Патенты автора Нуждин Владимир Иванович (RU)

Изобретение относится к области материаловедения, связанного с пористыми средами, в частности тонкими поверхностными слоями пористого германия, которые находят применение при разработке анодных электродов аккумуляторных литиевых батарей, а также фото детекторов и солнечных элементов. Способ изготовления подложки монокристаллического германия с тонким поверхностным слоем пористого германия заключается в том, что тонкий слой пористого германия заданной морфологии формируют на поверхности подложки из монокристаллического германия имплантацией низкоэнергетическими 10-90 кэВ ионами кобальта, хрома или железа при высоких дозах 1015-5.0⋅1017 ион/см2. Изобретение позволяет изготавливать подложки монокристаллического германия с тонким поверхностным слоем пористого германия заданной морфологии, которая определяется типом имплантируемого иона кобальта, хрома или железа. 5 ил., 3 пр.

Изобретение относится к области материаловедения, связанного с пористыми средами, в частности тонкими поверхностными слоями пористого германия, которые находят применение при разработке анодных электродов аккумуляторных литиевых батарей, а также фотодетекторов и солнечных элементов. Подложка монокристаллического германия содержит тонкий поверхностный слой пористого германия, сформированный на пластине из монокристаллического германия и включающий ионно-имплантированную примесь переходного металла, в качестве которого используют кобальт, хром или железо. Технический результат состоит в том, что подложка монокристаллического германия с тонким поверхностным слоем пористого германия может быть создана заданной морфологии, что определяется выбором имплантированного иона переходного металла: кобальта, хрома или железа. 5 ил., 3 пр.

Изобретение относится к средствам выполнения статистического анализа и исследования микрообъектов, а именно к счетным устройствам (сеткам, бороздками, ямками, канавками и т.д.). Счетная сетка в объеме стеклянной подложки для анализа биологических микрообъектов сформирована в объеме стеклянной подложки и состоит из периодических микроструктурированных областей, разграниченных участками легированных диффузией примесных атомов металла. Технический результат заключается в обеспечении возможности выполнения контрастных по химическому составу периодически-микроструктурированных сеток в объеме стеклянной подложки с возможностью анализа микрообъектов и использования для этих целей высокоразрешающей сканирующей электронной микроскопии (СЭМ) с применением энергодисперсионного спектрометрического анализа ЭДС-картирования, а также возможностью их повторного использования после проведения химической или ионно-лучевой очистки поверхности от прежде наносимого анализируемого биологического материала. 11 ил.

Изобретение относится к оптике, а именно к способам изготовления устройств, служащих для анализа химических веществ при использовании эффекта поверхностно-усиленного комбинационного рассеяния света молекулами, находящимися вблизи наноструктур из серебра, проявляющих плазмонный резонанс электронов проводимости, колебания которых создает локальное электромагнитное поле. Данные устройства предназначены для определения малых концентраций органического вещества при возбуждении его лучом лазера в видимом диапазоне и выполнены на основе подложек из пористого кремния с поверхностными наноструктурами из серебра. Способ изготовления чувствительных к гигантскому комбинационному рассеянию света подложек с поверхностью из пористого кремния заключается в формировании заданной структуры на поверхности исходной пластины монокристаллического кремния, путем имплантации ионами серебра с энергией 4-120 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла в облучаемом слое кремния 1.0⋅1019-6.5⋅1023 атомов/см3, и плотностью тока ионного пучка 2⋅1012-1⋅1014 ион/см2с. Техническим результатом изобретения является обеспечение возможности изготовления чувствительных к гигантскому комбинационному рассеянию света подложек с поверхностью из пористого кремния, содержащего наночастицы серебра не химическим способом и за один технологический цикл в вакууме. 10 ил.

