Патенты автора Райлян Василий Семенович (RU)

Изобретение относится к области теплофизических измерений, а именно к измерению лучистого теплового потока при тепловых испытаниях элементов летательных аппаратов в установках радиационного нагрева. Заявлен охлаждаемый датчик теплового потока (ДТП), выполненный по схеме Гордона, содержащий чувствительный элемент из константана, соединенный с медным корпусом, медные электроды и устройство охлаждения. ДТП и устройство охлаждения выполнены как отдельные элементы с возможностью их сборки в единое целое за счет нанесения на наружной части корпуса ДТП резьбы. В центральной части устройства охлаждения выполнено сквозное отверстие с резьбой, равной резьбе на корпусе ДТП, которое дает возможность использовать корпус ДТП как крепеж для сборки составляющих устройства охлаждения. Внутреннее пространство в корпусе ДТП от чувствительного элемента до выхода электродов заполнено твердым теплоизолирующим и электроизолирующим материалом, причем выход электродов дифференциальной термопары из корпуса осуществляется через клеевую среду, фиксирующую положение электродов и электроизоляции относительно корпуса ДТП. Технический результат - повышение точности измерений теплового потока при тепловых испытаниях элементов летательных аппаратов в установках радиационного нагрева. 4 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению, а именно к способам и устройствам для крепления концов стальных тросов при испытаниях на прочность или в эксплуатации, в частности при испытаниях элементов летательных аппаратов (ЛА) Конец стального троса размещают во втулку с внутренней поверхностью в виде усеченного конуса, где диаметр меньшего основания равен диаметру троса, а диаметр большого основания равен или больше двух диаметров троса, и цилиндра, который имеет резьбу и диаметр, равный диаметру большого основания усеченного конуса, на длину не менее длины усеченного конуса. Расплетают конец троса на нити на длину более половины высоты усеченного конуса. Распушивают расплетенный участок равномерно по окружности и удаляют тканный сердечник на расплетенном участке. Прижимают нити к телу троса и перемещают расплетенный участок троса в корпус втулки до прохождения цилиндрической части втулки. Далее в центр опрессованного конца троса забивают или опрессовывают конический клин. После чего в цилиндрическую часть втулки ввинчивают стопорный элемент, а затем к втулке приваривают проушины для соединения с объектом нагружения. Достигается повышение надежности соединения с объектом нагружения при статических испытаниях элементов ЛА, упрощение производства заделки конца стального троса. 3 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, преимущественно к технике проведения тепловых испытаний керамических обтекателей ракет при инфракрасном нагреве. Техническим результатом заявленного изобретения является увеличение длительности нагрева испытуемой конструкции. Способ тепловых испытаний обтекателей ракет включает зонный нагрев поверхности обтекателя нагревателями из кварцевых ламп с отражательным экраном и измерение температуры в поперечных сечениях обтекателя датчиками температуры, установленными на отражательном экране, изготовленном из пористого высокотемпературного материала и закрепленном на жесткой основе, в материале экрана размещают трубки с отверстиями, направленными внутрь него, а трубки ориентируют в направлении образующих жесткой основы и подключают к коллектору зоны нагрева, заполненному водой. Суммарная площадь отверстий трубок в зоне нагрева менее площади сечения входной трубки коллектора зоны нагрева. Отражательный экран установлен с зазором эквидистантно наружной поверхности обтекателя, а нагреватели - с зазором к отражательному экрану и к наружной поверхности обтекателя. Технический результат - расширение температурного диапазона испытательного оборудования. 6 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, в частности к оборудованию для статических и повторно-статических испытаний обтекателей из неметаллических материалов, а также других изделий авиационной и ракетной техники. Установка содержит обтекатель, установленный на каркасе, четыре силовозбудителя для нагружения обтекателя в поперечном направлении посредством действия четырёех сил и датчики измерения силы. При этом силовозбудители установлены в вертикальных колоннах каркаса и связаны с блоками для дополнительного приложения силы и в продольном направлении. Снаружи обтекателя в зоне нагрева нагревательных панелей установлены два отражающих экрана, поверхность которых эквидистантна либо не эквидистантна поверхности обтекателя, с возможностью их стыковки, область которой проходит через одну из взаимно перпендикулярных плоскостей, а управление силовым нагружением и нагревом осуществляется системой автоматического управления. Технический результат заключается в повышении надежности и упрощении конструкции. 3 з.п. ф-лы, 2 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЭЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на ЭЛА в наземных условиях. Предложен способ тепловых испытаний элементов летательных аппаратов, который включает нагрев наружной поверхности элементов ЛА, измерение температуры и обдув нагреваемой поверхности газовым потоком вдоль наружной поверхности изделия в сторону носка и в сторону торца элементов летательных аппаратов. При этом в сечении, проходящем через верхний торец стеклопластикового кольца, монтируется экран из жаропрочного материала. Обдув со стороны носка осуществляется воздухом, а со стороны торца - инертным газом, который направлен на линию пересечения плоскости экрана с наружной поверхностью элементов летательных аппаратов. Технический результат - предотвращение возгорания легковоспламеняющихся составляющих элементов керамического обтекателя, например стеклопластиковых колец, при проведении наземных тепловых испытаний в установках радиационного нагрева. 4 з.п. ф-лы, 1 ил.
Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть ракеты в наземных условиях. Заявлен способ управления нагревом при тепловых испытаниях керамических обтекателей, который включает зонный радиационный нагрев фронтальной поверхности обтекателя инфракрасными нагревателями с отражательными экранами. Обтекатели нагревают последовательно поодиночно по заданному режиму температуры фронтальной поверхности и синхронно регистрируют показания датчиков температуры, установленных на отражательных экранах, формируют их архив с учетом количества обтекателей, суммируют и усредняют показания датчиков температуры отражательных экранов, значения которых затем используют для задания температуры фронтальной поверхности испытуемого обтекателя. Технический результат - повышение надежности проводимых тепловых испытаний антенных обтекателей ракет за счет дополнительного косвенного контроля температуры фронтальной поверхности испытуемого обтекателя по тепловому состоянию отражательных экранов.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов. Способ контроля тонкостенных стеклопластиковых оболочек включает измерение датчиками перемещений поверхности оболочки при ее вращении вокруг своей оси без создания перепада давления и с созданием перепада давления, а поле перемещений поверхности оболочки рассчитывают по разности показаний датчиков перемещений поверхности оболочки при ее вращении вокруг своей оси и перемещений поверхности оболочки при ее вращении вокруг своей оси с одновременным созданием перепада давления по стенке оболочки. Технический результат заявляемого изобретения заключается в повышении точности измерения перемещений поверхности оболочки при силовом нагружении.

