Патенты автора Панич Анатолий Евгеньевич (RU)

Изобретение относится к датчикам для измерения вибрационных и ударных ускорений сложных технических объектов, работающих в условиях экстремальных механических перегрузок. Техническим результатом является снижение чувствительности пьезоэлектрического акселерометра к деформации контролируемого объекта при уменьшении габаритов, повышении резонансной частоты и увеличении верхней границы рабочего диапазона частот. Компенсационный пьезоэлектрический элемент с поперечным радиальным направлением поляризации, установленный на диэлектрической прокладке между рабочим пьезоэлементом и основанием, позволяет преобразовать механические напряжения, возникающие в основании вследствие его деформации, в пропорциональный электрический сигнал, который используется для компенсации сигнала помехи от деформации контролируемого объекта. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к производству пьезокерамических элементов (ПКЭ) и предназначено для поляризации в воздушной среде крупногабаритных изделий из сегнетожестких материалов с температурой Кюри до 350°C в условиях серийного производства. Технический результат: уменьшение разброса электрофизических параметров ПКЭ за счет создания одинаковых условий поляризации для всех ПКЭ и снижение температуры нагрева за счет повышения напряженности электрического пробоя ПКЭ в воздушной среде. Сущность: устройство содержит установленные по окружности на основании поляризационной камеры n кассет с закрепленными в них ПКЭ, узел распределения напряжения поляризации между ПКЭ, содержащий проходной высоковольтный контакт, выполненный в виде вертикального штока, к которому снизу подключен скользящий контакт, соединенный через один и тот же токоограничивающий резистор с одним из выводов источника высокого напряжения, а сверху он имеет коммутирующий контакт, выполненный в виде гибкой металлической пластины, для последовательного подключения к нему каждой из n кассет при его вращении по окружности от вала электродвигателя через изолирующую муфту, которая посажена на вертикальный шток. Один электрод каждого ПКЭ имеет точечный контакт с поляризационным контактом каждой кассеты. Другой электрод ПКЭ имеет контакт с соединенной с общей шиной проводящей подложкой, которая выполнена с возможностью уменьшения концентрации напряженности электрического поля в межэлектродном промежутке ПКЭ. Повторение последовательного подключения/отключения всех ПКЭ к источнику высокого напряжения в течение одного цикла поляризации через один и тот же токоограничивающий резистор обеспечивает одинаковые условия поляризации ПКЭ. 2 н. и 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к способу изготовления керамических пьезоматериалов из нано- и ультрадисперсных порошков фаз кислородно-октаэдрического типа, содержащих в позиции (В) ионы титана (IV), ниобия (V), циркония (IV), вольфрама (VI). цинка (II), никеля (II) и железа (III), кобальта (III) и других p- или d-элементов. Технический результат изобретения - повышение относительной диэлектрической проницаемости и пьезомодулей при сохранении у пьезоматериалов коэффициентов электромеханической связи. Способ получения керамических пьезоматериалов из нано- и/или ультрадисперсных порошков фаз кислородно-октаэдрического типа характеризуется тем, что нано- и/или ультрадисперсные порошки фаз кислородно-октаэдрического типа перед операцией формования и спекания обрабатывают спиртовым или водно-спиртовым раствором 1-8 мас. % гликолята аммония (NH4HC2O3), или формиата аммония (NH4COOH), или их смесей, после чего жидкую фазу удаляют, а полученный порошок высушивают. Пресс-заготовку, изготовленную из обработанного таким образом порошка, спекают 1,5-3 часа при температуре от 900 до 1250°С. 5 з.п. ф-лы, 30 пр., 2 табл.

