Патенты автора Павленко Вячеслав Иванович (RU)

Изобретение относится к области космического материаловедения, в частности к разработкам материалов, обеспечивающих локальные средства защиты космонавтов и радиоэлектронной аппаратуры от воздействия негативных факторов космического пространства. Полимерный композит для защиты от космической радиации включает: политетрафторэтилен – 32,5-45,5 мас.%; модифицированный оксид висмута Bi2O3 – 35,7-47,7 мас.%; модифицированный карбид вольфрама WC – 2,2-3,6 мас.%; модифицированный карбид бора B4C – 0,5-1,9 мас.%; дробь гидрида титана TiH1,7 – 13,3-17,1 мас.%. Изобретение позволяет получать композитный материал с пониженной плотностью, упрощенной технологией изготовления при сохранении высокой радиационной стойкости. 2 н.п. ф-лы, 3 табл.

Изобретение относится к области радиационных экспериментальных исследований в условиях космоса. Способ включает изготовление из исследуемого материала цилиндрического контейнера с толщиной стенки, равной пробегу протонов с энергией 50 МэВ в данном материале. Внутри и снаружи контейнера размещают накопительные дозиметры с детекторами ионизирующего излучения. Контейнер с дозиметрами размещают внутри космического аппарата и экспонируют заданное время в условиях орбитального полета, а затем в герметичном транспортном контейнере возвращают на Землю. Производят вскрытие транспортного и экспериментального контейнеров и извлечение дозиметров для снятия накопленных данных. Проводят лабораторные испытания исследуемого материала по определению изменений его свойств. По полученной информации судят о радиационно-защитных свойствах материала. Технический результат состоит в исключении влияния фонового ионизирующего излучения при определении степени ослабления космического ионизирующего излучения материалом определенной толщины. 1 ил.

Изобретение относится к области космического материаловедения, в частности к разработкам материалов, обеспечивающих локальные средства защиты космонавтов и радиоэлектронной аппаратуры от воздействия негативных факторов космического пространства. Полимерный нанокомпозит для защиты от космического воздействия включает матрицу - политетрафторэтилен- 38-47 мас. %, наполнитель - не модифицированный оксид висмута Bi2O3 - 49,6-59,8 мас. % и дополнительно содержит карбид вольфрама WC - 2,2-3,4 мас. %. Способ получения полимерного нанокомпозита включает смешение компонентов с использованием ультразвукового диспергатора (44 кГц) в растворе изопропилового спирта. Фильтрацию и дальнейшее выпаривание изопропилового спирта, криогенный помол, загрузку компонентов в пресс-форму и нагрев до 250-270°С. Прессование при давлении 80 МПа, постепенное охлаждение, сброс давления с дальнейшим охлаждением до комнатной температуры, спекание полученного образца при температуре 360-370°С. Изобретение направлено на получение полимерного нанокомпозита с пониженной плотностью, высокой твердостью и износостойкостью поверхности. 2 н.п. ф-лы, 2 табл.

Изобретение относится к области космического материаловедения, в частности к разработкам материалов, обеспечивающих дополнительную защиту элементной базы, отдельных узлов и блоков радиоэлектронной аппаратуры от повреждающего космического воздействия. Многослойный полимер-углеродный композит для защиты от космического воздействия включает полиимидное связующее, модифицированный наполнитель, два слоя углеродной ткани-полотна, керамическое покрытие на основе α-Al2O3 и покрытие из металлического молибдена. В качестве наполнителя используется модифицированный диоксид вольфрама WO2 при следующем соотношении компонентов: полиимид - 17,75-24,55 мас.%; модифицированный диоксид вольфрама WO2 - 36,83-50,54 мас.%; углеродная ткань-полотно - 1,59-1,94 мас.%; керамическое покрытие на основе α-Al2O3 - 13,29-16,21 мас.%; покрытие из металлического молибдена - 16,83-20,47 мас.%. Заявлен также способ получения многослойного полимер-углеродного композита. Изобретение направлено на получение многослойного полимер-углеродного композита для защиты от космического воздействия с высокими физико-механическими, радиационно-защитными и светоотражательными характеристиками.2 н.п. ф-лы.

