к устройствам герметизации мест пробоя высокоскоростными метеоритными или техногенными частицами оболочек космических объектов. Устройство герметизации дефектов оболочек космических объектов содержит крышку (1), ручку (2), отверстия (3) для заливки герметика, прижим (4). Крышка (1) выполнена из полиэтиленовой пленки. Прижим (4) выполнен в виде поршня с резьбой (7), соединенного посредством штока (6) с ручкой (2). При обнаружении дефекта в корпусе космического аппарата корпус (5) накладывается на пробойное отверстие в корпусе космического аппарата. Посредством вращения ручки (2) под действием штока (6) герметик перемещается к крышке (1) и разрывает эластичную крышку (1) и начинается процесс герметизации. Обеспечивается возможность герметизации пробоин оболочки космического аппарата в труднодоступных местах. 1 ил.

Изобретение относится к средствам спасания персонала аварийных морских нефтегазовых платформ (МНП) в условиях Арктики. Система эвакуации на лед персонала аварийных нефтегазовых платформ содержит размещенные на палубе спасательное средство и спуско-подъемное устройство. Спуско-подъемное устройство выполнено в виде размещенных вдоль борта платформы направляющих вертикального лифта для перемещения посредством палубных лебедок грузовой площадки со спасательным средством и на которой шарнирно закреплена посредством гидроприводов аппарель для обеспечения в опущенном на лед положении сход спасательного средства, а в поднятом положении образует волновой дефлектор его защиты. Спасательное средство выполнено в виде защитного для персонала модуля с гусеничным движителем, электропривод которого посредством буксирного кабель-троса и лебедки-вьюшки платформы соединен с источником электроснабжения. Достигается гарантированная эвакуация персонала МНП. 4 з.п. ф-лы, 2 ил.

Изобретение относится к средствам эвакуации людей с аварийных морских объектов. Комплекс аварийной эвакуации на лед персонала и экипажа морских платформ содержит коллективные спасательные средства, включающие спусковые устройства для доставки персонала на спасательное судно. Спусковые устройства для доставки персонала на спасательное судно размещены на нижней палубе. Поворотная грузовая стрела с кареткой перемещения груза размещена вдоль борта платформы, снабженной механизмом расцепления с ним и шкивом, через который заведен кабель-трос. Кабель-трос соединен коренным концом с палубной лебедкой или вьюшкой, снабженным электроразъемом подачи электроэнергии в кабель-трос, а ходовой конец соединен со спасательным судном. Достигается повышение безопасности при эвакуации персонала с аварийной МП и его доставка воздушным путем на спасательное судно. 4 з.п. ф-лы, 3 ил.

Изобретение относится к теплозащитным средствам, предназначенным для снижения тепловых потерь человека, размещенного в спасательных шлюпках морских судов. Индивидуальное теплозащитное средство выполнено в виде мешка, закрывающего все тело человека, кроме лица, и снабжено герметично закрепленными рукавами с перчатками. В нижней части мешка размещены герметичные чулки для ног, а мешок выполнен в виде верхнего и нижнего отсеков, соединяемых герметичной фронтальной молнией. Верхний отсек в исходном (сдутом) состоянии сложен в поясной ранец и закреплен ремнем. Достигается обеспечение комфортных условий теплозащиты от переохлаждения человека после эвакуации с судна и быстрота размещения в коллективном спасательном средстве всех спасаемых. 4 з.п. ф-лы, 3 ил.

Изобретение относится к средствам экстренной эвакуации в ледовых условиях персонала морских платформ. Система экстренной эвакуации персонала морских платформ в ледовых условиях содержит коллективные спасательные средства: эвакуационные мосты с рукавами для спуска персонала на лед и водную поверхность, надувные спасательные плоты и спасательные шлюпки для спуска на водную поверхность и дежурное судно аварийно-спасательного обеспечения. На нижней палубе морской платформы дополнительно размещены разворачивающиеся в направлении вдоль борта и перпендикулярно к нему грузовые стрелы, образуя в рабочем положении слип. Участок палубы между стрелами выполнен в виде откидывающейся площадки, на которой в исходном состоянии посредством замков закреплен спасательный модуль с плоским днищем, концевые участки которого посредством глаголь-гаков соединены с грузовыми каретками стрел и тросами палубных лебедок. В носовой оконечности модуля дополнительно закреплен глаголь-гак, постоянно соединенный с ходовым концом буксирного троса дежурного судна аварийно-спасательного обеспечения. Достигается повышение надежности при эвакуации персонала морских платформ на лед и быстрый отход на безопасное расстояние. 3 ил.