Изобретение относится к оптоэлектронике, а именно к способам изготовления периодических микроструктур на основе материалов с фазовой памятью - халькогенидных стеклообразных полупроводников, выполненных на поверхности оптически прозрачных материалов. Изобретение обеспечивает возможность изготовления фазовых периодических микроструктур на основе халькогенидных стеклообразных полупроводников за один технологический цикл в вакууме. В способе изготовления фазовых периодических микроструктур на основе халькогенидных стеклообразных полупроводников, заключающемся в формировании на поверхности исходной подложки элементов заданной микроструктуры, формирование периодической микроструктуры осуществляют с помощью имплантации ионами серебра с энергией 4-100 кэВ, дозой облучения 1.0⋅1015 - 6.5⋅1020 ион/см2 и плотностью тока ионного пучка 2-50 мкА/см2 через поверхностную маску. 3 ил.

Изобретение относится к области оптического приборостроения и касается алмазной дифракционной решетки для видимого диапазона. Дифракционная решетка содержит алмазную подложку с внедренной в ее поверхность дифракционной периодической микроструктурой. Элементами дифракционной периодической микроструктуры являются графитизированные области на поверхности монокристаллического алмаза, подвергнутые ионному облучению ионами бора и характеризуемые другой диэлектрической проницаемостью относительно материала подложки. Технический результат заключается в обеспечении возможности создания дифракционной решетки на монокристаллическом алмазе с возможностью ее использования, как для отраженного, так и для проходящего света. 10 ил.

Способ включает в себя формирование заданной периодической микроструктуры на поверхности полированного алмаза с помощью имплантации ионами бора с энергией 10-100 кэВ, дозой облучения 1⋅1015-1.0⋅1020 ион/см2 через поверхностную маску. Технический результат заключается в обеспечении возможности изготовления алмазных дифракционных решеток при помощи непрерывной имплантации ионами бора. 10 ил.

Оптическое термометрическое устройство обеспечивает измерение температуры по изменению дифракционной картины света. Устройство содержит на подложке элементы периодической дифракционной микроструктуры. Указанная структура образуется путем ионной имплантации через поверхностную маску. При этом в качестве подложки используется оптически-прозрачный полимер, а сформированная дифракционная структура содержит ионносинтезированные металлические наночастицы, диспергированные в приповерхностной области подложки. Технический результат заключается в повышении чувствительности термометрического устройства. 10 ил.

Изобретение относится к области криогенной техники, в частности к устройствам перекачки, заправки жидкого азота, а также для заморозки вакуумных ловушек. Устройство для подачи хладагента в камеру холода содержит воронку, выполненную как одно целое с фланцем, и герметизирующую пробку, выполненную с вертикальным сквозным отверстием, расположенную между горловиной сосуда Дьюара и посадочным местом во фланце. Трубка воронки, расположенная в вертикальном отверстии пробки, выполнена на 5 мм длиннее высоты пробки, верхняя цилиндрическая часть воронки герметично соединена с нижней резьбовой частью тонкостенной теплоразвязывающей трубки, верхняя часть которой снабжена фасонным фланцем с внутренней резьбой, нижняя часть которой герметично соединена с верхней резьбовой частью питателя, а верхняя резьбовая часть фасонного фланца соединена с нижней резьбовой частью выходного штуцера, верхняя резьбовая часть которого предназначена для подсоединения к трубопроводу камеры холода. Верхняя резьбовая часть питателя выполнена с вертикальной цилиндрической полостью, в которой расположен металлический шарик, являющийся шариковым клапаном. С наружной части, воронка снабжена отводом, выполненным с воронкой как одно целое, внутренняя резьбовая часть отвода герметично соединена с предохранительным клапаном, устройство так же содержит два зацепа расположенные на ручках сосуда Дьюара, снабженных барашками, соединенными резьбовым соединением с двумя тягами, выполненными в виде прутков, верхняя часть которых выполнена как одно целое с вилками шарнирных соединений с фланцем воронки, который выполнен с ответными частями этих соединений расположенными с противоположных сторон. Технический результат изобретения заключается в создании устройства для подачи хладагента в камеру холода с надежной герметизацией горловины сосуда Дьюара и возможности подключения к трубопроводу камеры холода, как минимум, еще одного устройства с сосудом Дьюара с целью их последовательного использования. 4 ил.