Группа изобретений относится к области синтеза радиационно-защитных материалов для атомной и радиотехнической промышленности. Полимерный композит для защиты от ионизирующего излучения включает полимерную матрицу, свинецсодержащий наполнитель и дополнительно содержит полиимидный лак. В качестве полимерной матрицы используется полиимид в виде трековых мембран, в качестве наполнителя - металлический свинец, а также дополнительно содержит полиимидный лак при следующем соотношении компонентов: полиимид - 23-36 мас. %; металлический свинец - 62-76 мас. %; полиимидный лак - 1-2 мас. %. Имеется также способ получения полимерного композита. Группа изобретений позволяет получить полимерный композит для защиты от ионизирующего излучения на основе трековых мембран с повышенной теплостойкостью и высоким пределом прочности при растяжении. 2 н.п. ф-лы, 3 табл.

Изобретение относится к области космического материаловедения, в частности к разработкам материалов, обеспечивающих дополнительную защиту элементной базы, отдельных узлов и блоков радиоэлектронной аппаратуры от повреждающего воздействия ионизирующего излучения космического пространства. Полимерный композит для защиты от космической радиации включает полимерное связующее и модифицированный висмутсодержащий наполнитель при следующем соотношении компонентов: полиимид - 25-46 мас.%; модифицированный силикат висмута Bi12SiO20 - 54-75 мас.%. Способ получения полимерного композита для защиты от космической радиации включает смешение компонентов, загрузку в пресс-форму с дальнейшем нагревом, прессование и отжиг. Изобретение позволяет получить полимерный композит для защиты от космической радиации с широким температурным диапазоном эксплуатации и высокими прочностными характеристиками. 2 н.п. ф-лы.

Изобретение относится к строительным материалам и может быть использован для производства гипсокартонных изделий. Сердечник гипсокартонного листа на основе модифицированного гипсового вяжущего включает 46,4-52,6 мас.% строительного гипса и 33,3-34,2 мас.% воды. При этом сердечник дополнительно содержит 13-20 мас.% стеклобоя и 0,2-0,3 мас.% серной кислоты. Техническим результатом является увеличение пределов прочности при сжатии сердечника. 1 ил., 2 табл., 1 пр.

Изобретение относится к области ядерной техники, к разработкам материалов для защиты от нейтронного излучения, используемых в качестве биологической защиты ядерного энергетического реактора. Полимерный композит для нейтронной защиты включает связующее, гидрид титана и модификатор при следующем соотношении компонентов: полиалканимид - 27-33 мас.%; гидрид титана с боросиликатным покрытием - 65,8-72,5 мас.%; жидкость гидрофобизирующая 136-41 - 0,5-1,2 мас.%. Способ получения полимерного композита для нейтронной защиты включает смешение компонентов, загрузку в пресс-форму и прессование. Предварительно гидрид титана измельчают в шаровой мельнице в течение 27-35 мин, наносят на него боросиликатное покрытие, модифицируют совместным помолом с раствором жидкости гидрофобизирующей 136-41 в течение 4-7 мин и сушат при температуре 145-152°С не менее 90 мин, а смешивание осуществляют с полиалканимидом в течение 5-8 мин, загрузку - в пресс-форму, нагретую до 200-220°С, с дальнейшим нагревом до температуры 300-305°С и с выдержкой не менее 35 мин и прессуют методом горячего прессования при удельном давлении 1 ГПа. Изобретения позволяют повысить термостойкость, прочностные характеристики полимерного композита и его нейтронно-защитные свойства. 2 н.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к области модифицирования металлогидридных материалов, в частности к способу напыления титанового покрытия на частицы из гидрида титана , и может быть использовано для изготовления радиационно-защитных материалов биологической защиты в ядерной индустрии. Частицы из гидрида титана изготавливают в виде дроби, которую предварительно очищают с минимальной выдержкой в ультразвуковой ванне с ацетоном в течение 10 мин. Далее дробь гидрида титана обрабатывают ионизированной водой и сушат сухим азотом. В камере в течение не менее 7 мин при ускоряющем напряжении 2200 В и токе 110 мА выполняют ионную очистку поверхности дроби гидрида титана, которую размещают на предметном столе на расстоянии до магнетрона не более 110 мм. Напыление титанового покрытия проводят методом ионно-плазменного вакуумного магнетронного напыления в течение 24-37 мин с частотой вращения предметного стола до 25 об/мин и одновременным вращением самой дроби гидрида титана. Технический результат заключается в повышении термической стойкости гидрида титана за счет улучшения качества покрытия. 5 ил.