Изобретение относится к области охранной сигнализации. Технический результат заключается в расширении арсенала средств того же назначения. Интеллектуальная сетевая система мониторинга охраняемой территории нефтегазовой платформы в ледовых условиях содержит центральный пункт управления (ЦПУ) и группу технических средств обнаружения (ТСО), в состав ЦПУ входят первый радиомодем, работающий на радиочастоте первого радиоканала связи, коммуникационный модуль с возможностью связи с внешними устройствами с помощью сетевого интерфейса и ПЭВМ с графическим монитором, в состав каждого ТСО входит первый радиомодем, модуль обнаружения активности, процессор с модулем памяти, источник питания и датчики тревожной сигнализации. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в навигационно-пилотажных комплексах, объединяющих несколько инерциальных навигационных систем для формирования обобщенной выходной информации о местонахождении объекта, его ориентации в пространстве и его скоростях, а также использующим внешнюю информацию для коррекции систем, входящих в состав комплекса. Технический результат – повышение точности выходной информации навигационного комплекса и глубины контроля систем, входящих в состав комплекса. Для этого выходная информация, поступающая по меньшей мере с двух бесплатформенных инерциальных систем (БИНС), сравнивается по мажоритарному признаку, после чего отбраковывается информация той БИНС, которая наиболее отклоняется от остальных, при этом согласно изобретению первичная информация в виде матриц ориентации и приращений линейных скоростей поступает с выходов БИНС на вход блока обработки первичной информации, в котором по заданному критерию формируется осредненное значение матрицы ориентации и приращения линейных скоростей, эти осредненные значения поступают на вход блока решения навигационных уравнений, а полученные в результате решения навигационных уравнений выходные параметры в виде текущих координат и курса объекта и его скоростей поступают на вход блока контроля, в котором производится сравнение выходных параметров БИНС с выходными параметрами блока решения навигационных уравнений и анализ отказных ситуаций узлов БИНС. В случае превышения порога при использовании мажоритарного признака одноименных параметров двух и более БИНС, выполняется сравнение попарных разностей показаний БИНС для каждого вырабатываемого параметра с порогами, равными удвоенному значению погрешностей выработки параметров, указанных в технических условиях на БИНС, при этом если при оценке нескольких БИНС выявлены бесплатформенные инерциальные навигационные системы разности с участием значений которых превышают пороги, то выполняется поиск пары БИНС, у которых взаимные разности наименьшие, и их значения наиболее приближены к параметрам навигационной аппаратуры потребителей глобальной спутниковой навигационной систем по составляющим скорости и координатам, при превышении порога попарными разницами одноименных параметров всех БИНС производится оценка попарных разниц путем средневзвешенного осреднения курса двух каналов всех БИНС с использованием реализаций дисперсий оценки курса DK, в соответствии с формулой K = (Кi*mkj2 + Кj*mki2)/(m kj2*mki2), где Кi и Кj – измеренные значения курса, Pi = 1/mi2 и Pj = 1/mj2 – веса, измеренных значений курса, mki и mkj – среднеквадратические погрешности (СКП), измеренных значений курса, по i-му и j-му информационным каналам, полученные на основе осреднения измеренных значений курсов 3-х и 4-х каналов (1 – 2 – 3, 1 – 2 – 4, 1 – 3 – 4, 2 – 3 – 4, 1 – 2 – 3 – 4). 2 табл., 2 ил.