Изобретение относится к области криогенной техники, в частности к устройствам перекачки и заправки жидкого азота, а также для заморозки вакуумных ловушек. Стационарное устройство для подачи хладагента в камеру холода содержит как минимум один стационарный сосуд Дьюара, каждый из которых снабжен фланцем и герметизирующей кольцеобразной прокладкой, расположенной между торцом горловины сосуда Дьюара и посадочным местом во фланце, выполненном с двумя патрубками, расположенными вертикально над горловиной сосуда Дьюара. Оба патрубка выполнены с внутренней резьбой в верхней их части, один из патрубков является заправочным и герметично соединен резьбой с предохранительным клапаном, выполненным съемным. Второй патрубок герметично соединен резьбой с заглушкой, которая также выполнена съемной. Средняя часть второго патрубка выполнена с внутренней резьбой и посадочным местом для верхней резьбовой части питателя, выполненного съемным, и расположенным коаксиально второму патрубку. Под заглушкой и выше верхней резьбовой части питателя во втором патрубке выполнен отвод под камеру шарикового клапана. Верхняя часть камеры выполнена с внутренней резьбой и герметично соединена с нижней резьбовой частью штуцера. Фланец винтовым соединением прикреплен к ручкам сосуда Дьюара и снабжен герметичными токовводами, соединенными проводами с нагревателем и датчиком уровня жидкого азота, размещенным на расстоянии 30-50 мм выше нагревателя. Технический результат в предлагаемом техническом решении заключается в создании стационарного устройства для подачи хладагента в камеру холода с обеспечением возможности непрерывного режима работы (длительное время) с большим расходом жидкого азота (10 л/ч) и установкой датчика, позволяющего заблаговременно сигнализировать об окончании жидкого азота в работающем сосуде Дьюара. 3 ил.

Технический результат предлагаемого блока управления заключается в возможности плавной регулировки мощности, выделяемой электрическим нагревателем в работающем сосуде Дьюара с помощью фазового регулятора, индикации-сигнализации отсутствия жидкого азота в сосуде Дьюара, автоматическом отключении нагревателя, при окончании жидкого азота в работающем сосуде Дьюара. Блок управления устройства подачи хладагента содержит регулятор мощности, который соединен с электрическим нагревателем, предназначенным для размещения в сосуде Дьюара на расстоянии 0-10 мм от дна. Регулирующим ключевым элементом в регуляторе мощности является симистор, первый анод которого является входным выводом регулятора мощности и предназначен для подключения к первому выводу источника питания переменного напряжения, второй анод симистора является выходным выводом и через первую группу контактов разъемного соединителя соединен с первым выводом нагревателя, второй вывод которого является выводом, предназначенным, через вторую группу контактов разъемного соединителя, для подключения ко второму выводу источника питания переменного напряжения. Блок управления устройства подачи хладагента дополнен световым индикатором отсутствия азота, в качестве которого используют светодиод, узлом слежения и датчиком уровня жидкого азота, размещенным в сосуде Дьюара на 10-30 мм выше нагревателя. Первый вывод датчика уровня соединен с входом узла слежения. Узел слежения снабжен выводом подключения светового индикатора отсутствия азота и двумя выводами для подключения к источнику питания стабилизированного напряжения - плюсовым и минусовым, последний из которых через разъемный соединитель подсоединен к точке соединения выводов датчика уровня и нагревателя. Анод светодиода соединен со световым индикатором узла слежения, а катод с его минусовым выводом. Соединение выводов, предназначенных для подсоединения ко второму выводу источника питания переменного напряжения и минусовому выводу источника питания стабилизированного напряжения, является для схемы электропитания блока управления общим. 3 ил.