Изобретение относится к композиционным керамическим пьезоэлектрическим материалам на основе фаз кислородно-октаэдрического типа и может быть использовано для изготовления гидроакустических устройств, а также приборов СВЧ и УЗ диапазонов, приборов точного позиционирования объектов (литография, туннельные растровые микроскопы) и т.д. Техническим результатом изобретения является повышение значений εT 33/ε, пьезомодулей и приведенных параметров, определяющих эффективность пьезоматериалов при сохранении ими высоких значений Кp. Композиционный пьезокерамический материал включает: фазу А, полученную из PbO, ZrO2 и TiO2 при следующем соотношении компонентов, в мольных долях (PbO : ZrO2 : TiO2) : [1:(0,33-0,39):(0,61-0,67)]; фазу В, полученную из PbO, ZnO, NiO·nH2O и Nb2O5 при следующем соотношении компонентов, в мольных долях (PbO : ZnO : NiO·nH2O : Nb2O5): [1:(0,08-0,12):(0,22-0,25):0,33], где n=1-3; фазу С, полученную из PbO, Fe2O3·mH2O и Nb2О5 при следующем соотношении компонентов, в мольных долях (PbO : Fe2O3·mH2O : Nb2O5) : [1:0,25:0,25], где n=1-3. Содержание фаз A, B и C в системе в мольных долях составляет [(1-k/2) (0,54-0,6) А]+[(1-k/2)(0,4-0,46) В]+[kC], где k=0,01-0,10. 1 з.п. ф-лы, 3 пр., 4 табл., 5 ил.
Изобретение относится к области пьезокерамических материалов, предназначенных для изготовления многослойных ультразвуковых устройств в виде слоистых гетероструктур, являющихся основой различных пьезодатчиков (давления, медицинской диагностики, эмиссионного контроля гидроакустической аппаратуры и т.д.), работающих в режиме приема. Указанные материалы также могут быть использованы для изготовления многослойных пьезоэлектрических актюаторов, пьезоклапанов, низкочастотных пьезовибраторов и других типов пьезопреобразователей. Предлагаемый пьезокерамический материал по своему составу относится к твердым растворам системы PbTiO3-PbZrO3-PbNi1/3Nb2/3O3-PbZn1/3Nb2/3O3, содержащих в качестве легирующих добавок SrO, WO3, Bi2O3 и CdO, при следующем соотношении компонентов, мас.%: PbO 66,94-67,42, ZrO2 11,42-11,96, TiO2 9,02-9,43, SrO 0,35-0,40, WO3 0,16-0,27, Bi2O3 0,49-0,65, CdO 0,12-0,21, Nb2O5 8,18-8,39, ZnO 0,78-0,84, NiO 1,58-1,75. Технический результат изобретения заключается в создании пьезокерамического материала с более высокими значениями (по сравнению с прототипом) диэлектрических и пьезоэлектрических параметров при сохранении температуры его спекания на уровне 950°C. 3 табл.

Изобретение может быть использовано в полупроводниковой, пьезоэлектрической и радиоэлектронной технике. Для получения порошков титаната, или цирконата, или ниобата свинца, или титаната-цирконата свинца из 0,1-0,3М растворов нитратных комплексов титана, циркония или ниобия при рН=8±0,5 осаждают с помощью 5-10% раствора аммиака при температуре ниже 280 К гидроксиды титана, циркония, ниобия или смешанный гидроксид титана-циркония. Полученные гидроксиды смешивают при температуре ниже 280 К с водной суспензией оксида свинца (II), затем оставляют на 10-20 минут. После этого проводят последовательную термообработку при температуре приблизительно 370 К в течение 50-60 минут, затем в изотермических условиях 20-30 минут. Изобретение позволяет снизить температуру синтеза и повысить пьезопараметры получаемых материалов. 3 ил., 2 табл., 15 пр.
Изобретение относится к способам получения порошков фаз слоистых титанатов ряда s- и p-элементов (ВСПС), которые являются основой пьезоматериалов, широко применяющихся в современной аэрокосмической промышленности

Изобретение относится к способам получения порошков фаз кислородно-октаэдрического типа, у которых подрешетка В представляет собой совокупность октаэдров ЭО6 (Э - катионы р- и d-элементов), соединенных между собой вершинами, а катионы подрешетки А заполняют различные по геометрии пустоты подрешетки В (например, фазы со структурой типа перовскита), и может быть использовано для изготовления функциональных пьезоэлектрических, диэлектрических и ферримагнитных и смешанных материалов, применяемых в полупроводниковой, пьезоэлектрической и радиоэлектронной технике

Изобретение относится к измерительным устройствам и предназначено для контроля уровня жидких или сыпучих веществ в емкости

Изобретение относится к ультразвуковой технике и может быть применено в гидроакустических системах обнаружения и классификации объектов

Изобретение относится к устройствам подачи сигналов тревоги и может быть использовано в интегрированных системах безопасности

Изобретение относится к измерительной технике и предназначено для работы в средствах измерения и контроля виброускорения различных машин и механизмов

Изобретение относится к области научного приборостроения и предназначено для использования в сканирующих зондовых микроскопах и нанотехнологических установках для перемещения

Изобретение относится к области научного приборостроения и может быть использовано в сканирующих зондовых микроскопах и нанотехнологических установках для микроперемещений объекта

Изобретение относится к сканирующей туннельной спектроскопии и может быть использовано в зондовых микроскопах и приборах на их основе

 


Наверх