Устройство относится к области морского приборостроения и предназначено для использования в качестве относительного и абсолютного лага, а также измерителя скорости течений для приповерхностных и глубоководных исследований преимущественно при малых глубинах под килем. Лазерный судовой измеритель скорости содержит передающий канал, включающий полупроводниковый модуль с дифракционно-оптическим делением лазерного пучка и содержащий полупроводниковый модуль, дифракционную решетку, первый объектив, пространственный фильтр, второй объектив, и приемный канал, включающий фокусирующий объектив, диафрагму, фотодиод и предварительный усилитель, подключенный к преобразователю доплеровского сигнала, вычислительное устройство, при этом приемный канал дополнительно содержит вторую диафрагму и второй фотодиод с предварительным усилителем, подключенным к второму преобразователю доплеровского сигнала, при этом выходы преобразователей доплеровского сигнала подключены к вычислительному устройству, передающий и приемный каналы размещены в герметичном корпусе, снабженном в нижнем основании корпуса защитным окном. Дополнительно лазерный судовой измеритель скорости содержит «n» передающих и приемных каналов, размещенных соответственно в «n» герметичных корпусах, установленных по обоим бортам судна соответственно в носовой, кормовой и центральной частях судна, при этом герметичные корпуса с передающими и приемными каналами также размещены попарно в вертикальной плоскости корпуса судна, при этом один герметичный корпус с передающим и приемным каналом размещен выше ватерлинии, а другой в днище судна в телескопическом устройстве, полупроводниковые модули, размещенные в герметичных корпусах, установленных выше ватерлинии, выполнены для функционирования в видимом диапазоне волн, а полупроводниковые модули, размещенные в герметичных корпусах, установленных в днище судна, выполнены в сине-зеленом диапазоне волн, в вычислительное устройство введен блок корреляционной обработки сигналов от «n» передающих и приемных каналов, вычислительное устройство своими соответствующими входами соединено также с выходами судовых датчиков измерения углов килевой и бортовой качек, вертикальных составляющих вектора скорости, в состав лазерного судового измерителя скорости введены блок классификации спектра принятых сигналов, соединенный своим входом с выходами передающих и приемных каналов, блок выбора режимов функционирования устройства, соединенный своим входом с выходом блока классификации спектра принятых сигналов, а своим выходом - с входом вычислительного устройства. 2 ил.

Изобретение относится к космической технике, а более конкретно к ремонту космического аппарата. Устройство для оперативной герметизации пробойного отверстия в корпусе космического объекта содержит герметизирующий элемент и резервуар. Резервуар выполнен в виде двухстороннего зонта. Одна рабочая внутренняя сторона зонта выполнена из прочного пропилена, а вторая рабочая внешняя сторона выполнена из тонкого листового титана. Стороны зонта располагаются по разные стороны от оболочки космического аппарата. Резервуар содержит ручку с фиксатором для раскрытия зонта, часть ручки, находящаяся между двух рабочих сторон зонта, снабжена форсунками. Ручка снабжена впускным клапаном, к которому подключен баллон со сжатым воздухом. Ручка проходит через пробойное отверстие. Резервуар заполняется герметизирующим элементом. Достигается расширение области применения. 1 ил.

Использование: для определения поправок к глубинам. Сущность изобретения заключается в том, что устройство для определения поправок к глубинам, измеренным эхолотом при съемке рельефа дна акватории, содержащее передатчик и измерительный приемный блок, подключенные соответственно к излучающей и приемной антеннам, регистратор и блок управления, соединенный с измерительным приемным блоком, базу с датчиками гидростатического давления и температуры, выходы которых через блок управления соединены с входом блока определения поправок к глубинам, измеренным эхолотом, вход которого через блок управления соединен с выходом приемоизмерительного блока, а выход соединен с входом регистратора, датчики горизонтальных и вертикальных перемещений, датчик измерения скорости распространения звука в воде, измеритель относительной скорости, магнитный компас и гироазимутгоризонткомпас, приемоиндикатор спутниковой навигационной системы, прт этом база установлена на выносной штанге параллельно днищу судна и жестко сочленена с корпусом судна, приемопередающий блок, установленный на базе, выполнен в виде лазерного излучателя и оптического приемника, отличающееся тем, что база выполнена в виде самоходного глубоководного аппарата, оснащенного планировщиком, модемом гидроакустической связи, отражателем, профилографом для определения ровной поверхности грунта, классификатором грунта, датчиком определения прозрачности воды, блоком пересчета измеренных глубин с учетом прозрачности воды, измеренной по крайней мере на трех горизонтах по глубине. Технический результат: обеспечение возможности получения достоверных измерений при проведении тарировки эхолотов.

Устройство относится к области морского приборостроения и предназначено для использования в качестве относительного и абсолютного лага, а также измерителя скорости течений. Лазерный судовой измеритель скорости содержит передающий и приемный каналы, вычислительное устройство, опорный фотоприемник, устройство отвода оптической энергии лазерного передатчика в опорный приемник и контрольный датчик направления излучения. Передающий и приемный каналы размещены в герметичном корпусе с защитным окном в нижнем основании. Передающий канал содержит: полупроводниковый модуль с дифракционно-оптическим делением лазерного пучка, полупроводниковый модуль, дифракционную решетку, первый объектив, пространственный фильтр и второй объектив. Приемный канал содержит фокусирующий объектив и 5 наборов устройств: диафрагма, фотодиод, предварительный усилитель и преобразователь доплеровского сигнала. Преобразователи подключены к вычислительному устройству. Технический результат заключается в увеличении точности измерений. 2 ил.