Изобретение относится к устройствам дифракционных периодических микроструктур для видимого диапазона, выполненным на основе пористого кремния. Техническим результатом изобретения является создание дифракционной периодической микроструктуры на основе пористого кремния с различными металлосодержащими наночастицами. В дифракционной периодической микроструктуре на основе пористого кремния, содержащей подложку, выполненную из монокристаллического кремния с дифракционной периодической микроструктурой, сформированная дифракционная периодическая микроструктура на основе пористого кремния содержит ионно-синтезированные металлосодержащие наночастицы, диспергированные в приповерхностной области подложки на толщине слоя от 10 до 200 нм при концентрации металла 2.5·1020-6.5·1023 атомов/см3. 20 ил.

Способ изготовления дифракционной периодической микроструктуры на основе пористого кремния включает в себя формирование заданной дифракционной периодической микроструктуры с помощью имплантации ионами благородных или переходных металлов через поверхностную маску, с энергией 5-100 кэВ. При этом доза облучения обеспечивает концентрацию вводимых атомов металла в облучаемой подложке кремния 2.5·1020-6.5·1023 атомов/см3. Плотностью тока ионного пучка 2·1012-1·1014 ион/(см2·с) при температуре подложки во время облучения 15-450°C. Технический результат заключается в обеспечении возможности изготовления дифракционных периодических микроструктур на основе пористого кремния с наночастицами различных металлов в вакууме. 20 ил.

Изобретение относится к области электротехники и может быть использовано в качестве блока управления устройствами перекачки, заправки жидкого азота, а также для заморозки вакуумных ловушек. Технический результат - повышение регулируемой мощности и расширение функциональных возможностей. Технический результат достигается за счет того, что блок управления стационарного устройства подачи хладагента дополнительно содержит второй канал управления, выполненный так же, как и первый канал управления, состоящий из регулятора мощности, соединенного с электрическим нагревателем, предназначенным для размещения в первом сосуде Дьюара на расстоянии 0-10 мм от дна, каждый из каналов управления дополнительно снабжен узлом включения, узлом удержания, узлом включения резерва, узлом слежения, панелью индикации, датчиком уровня жидкого азота, предназначенным для размещения в соответствующем сосуде Дьюара на 30-50 мм выше нагревателя. 3 ил.

Изобретение относится к способу изготовления дифракционных решеток для видимого диапазона, выполненных на основе полимерных материалов. Способ включает в себя формирование заданной дифракционной периодической микроструктуры на полимерной подложке за счёт имплантации ионов металла с энергией 4-1200 кэВ, дозой облучения, которая обеспечивает концентрацию вводимых атомов металла 2.5·1020 - 6.5·1022 атомов/см3 в облучаемой подложке. В качестве подложки используют несветочувствительный полимер плотностью тока ионного пучка 1.5·1012 - 3.5·1013 ион/см2·с через поверхностную маску. Технический результат заключается в обеспечении возможности изготовления дифракционных решеток для видимого диапазона на основе несветочувствительных типов полимеров с наночастицами различных металлов. 10 ил.

Изобретение относится к дифракционной решетке для видимого диапазона, выполненной на основе полимерных материалов. Дифракционная решетка содержит подложку, выполненную из полимерного материала с дифракционной периодической микроструктурой. В качестве полимерного материала подложки использован несветочувствительный полимер, а сформированная дифракционная периодическая микроструктура содержит ионно-синтезированные металлические наночастицы, диспергированные в приповерхностной области подложки на толщине слоя от 20 до 500 нм при концентрации металла 2.5·1020 - 6.5·1022 атомов/см3. Технический результат заключается в обеспечении возможности дифракционных решёток на основе несветочувствительных типов полимеров с наночастицами различных металлов. 10 ил.

Изобретение относится к технологии изготовления слоев пористого кремния, выполненных на поверхности монокристаллического кремния, которые могут быть использованы в оптике и оптоэлектронике. Способ заключается в формировании на поверхности исходной подложки монокристаллического кремния слоя пористого кремния путем ионной имплантации ионами металлов серебра или кобальта с энергией 10-50 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла в облучаемой подложке 3·1020-6·1023 атомов/см3, плотностью тока ионного пучка 2·1012-1·1014 ион/см2 с и при температуре подложки во время облучения 20-400°C. Изобретение обеспечивает возможность изготовления слоев пористого кремния непосредственно на поверхности монокристаллического кремния методом ионной имплантации с исключением из технологической цепочки операции высокотемпературного отжига получаемых изделий. 9 ил., 3 пр.