Изобретение относится к получению нанокристаллических порошков химических соединений и может быть использовано для производства радиационно-защитных, фотокаталитических, сцинтилляционных материалов. Высокодисперсный нанокристаллический вольфрамат свинца (PbWO4) получают путем проведения химической реакции между растворами ацетата свинца и вольфрамата натрия, при этом 5-20% раствор ацетата свинца Pb(СН3СОО)2·3H2O, подготовленный путем растворения ацетата свинца в смеси воды и этанола или ацетона при их соотношении 1,5-1 : 1, диспергируется и в виде мелких капель добавляется в 2,5-10% водный раствор вольфрамата натрия Na2WO4·2H2O на его поверхность при его непрерывном перемешивании. Технический результат изобретения состоит в получении нанокристаллического PbWO4, имеющего средний размер частиц около 50 нм. Предлагаемый способ имеет более высокую скорость выхода продукта и меньшие габариты требуемого оборудования, ввиду меньшего расхода растворителей на приготовление растворов (до 5-10 раз). Также исключается необходимость использования дополнительных веществ - дисперсантов, имеющих ограниченное применение в промышленности. 2 ил.

Изобретение относится к нанесению боросиликатного покрытия на частицы порошкообразного гидрида титана, применяемого в ядерной энергетике в качестве нейтронопоглощающего материала. Частицы гидрида титана обрабатывают сначала раствором, содержащим метилсиликанат натрия и воду, затем частицы высушивают и обрабатывают раствором, содержащим борную кислоту и воду, после чего частицы высушивают и проводят их термообработку при температуре 175-200°C с образованием на частицах боросиликатного покрытия. Обеспечивается увеличение температуры термического разложения гидрида титана до 585°С при сохранении удельного содержания водорода. 2 ил., 1 табл., 1 пр.

Изобретение относится к области нанотехнологии, радиационной и электромагнитной безопасности и может использоваться для придания веществам с нанотрубчатой структурой радиационно-защитных свойств. Cпособ заполнения нанотрубок тугоплавкими малорастворимыми соединениями осуществляют путем проведения химической реакции в каналах нанотрубок с последующим формированием нанокомпозита. В качестве нанотрубок используют гидросиликатные нанотрубки со структурой хризотила, обладающие высокими механическими, термическими свойствами и радиационной стойкостью, которые заполняют раствором вольфрамата калия K2WO4. Затем удаляют растворитель и проводят обработку ацетатом свинца Pb(СН3СОО)2. Способ получения нанокомпозита прост и эффективен. 1 ил., 2 табл.
Изобретение относится к области защиты от ионизирующего излучения и может применяться в качестве защиты электронных приборов космического аппарата (КА), работающего на геостационарной орбите, от воздействия поражающего фактора магнитных бурь. Целью изобретения является повышение защитных характеристик по отношению к γ-излучению и потоку высокоэнергетических электронов с сохранением возможности вывода накопленного объемного заряда, расширение температурного диапазона использования, а также повышение прочностных характеристик композита. Композит для защиты от космической радиации, включающий кремнийорганическую жидкость, порошок оксида тяжелого металла, отличающийся тем, что в качестве составляющих компонентов содержит политетрафторэтилен (матрица), а используемую кремнийорганическую жидкость «Пента-808» применяют в качестве модификатора поверхности оксида висмута Bi2O3 при следующем соотношении компонентов, мас.%: политетрафторэтилен 37-45, модифицированный оксид висмута Bi2O3 55-63, кремнийорганическая жидкость «Пента-808», взятая по отношению к массе чистого Bi2O3 0,8-1,0. 2 табл.

Изобретение относится к области космического материаловедения и может быть использовано в качестве терморегулирующих покрытий на внешней стороне космического аппарата в области низких земных орбит
Изобретение относится к материалам для защиты от ионизирующих излучений и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды
Изобретение относится к области приготовления радиационно-защитных материалов для атомной и радиотехнической промышленности
Изобретение относится к области приготовления защитных материалов

 


Наверх