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров и отдельных навигационных опасностей на судоходных акваториях, а также для проведения сейсмических и экологических наблюдений. Предложен навигационный буй, который содержит обтекаемый герметичный корпус, разделенный водонепроницаемыми переборками на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса буя, солнечные и волновую энергетические установки, регулируемый съемный балласт, закрепленный в нижней части корпуса буя и выполненный из арматурного железа, образующего колоколообразную ферму, на элементах которой закреплены датчики измерения сейсмических и экологических параметров, телескопическое устройство в верхней части буя, на котором размещены антенна системы ГЛОНАСС, метеорологические датчики, внутри корпуса буя установлен информационно-управляющий модуль, соединенный с антенной системы ГЛОНАСС, энергетическими установками буя и датчиками измерения сейсмических, экологических и метеорологических параметров, информационно-управляющий модуль посредством кабеля, сочлененного с якорной цепью, соединен с донной сейсмоакустической станцией. Технический результат заключается в увеличении мощности энергетической установки навигационного буя, расширении функциональных возможностей буя, упрощении его конструкции. 1 ил.
Изобретение относится к обеспечению безопасности судов. Техническим результатом является повышение безопасности мореплавания в критических ситуациях. В способе формируют базу знаний по обеспечению безопасности каждого судна, базы данных, при этом обеспечивают взаимный обмен информацией аварийных судов, а при возникновении аварийной ситуации анализируют в компьютерном центре все данные по аварийному судну, как исходные данные, так и полученные данные об аварии, и вырабатывают оптимальные рекомендации для поддержания аварийного судна на плаву до подхода спасательного судна или иные решения по спасению людей, судна, груза и по предотвращению загрязнения окружающей среды, при этом дополнительно включают в базу знаний технические данные всех судов данного класса, характеристики перевозимого груза, фактическую загрузку по палубам и трюмам, данные об аварии судна получают в режиме реального времени посредством систем наблюдения, установленных на надстройках судна и мобильных самоходных или телеуправляемых малогабаритных аппаратах, передвигающихся в надводном и подводном положениях. 2 н.п. ф-лы.

Изобретение относится к области спасательных средств на воде и может быть использовано в качестве штатного снаряжения для летного состава в условиях аварийного приводнения. Индивидуальное спасательное средство для поддержания летчика на плаву при приводнении содержит наполняемую газом эластичную плавучесть, выполненную в виде двух надувных баллонов-подков, закрепленных на комбинезоне летчика, систему газонаполнения, размещенную в подмышечном пространстве комбинезона. Плавучесть выполнена в виде тора с днищем, герметично соединенным через два отверстия со штанинами комбинезона. В исходном (сдутом состоянии) плавучесть выполнена в виде баллона и укладывается на поясной части посредством замков в виде пакета на поясную часть комбинезона. На поверхности плавучести, выполненной в виде тора, закреплен теплозащитный тент-накидка и автоматическая стяжка. Достигается создание комфортных условий и выживаемости летчика в условиях аварийного приводнения и последующего длительного пребывания в воде. 3 ил.

