Патенты автора Хохлов Владимир Юрьевич (RU)

Изобретение относится к способам низкотемпературной сепарации потока многокомпонентной среды. В предложенном способе сепарации потока многокомпонентной среды при сепарации поток многокомпонентной среды закручивают и придают ускорение в конфузорном участке, после чего пропускают через критическое сечение, в котором увеличивают скорость до звуковых значений, далее упомянутый поток подают в диффузорный участок, в котором обеспечивают значение скорости выше скорости звука, при этом организуют конденсацию в потоке многокомпонентной среды жидкой фракции пропана, бутана и более тяжелых углеводородов С5+, обеспечивают его расширение. При сепарации поток многокомпонентной среды подают во входной коллектор, из которого направляют в профилированный канал, геометрия проточной части которого выбрана из условия обеспечения исходных параметров потока, причем открытие профилированного канала предварительно осуществляют поворотом диска. В профилированном канале завихряют поток многокомпонентной среды и придают ускорение в конфузорном участке, а после расширения упомянутого потока в диффузорном участке направляют отсепарированную жидкую фракцию в пристеночный периферийный слой, а затем - в кольцевую полость с частью газа и далее - в полость отводящего коллектора, из которого ее отбирают через отводящий патрубок конденсата, при этом отсепарированный газовый поток направляют в конфузорно-диффузорный переход полого конуса, откуда через отводящий патрубок его отбирают для дальнейшего использования. Технический результат: обеспечение возможности регулирования производительности сепаратора в широком диапазоне при изменении исходных рабочих параметров многокомпонентной среды. 4 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам для низкотемпературной обработки многокомпонентной среды. Устройство для сепарации многокомпонентной среды содержит корпус с выполненным в нем профилированным каналом подачи потока с конфузорным, диффузорным участками и критическим сечением, устройство закручивания потока среды, узел отбора капель и/или твердых частиц, полый конус, установленный в выходной части диффузорного участка канала с образованием кольцевой полости, причем упомянутая полость соединена с полостью узла отбора капель и/или твердых частиц. Устройство содержит как минимум два профилированных канала подачи потока, геометрические размеры проточных частей которых выполнены из условия обеспечения требуемых параметров течения потока многокомпонентной среды. Профилированные каналы размещены, предпочтительно, параллельно и, преимущественно, вокруг общей оси вращения, исходя из условия расположения входных частей в одной плоскости. На входе в устройство для сепарации установлен с возможностью вращения диск с каналами для направления потока и на входе в устройство закреплен входной коллектор с подводящим патрубком. На выходе из устройства закреплен отводящий коллектор с отводящим патрубком конденсата и отводящие патрубки очищенного потока. Диффузорный участок выполнен с переходом от меньшего угла раствора к большему, причем полый конус размещен в части с большим углом раствора диффузорного участка. Внутри упомянутого полого конуса выполнен конфузорно-диффузорный переход. Технический результат: обеспечение возможности регулирования производительности сепаратора в широком диапазоне при изменении исходных рабочих параметров многокомпонентной среды. 4 з.п. ф-лы, 6 ил.