Изобретение относится к оптике. Способ изготовления дифракционной решетки заключается в формировании на поверхности исходной подложки элементов заданной структуры дифракционной решетки путем ионной имплантации через поверхностную маску, при этом имплантацию осуществляют ионами металла с энергией 5-1100 кэВ, дозой облучения, обеспечивающей концентрацию вводимых атомов металла в облучаемой подложке 3·1020-6·1022 атомов/см3, плотностью тока ионного пучка 2·1012-1·1014 ион/см2с в оптически прозрачную диэлектрическую или полупроводниковую подложку. Изобретение обеспечивает возможность изготовления дифракционных решеток на поверхности оптически прозрачных диэлектрических или полупроводниковых материалов, характеризуемых повышенным контрастом в коэффициентах отражения между отдельными элементами решетки, что позволит улучшить их дифракционную эффективность и даст возможность использования как для отраженного, так и для проходящего света. 8 ил., 3 пр.

Изобретение может быть использовано, в том числе, для введения в тонкопленочные волноводы лазерного излучения или фильтрации в волноводе оптического сигнала, для исследования и контроля напряжений деформаций тонкого слоя на поверхности твердого тела методом муаровых картин, как тонкопленочный температурный сенсор при постоянном или импульсном режиме нагрева материалов в агрессивных средах. Дифракционная решетка для видимого диапазона содержит подложку с внедренной в ее поверхность дифракционнной периодической микроструктуой, элементами которой являются области, подвергнутые ионному облучению и характеризуемые другой диэлектрической проницаемостью относительно материала подложки. Подложка выполнена из оптически прозрачного диэлектрического или полупроводникового материала. Дифракционная периодическая микроструктура содержит ионно-синтезированные металлические наночастицы, диспергированные в приповерхностной области подложки на толщине слоя от 20 до 100 нм при концентрации металла 3·1020-6·1022 атомов/см3. Технический результат - улучшение контраста и возможность использования как для отраженного, так и для проходящего света. 8 ил.

Изобретение относится к области обработки (геммологического облагораживания) природных и синтетических алмазов с конечной целью улучшения их декоративных свойств

Изобретение относится к области резки стекла и может применяться при разрезании листового стекла в вертикальном или горизонтальном положении по прямой линии реза в качестве ручного электроинструмента или в качестве исполнительного элемента в стационарном устройстве для разрезания листового стекла

Изобретение относится к области резки стекла и может применяться при резке листового стекла по прямой линии реза в промышленности и в быту с возможностью одновременного разрезания двух стекол

Изобретение относится к электрическим нагревателям воды и может быть использовано для отопления помещений, в титанах или в качестве проточного водонагревателя

Изобретение относится к области электротехники и может быть использовано, например, для плавного запуска электродвигателя с ограничением пускового тока и возможностью регулировки частоты вращения, для регулирования и стабилизации яркости ламп накаливания или освещенности помещения, для стабилизации заданной температуры в электропечах, водонагревательных или отопительных системах, или со стабилизацией температуры отапливаемого помещения, для регулировки и стабилизации электрической средней мощности, тока или напряжения потребления активной или индуктивной нагрузки, практически любой мощности, рассчитанной на подключение на одну или несколько фаз сетевого питания

Изобретение относится к станкостроению, а именно к насадкам (приставкам) к электроприводу (электродрели, ручные сверлильные, шлифовальные, пилящие машины, электроинструмент)

Изобретение относится к станкостроению, а именно к ручным режущим машинам

Изобретение относится к области резки листового стекла и может применяться при резке стекла как с прямой, так и с изогнутой поверхностью, как по прямой, так и по криволинейной линии реза в промышленности и в быту

 


Наверх