Изобретение относится к области геофизики и может быть использовано для сейсмоакустических исследований на шельфе при выполнении разведочных работ нефтегазоносных месторождений. Заявлена автономная сейсмоакустическая станция (МАСАС), содержащая устанавливаемый на морском дне, всплывающий после отдачи балласта носитель аппаратуры (НА), причем НА включает в себя размещенные в герметичном сферическом контейнере бортовой вычислительный узел (БВУ), источник питания, трехкомпонентный сейсмоприемник, а также установленные снаружи герметичного контейнера гидрофон, устройство постановки и снятия НА с грунта, средства для поиска всплывшего НА, выполненные в виде проблескового маяка, спутниковой системы навигации типа «Глонасс», низкоорбитальной спутниковой системы связи типа «Гонец» и активного радиолокационного отражателя, размыкатель, дублируемый командами с прибора срочности, с датчика герметичности, с датчика давления, регистрирующий тракт, состоящий из четырехканального блока фильтрации и усиления, обеспечивающего фильтрацию сигналов с выходов трехкомпонентных сейсмоприемников и гидрофона в полосе частот 5-200 Гц и усиление сигналов для их подачи на вход блока четырехканального аналого-цифрового преобразователя (ЧАЦП), выходные сигналы с которого по отдельности подаются на входные каналы формирователя (КФ), где из сигналов гидрофона и сейсмоприемников формируется массив отдельной выборки с длиной из шестнадцатиразрядных слов, подающихся с выхода КФ на соответствующие каналы накопителя информации (НИ), представляющего собой твердотельную память из 4 флэш-карт с емкостью по 2 Гбайт каждая, причем блок ЧАЦП состоит из четырех 14-разрядных АЦП, в которой корпус носителя аппаратуры выполнен из напряженного железобетона и имеет надводную часть, на которой размещены система сбора и передачи на берег информации с измерительных систем, расположенных на сейсмической станции. При этом корпус носителя аппаратуры выполнен в виде отдельных кольцевых монолитных секций, из напряженного железобетона и снабженных направляющим (замками), внутри кольцевых монолитных секций расположены направляющие трубки, для размещения в них стальных тросов или стержней для предварительного сжатия корпуса буя, в нижней части буя размещены домкраты, в теле буя размещены электропривод и тензометрические датчики. Технический результат - обеспечение более достоверных данных сейсмических исследований. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области радиотехники и может быть использовано для навигации подвижных объектов в режиме реального времени. Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС включает спутники глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO), диспетчерскую станцию, содержащую геоинформационную систему, базовую станцию, подвижные объекты, оснащенные телеметрическими терминалами, на которых установлено телекоммуникационное оборудование, обеспечивающее соединение базовой станции с подвижными объектами посредством широкополосного радиодоступа, блок обработки совместной информации, поступающей с базовой станции и подвижного объекта. В качестве базовой станции используется сгенерированная сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС виртуальная базовая станция. В качестве телеметрического терминала в системе используется устройство точной навигации, созданное на базе одночастотного двухсистемного кодо-фазового чипа, принимающего сигналы глобальных навигационных спутниковых систем, подключенного к малогабаритному атомному стандарту частоты, введены региональные модели ионосферы и тропосферы, созданные в режиме реального времени, генерируемые сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС. При этом на побережье и на акватории установлены ретрансляторы, причем ретранслятор, установленный на побережье, размещен в глубине побережья, а ретрансляторы на акватории расположены на расстоянии 50 км от берега вдоль побережья. При передаче информации от базовой станции на ретрансляторы используют кодовые измерения длительностью 20-30 сек. Ретранслятор, установленный на акватории, выполнен в виде буя, корпус которого выполнен из напряженного железобетона и имеет надводную часть, на которой размещено телекоммуникационное оборудование. Технический результат заявленного изобретения состоит в повышении точности и надежности определения местоположения подвижных объектов в режиме реального времени. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области гидрографии, в частности к способам и техническим средствам определения поправок к глубинам, измеренным однолучевым эхолотом при съемке рельефа дна акватории. Техническим результатом является то, что при использовании заявленного способа и устройства для его осуществления существенно упрощается процесс определения данных поправок по сравнению с аналогом за счет того, что для их определения используются только лишь измеренные гидроакустическим путем глубины погружения заборной части заявленного устройства в процессе ее погружения до заданного горизонта и подъема до поверхности воды, а также используются новые формульные зависимости. Кроме того, в заявленном способе и устройстве по сравнению с прототипом обеспечивается расширение их функциональных возможностей путем определения геодезических координат мест измерения глубин погружения приемоизлучающей гидроакустической антенной с требуемой точностью в процессе определения данных поправок, а следовательно, обеспечивается создание на акватории съемки рельефа дна опорных гидрографических пунктов для калибровки эхолотов на акватории съемки с целью обеспечения единства измерений. Заявленное устройство снабжено приемником спутниковой радионавигационной системы типа GPS, антенна которого закреплена на верхнем конце базы, морской интегрированной малогабаритной навигационной системой типа «КАМА», закрепленной в кардановом подвесе, вычислительным блоком определения искомых геодезических координат мест измерения глубин погружения заборной части заявленного устройства, реализующим новые формульные зависимости. 2 н.п. ф-лы.