Изобретение может быть использовано в производстве водорода в энергетической, химической, нефтегазовой промышленности. Для получения водорода природный газ смешивают с водородом, нагревают в первом теплообменном аппарате, направляют в реактор-десульфуризатор. После этого природный газ разделяют на два потока. Один поток направляют в горелку, а другой смешивают с паром, после чего парогазовую смесь нагревают во втором и третьем теплообменных аппаратах и подвергают паровой конверсии углеводородов в первом реакторе. Конвертированный газ подают в парогенератор и проводят каталитическую конверсию оксида углерода во втором реакторе. Охлаждают полученный синтез-газ в первом и четвертом теплообменных аппаратах. Из синтез-газа выделяют водород, водяной конденсат, который направляют в систему водоподготовки, из которой отбирают воду и нагревают ее в четвертом и пятом теплообменных аппаратах, затем подают на испарение в парогенератор, и хвостовой газ, который нагревают в шестом теплообменном аппарате и подают в горелку совместно с природным газом и воздухом, который подогревают в седьмом теплообменном аппарате. Продукты сгорания охлаждают в третьем, пятом теплообменных аппаратах, первом реакторе, а также втором, седьмом и шестом теплообменных аппаратах, а затем направляют в систему нейтрализации дымовых газов, по мере выхода из которой осуществляют выброс продуктов сгорания в атмосферу и подачу водяного конденсата в систему водоподготовки. При этом организуют охлаждение синтез-газа в системе выделения водорода и продуктов сгорания в системе нейтрализации дымовых газов при помощи хладагента, который последовательно подают в систему выделения водорода, затем в систему нейтрализации дымовых газов, далее в систему сброса тепла хладагента, после чего направляют обратно в систему выделения водорода. Изобретение позволяет снизить эксплуатационные затраты на нагрев и охлаждение рабочих сред, повысить экологичность и энергетическую эффективность процесса. 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к устройствам для низкотемпературной обработки многокомпонентной среды, а именно для сепарации природного газа, и может быть использована с целью отделения жидкой фракции углеводородных газов, а также более тяжелых углеводородов С5+ при подготовке природного газа в нефтегазовой промышленности. Устройство для сепарации многокомпонентной среды содержит сопловой канал, включающий конфузорный, диффузорный участки и критическое сечение между ними. В диффузорном участке установлено устройство закручивания потока многокомпонентной среды, которое выполнено в виде профилированного тела вращения, торцы которого соединены с основаниями входного и выходного конусов, причем входной конус расположен на расстоянии от критического сечения, при котором обеспечивается значение сверхзвуковой скорости потока многокомпонентной среды. На поверхности профилированного тела вращения выполнены профилированные лопатки, между которыми образованы каналы. В выходной части диффузорного участка установлен полый конус с образованием кольцевой полости для прохода жидкой фракции углеводородов. В варианте исполнения устройство дополнительно содержит электрогенератор, соединенный с устройством закручивания потока многокомпонентной среды. Группа изобретений позволяет значительно повысить эффективность процесса улавливания сконденсировавшихся компонентов при сверхзвуковых скоростях и обеспечить возможность генерации электроэнергии. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к способам нагревания газов или газожидкостных смесей с попутной генерацией электрической энергии и может быть использовано в нефтехимической, газоперерабатывающей, энергетической и других отраслях промышленности. Генерация электроэнергии в предложенном способе реализуется при использовании органического цикла Ренкина, термоэлектрического эффекта Зеебека. Применение предложенного способа работы подогревателя газа, служащего для нагрева газов или газожидкостных смесей и производства электрической энергии, в нефтехимической, газоперерабатывающей, энергетической и других отраслях промышленности позволит повысить эффективность процесса, а также свести к минимуму экономические затраты на электрическую энергию, необходимую для обеспечения работоспособности электрооборудования, входящего в состав подогревателя. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам для нагревания газов или газожидкостных смесей с попутным производством электрической энергии и может быть использовано в нефтехимической, газоперерабатывающей, энергетической и других отраслях промышленности. Генерация электроэнергии в предложенном устройстве выполняется при использовании органического цикла Ренкина, термоэлектрического эффекта Зеебека. Применение предложенного устройства для нагревания газов или газожидкостных смесей и производства электрической энергии в нефтехимической, газоперерабатывающей, энергетической и других отраслях промышленности позволит повысить эффективность процесса, а также свести к минимуму экономические затраты на электрическую энергию, необходимую для обеспечения работоспособности электрооборудования, входящего в состав подогревателя. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к способам низкотемпературной обработки потока многокомпонентной среды, а именно - сепарации природного газа. При сепарации потоку многокомпонентной среды (далее - поток) придают ускорение в конфузорном участке соплового канала, после чего направляют в критическое сечение, где обеспечивают увеличение скорости потока до звуковых значений, далее поток подают в диффузорный участок, где его скорость увеличивают до сверхзвуковых значений и обеспечивают конденсацию жидкой фракции углеводородных газов и более тяжелых углеводородов С5+. Далее поток подают на устройство закручивания, равномерно распределяют по каналам, тангенциально закручивают вокруг оси соплового канала с одновременным расширением газа и выделением жидкой фракции в пристеночный слой диффузорного участка. В варианте исполнения под действием реактивной силы устройство закручивания потока приводят во вращение, передавая крутящий момент электрогенератору. Жидкую фракцию тяжелых углеводородов подают в кольцевую полость, а затем - в полость узла отбора капель и/или твердых частиц, а отсепарированный газовый поток подают внутрь полого конуса, откуда отбирают для дальнейшего использования. Позволяет значительно повысить эффективность процесса улавливания сконденсировавшихся компонентов при сверхзвуковых скоростях и обеспечить дополнительную возможность генерации электрической энергии. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области энергетики и может быть использовано в нефтедобывающих, газодобывающих и перерабатывающих отраслях, где имеют место выбросы низконапорного газа любого состава. Газотурбинная установка для переработки попутного нефтяного и различных низконапорных газов в электроэнергию, содержащая воздушный компрессор, турбину, камеру сгорания, электрогенератор, устройство подогрева воздуха после компрессора, снабженное инжектором, входные полости которого сообщены с полостью выхода воздуха из компрессора и с системой подачи воздуха высокого давления от автономного источника, при этом турбина содержит реактивный модуль, установленный на валу воздушного компрессора, и активный модуль, установленный на валу электрогенератора, с противоположным направлением вращения вокруг общей оси, при этом сопла реактивного модуля выполнены с возможностью циклического перехода воздуха в каналы, выполненные в теле активного модуля. Изобретение позволяет повысить эффективность получения электроэнергии. 2 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для подогрева газов, а именно к устройствам для высокотемпературного нагрева, и может быть использовано в нефтехимической, газоперерабатывающей, энергетической и других отраслях промышленности. Подогреватель газообразных сред содержит теплообменный модуль, включающий коаксиально расположенные наружную и внутреннюю трубы с расположенным коаксиально во внутренней трубе горелочным устройством инжекционного типа, каналом для подвода воздуха к нему, входной и выходной коллекторы, дымовую трубу. Между внутренней и наружной трубой образованы каналы, а полость между внутренней и наружной трубой с противоположных сторон выполнена заглушенной. Наружная труба оснащена входным и выходным коллекторами, расположенными по ее торцам, и выполнена с линзовым компенсатором, а внутренняя труба выполнена из жаропрочной стали с длиной и внутренним диаметром большими, чем длина и диаметр факела горелочного устройства. Подогреватель газообразных сред возможно применять при высоких температурах, при этом компенсируется разность температурных удлинений труб и обеспечивается его целостность. 3 з.п. ф-лы, 3 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к устройствам, предназначенным для термогазохимической обработки призабойной зоны нефтяного пласта. Установка для термогазохимического воздействия на нефтяной пласт содержит парогазогенератор, состоящий из смесительной головки, охлаждаемой камеры сгорания и камеры смешения, соединенной с входом турбины турбонасосного агрегата, включающего в себя насос окислителя, насос горючего, насос воды и турбину, служащую для привода насосов, при этом входы насосов соединены с емкостями окислителя, горючего и воды соответственно, а выходы насоса окислителя и насоса горючего соединены со смесительной головкой парогазогенератора, насоса воды - с охлаждающим трактом камеры сгорания, при этом выход турбины соединен с внутренней полостью насосно-компрессорной трубы, термостойкий пакер, разделяющий внутреннюю полость насосно-компрессорной трубы и затрубное пространство, в варианте исполнения часть воды, поступающей из насоса воды, подается в смеситель, установленный на выходе турбины турбонасосного агрегата и соединенный с внутренней полостью насосно-компрессорной трубы. 1 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам, предназначенным для сжигания сырой нефти с целью ее утилизации. Горелка для сжигания сырой нефти содержит полую обечайку, внутри которой установлен трубопровод подачи сжатого воздуха, причем в выходной части обечайки установлено профилированное днище, а на торце трубопровода подачи сжатого воздуха закреплено днище, при этом на цилиндрической поверхности обечайки, равномерно по окружности, расположены коллекторы сырой нефти, а на цилиндрической поверхности профилированного днища, равномерно по окружности, расположены коллекторы сжатого воздуха, состоящие из патрубков и пневматических форсунок, соединенных с коллекторами сырой нефти. Изобретение позволяет повысить качество сжигания топлива и снизить уровень загрязнения окружающей среды. 4 ил.

Изобретение относится к устройствам, предназначенным для сжигания сырой нефти с целью ее утилизации. Горелочное устройство для сжигания сырой нефти содержит обечайку с профилированным входом и выходом, установленную на раме, дежурную горелку расположенную внутри обечайки, горелку, расположенную на оси обечайки и представляющую собой полую обечайку, внутри которой установлен трубопровод подачи сжатого воздуха, причем в выходной части обечайки установлено профилированное днище, а на торце трубопровода подачи сжатого воздуха закреплено днище, при этом на цилиндрической поверхности обечайки, равномерно по окружности, расположены коллекторы сырой нефти, а на цилиндрической поверхности профилированного днища, равномерно по окружности, расположены коллекторы сжатого воздуха, состоящие из патрубков и пневматических форсунок, соединенных с коллекторами сырой нефти. Изобретение позволяет повысить смесеобразование, снизить уровень загрязнения окружающей среды. 6 ил.