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов, в частности керамических обтекателей ракет. Заявлен способ тепловых испытаний натурных керамических элементов летательных аппаратов, который включает нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры. Перед нанесением покрытия на нагреваемую поверхность устанавливают термоприемники, наносят покрытие с высокой степенью черноты и осуществляют их нагрев локально радиационными импульсами постоянной мощности, сравнивают время выхода на заданную температуру термоприемника с эталонным. При значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия. Технический результат - повышение точности задания тепловых режимов керамических обтекателей при наземных испытаниях в установках радиационного нагрева. 2 ил.

Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и т.д.) для воспроизведения тепловых и комплексных воздействий, имитирующих эксплуатационные нагрузки. Предложен способ теплового нагружения неметаллических элементов конструкций летательных аппаратов, включающий контактный нагрев поверхности конструкции, измерение температуры в контрольном сечении и равномерное прижатие нагревателя к конструкции через слой теплоизоляции. Воспроизведение заданного режима теплового нагружения обеспечивается регулированием мощности электрического тока, пропускаемого через нагреватель, расположенный на поверхности конструкции и представляющий собой последовательно-параллельное относительно электрических шин соединение гибких электропроводящих элементов. При этом создание требуемого распределения тепловой энергии теплового поля на поверхности конструкции обеспечивается соответствующей выкладкой электропроводящих элементов нагревателя по координатам конструкции, изготовленных с учетом требуемой величины сопротивления каждого отдельного элемента нагревателя, определяемого расчетным методом. Технический результат - повышение точности воспроизведения тепловых режимов стендовых испытаний неметаллических элементов конструкций ЛА, в том числе имеющих сложную не осесимметричную геометрическую форму нагреваемой поверхности. 3 ил.
Изобретение относится к области тепловых испытаний летательных аппаратов и может быть использовано при наземных испытаниях антенных обтекателей ракет. Предложен способ управления нагревом при тепловых испытаниях антенных обтекателей ракет, включающий зонный нагрев поверхности обтекателя регулируемыми электрическими нагревателями и измерение в каждой зоне датчиками теплового потока величины подводимого к обтекателю теплового потока. Причем управление и контроль радиационным нагревом производится по величине плотности теплового потока или излучательной мощности нагревателя, создаваемого в каждой зоне нагрева и равного плотности теплового потока или количеству тепла, подводимого к обтекателю в полете. Заявленный способ включает управление нагревом как в автоматическом режиме по датчику теплового потока, так и по программе изменения плотности теплового потока или мощности нагревателей в каждой нагревательной панели. Технический результат - повышение точности проводимых тепловых испытаний антенных обтекателей ракет за счет полной имитации условий полета обтекателя по плотности теплового потока или по количеству подводимого тепла в процессе испытаний и отсутствие необходимости в расчете и замере температур для управления. 2 з.п. ф-лы.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА). Сущность: осуществляют силовое нагружение на сдвиг и измерение деформаций соединения. Силовое нагружение прилагают вдоль оси симметрии обтекателя через пуансон с упругой прокладкой, наружная поверхность которого эквидистантна внутренней поверхности керамической оболочки, а высота взаимодействия пуансона с оболочкой относительно носка меньше половины расстояния между верхним срезом шпангоута и носком обтекателя. Сдвиг оболочки измеряют относительно верхнего среза шпангоута минимум в трех точках окружности, находящихся между собой на одинаковом расстоянии, а модуль сдвига клея в узле соединения обтекателя рассчитывают по формуле. Технический результат: возможность определения модуля сдвига клея непосредственно на натурном обтекателе. 1 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Сущность: осуществляют воспроизведение аэродинамического силового и теплового воздействия и измерение температуры. Силовое воздействие от нагружающих элементов до наружной поверхности обтекателя передается n-ым количеством стержней (равномерно распределенных по поверхности конструкции), проходящих через стенки токопроводящей и теплоизолирующей оболочки, причем сумма площадей поперечного сечения стержней много меньше нагреваемой поверхности, а плотность распределения стержней по поверхности конструкции выбирают таким образом, чтобы исключить концентраторы механических напряжений при взаимодействии стержней с наружной поверхностью конструкции. Технический результат: полное воспроизведение аэродинамического воздействия (теплового и силового) на наружной поверхности обтекателя из неметаллических материалов при наземной отработке конструкции. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационной и ракетной техники, преимущественно к разработке и производству радиопрозрачных обтекателей летательных аппаратов. Технический результат - повышение прочности узла соединения керамической оболочки с металлическим шпангоутом при теплопрочностных нагрузках и улучшение технологии изготовления. Узел крепления керамической оболочки антенного обтекателя с металлическим шпангоутом содержит керамическую оболочку и металлический шпангоут, соединенный с керамической оболочкой по сопрягаемым поверхностям слоем эластичного термостойкого адгезива. В шпангоуте выполнены равномерно расположенные по окружности отверстия, плотность распределения которых в осевом направлении для области соединения оболочки со шпангоутом пропорциональна величине распорных усилий, передаваемых от шпангоута к оболочке, при этом радиусы описанных окружностей отверстий выбираются из условия: R≥5H, где R - радиус описанной окружности, Н - толщина адгезив. 3 ил.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении наземных испытаний оболочек типа тел вращения. Заявленный способ испытания на прочность оболочки типа тела вращения включает нагружение установленной на платформе оболочки поперечной силой. Нагружение оболочки поперечной силой осуществляют посредством вращения платформы вокруг неподвижной оси параллельной оси симметрии оболочки с установленными на ее внешней поверхности инерционными элементами, при этом масса инерционного элемента выбирается из условия: Δ m i = M i ω 2 ⋅ R ⋅ h i − m i , где Δmi - масса i-го инерционного элемента; Mi - расчетное значение изгибающего момента в i-ой части оболочки; mi - масса i-ой части оболочки, на которой расположен i-ый инерционный элемент; ω - угловая скорость вращения оболочки; R - расстояние от оси симметрии оболочки до неподвижной оси вращения платформы; hi - расстояние от i-ой части оболочки до плоскости вращения платформы. Технический результат − повышение точности воспроизведения изгибающего момента по высоте оболочки, когда расчетное распределение имеет нелинейный характер. 2 ил.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении испытаний конструкции летательных аппаратов и их узлов (головных обтекателей) из неметаллических материалов на тепловые, а также комплексные термовибрационные и термовакуумные воздействия. Заявленный способ теплового нагружения конструкций летательных аппаратов из неметаллических материалов включает зонный нагрев изделия и измерение температуры. Зонный нагрев изделия осуществляется бесконтактной передачей энергии переменным магнитным полем средней частоты, генерируемым индуктором, в промежуточный нагревательный элемент, выполненный из ферромагнитного материала, расположенный на поверхности изделия. Технический результат - повышение точности выполнения программ испытаний летательных аппаратов. 1 ил.

Изобретение относится к области создания высокотемпературных солнечных энергетических установок с концентраторами солнечного излучения и может быть использовано во всех отраслях промышленности, где требуется тепловая энергия. Солнечный коллектор содержит теплоизолированный корпус, концентраторы солнечного излучения, теплообменник и теплоприемник, состоящий из тепловоспринимающей поверхности. Тепловоспринимающая поверхность выполнена в виде перевернутых правильных усеченных пирамид или конусов, изготовленных из материала с высоким коэффициентом преломления с зеркальными боковыми поверхностями, при этом большие основания пирамид или конусов образуют внешнюю поверхность, а меньшие направлены на теплообменник через окна в теплоизолирующем слое между тепловоспринимающей поверхностью и теплообменником, причем наружная поверхность теплообменника выполнена из материала с высокой степенью черноты. Полезность изобретения заключается в том, что оно осуществляет поглощение теплоприемником солнечного излучения без его ориентации на солнце. 3 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов

Изобретение относится к области создания конструкций антенных обтекателей высокоскоростных ракет с оболочками из жаростойких керамических материалов

Изобретение относится к электротехнике, а именно к бытовым и промышленным нагревателям, и может быть использовано для создания экологических электронагревательных систем

Изобретение относится к гелиотехнике и может быть использовано для приготовления пищи
Изобретение относится к электротехнике и может быть использовано при изготовлении сухих нагревателей

Изобретение относится к подвесным канатным дорогам

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей скоростных ракет различных классов

Изобретение относится к области авиационной и ракетной техники, преимущественно к головным радиопрозрачным обтекателям летательных аппаратов

 


Наверх