Изобретение относится к морской гидрометеорологии и может быть использовано для определения поля дрейфа морских льдов. Способ определения поля дрейфа морских льдов заключается в совмещении пары последовательных спутниковых изображений одного и того же участка ледовой поверхности, совмещении неподвижных деталей изображений, придании изображениям взаимно-исключающих световых или цветовых контрастов. При этом направление дрейфа определяется как отношение поперечной составляющей скорости к продольной составляющей скорости дрейфующего объекта. Пройденное расстояние по перемещению точек дрейфующего объекта, характеризующих локальный максимум высот дрейфующего объекта относительно береговых ориентиров, определяется путем построения метрик Хаусдорфа. Техническим результатом заявленного изобретения является повышение достоверности определения дрейфа льдов при совмещении изображений льдов на снимках. 1 ил.
Изобретение относится к трубопроводному транспорту. Система транспортировки жидкого продукта на большие расстояния состоит из магистрального трубопровода, подводящих трубопроводов, перекачивающих станций, конечного пункта для приема перекачиваемого продукта из магистрального трубопровода, линейных сооружений магистрального трубопровода, включает участки магистрального трубопровода с постоянно возрастающим диаметром для расширения газа непосредственно в трубопроводе. Перекачивающие станции установлены на головных сооружениях магистрального трубопровода. Морские участки магистрального трубопровода выполнены из полипропилена и размещены в водной среде посредством якорных устройств, снабженных размыкателем. Участки магистрального трубопровода, расположенные в прибрежной зоне и болотистой местности, установлены на понтонах, снабженных стабилизирующим устройством. Промежуточные перекачивающие станции размещают в географических точках, по мере уменьшения разности высот уровня моря между двумя географическими точками, от начальной к конечной точке участка магистрального трубопровода, при этом диаметр магистрального трубопровода, образующего каждый каскад, уменьшается на 10% от диаметра магистрального трубопровода, расположенного в географической точке с наивысшим уровнем моря. В месте вывода магистрального трубопровода на берег магистральный трубопровод помещен в наклонную железобетонную шахту. Резервуар головной перекачивающей станции соединен с системой каналов для сбора воды, выполненных из глины или камня. Задачей изобретения является снижение трудоматериальных затрат за счет упрощения конструкции магистрального трубопровода.

Изобретение относится к области гидрографии, в частности к способам и техническим средствам барометрической съемки рельефа дна путем определения глубин на заданной акватории. Способ определения на навигационных картах границ опасных участков морского дна включает построение и нанесение изобат по результатам промеров на навигационные карты. При этом дополнительно выполняют сегментирование картографического отображения рельефа дна на монотонные участки с известными наибольшими и наименьшими глубинами и выполняют измерения кратчайших расстояний от оси судового хода до опасных изобат с обоих бортов судна. Затем выполняют оценку безопасности прохода судна вблизи пространственных опасностей путем построения регрессионных моделей опасных изобат. Техническим результатом заявленного изобретения является повышение навигационной безопасности судов путем определения границ опасных участков дна на картах без использования интерполяции глубин. 2 ил.
Изобретение относится к устройствам для видеоконтроля водных акваторий с обеспечением регистрации нештатных ситуаций, связанных с движением судов по несанкционированным курсам или их нахождением в запретных зонах. Заявленная видеосистема для регистрации нештатных ситуаций на судоходных реках содержит установленные, по меньшей мере, на одной опоре поворотные видеокамеры видимого диапазона с Ethernet-интерфейсом и ПЗС-матрицей, стандартные сетевые устройства для архивации и обработки видеоданных, обнаружения, идентификации и распознавания объектов оператором, а также малогабаритные лазерные источники света для создания светящихся реперных точек, образующих опорную сетку для определения координат наблюдаемых объектов. При этом на опоре дополнительно установлена лазерно-акустическая система для получения видеоданных подводной части наблюдаемого объекта относительно оси судового хода наблюдаемого объекта. Технический результат - расширение функциональных возможностей.
Изобретение относится к области охраны окружающей среды и предназначено для локализации нефтяных загрязнений и очистки от них открытых водоемов. Способ локализации нефтяного загрязнения включает обработку нефтяного загрязнения на поверхности воды и создание заграждения, препятствующего растеканию нефти на поверхности воды. Заграждения создают в виде сеточного каркаса, выполненного из полимерного материала и размещенного по периметру загрязнения. Сеточный каркас выполнен в виде шатра посредством сочлененных секций, посредством проволочного проводника, соединенного с источником электроэнергии. При этом по длине проволочного проводника на равных расстояниях друг от друга установлены патроны со свечами, выполненными из канифоли. Изобретение обеспечивает повышение надежности очистки открытых водоемов от нефтяных загрязнений, снижение трудозатрат с обеспечением экологической безопасности.

 


Наверх