Изобретение относится к способу выделения никотиновой кислоты из водного раствора, включающему фильтрацию водного раствора никотиновой кислоты через слой гранулированного серпентинита и анализ отфильтрованной водной фазы спектрофотометрическим методом. Технический результат - удешевление и упрощение способа выделения никотиновой кислоты из водного раствора. 2 з.п. ф-лы, 3 пр.

Группа изобретений относится к области медицины, в частности к онкологии, и описывает биосовместимый наноматериал и способ его получения. Предлагаемый биосовместимый наноматериал представляет собой гибридные ассоциаты коллоидных квантовых точек CdS средними размерами 2-4 нм с катионами метиленового голубого (МВ+) в концентрации 10-1-10-4 (νкрасит/νCdS). Способ включает двуструйное сливание 0,6-5% раствора сульфида натрия и 0,8-7% раствора бромида кадмия с расплавом желатины с получением коллоидного раствора, содержащего коллоидные квантовые точки CdS, раствор выдерживают при температуре 4- 10°C, полученный желатиновый студень измельчают до размера гранул 5-10 мм, промывают в дистиллированной воде при температуре от 7 до 13°C в течение 30 мин, сцеживают лишнюю воду и гранулы нагреваются до температуры свыше 40°C. Наноматериал обладает высокой эффективностью генерации синглетного кислорода и удовлетворительными параметрами цитотоксичности, свидетельствующими о его биосовместимости. Изобретение может быть использовано в медицине и биологии для фотодинамической терапии онкологических и других заболеваний человека. 2 н.п. ф-лы, 6 ил.

Изобретение относится к комплексной переработке низконапорного природного или попутного нефтяного газов на нефтегазоконденсатных месторождениях и может быть использовано при разработке способов и устройств для получения электроэнергии и метанола. В способе утилизации низконапорного природного или попутного нефтяного газов газ из скважины разделяют на два потока, основной и вспомогательный, вспомогательный поток направляют в камеру сгорания газотурбинного блока для запуска турбины, а основной поток в блок получения метанола. Отходящие в процессе получения метанола газы поступают в газотурбинный блок для выработки электроэнергии, которую подают на питание блока получения метанола, при этом метанол производят методом прямого парциального окисления. Изобретение позволяет организовать комплексное использование низконапорного природного или попутного нефтяного газов для одновременного производства электроэнергии и метанола. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к газодобывающей промышленности, к системам сбора, подготовки и транспортировки низконапорного газа, в том числе на завершающем этапе разработки месторождений. Задачей предложенного технического решения является повышение эффективности добычи низконапорного природного газа за счет применения мобильных компрессорных установок, состоящих из входного сепаратора, винтового компрессора и газопоршневого двигателя и аппаратов охлаждения сжатого газа, и газовых эжекторов, с помощью которых низкодебетные скважины последовательно подключены в газосборную сеть, 3 з.п. ф-лы, 1 ил.

Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов. Сначала раздельно готовят растворы сульфида натрия и азотнокислого серебра. Для этого по 0,01-0,5 г сульфида натрия и азотнокислого серебра растворяют в 40-200 мл холодной дистиллированной воды. 0,5-20 г желатина набухает в реакторе в течение 30 мин в 100-500 мл дистиллированной воды с температурой от 20-30°C. Полученный желатиновый раствор нагревают до 40-90°C при перемешивании, в него сливают 5 мл 96%-этанола. Затем осуществляют двуструйное сливание приготовленных растворов сульфида натрия и азотнокислого серебра, нагревают 10-20 мин с получением золя коллоидных квантовых точек сульфида серебра и охлаждают его до 4- 10°C в течение 10 часов. Полученный студень измельчают до размера гранул 5-10 мм, промывают дистиллированной водой при температуре 7-13°C, лишнюю воду сцеживают и гранулы нагревают до температуры свыше 40°C. Изобретение позволяет получить квантовые точки сульфида серебра размером 1-5 нм в матрице из желатина, люминесцирующие в области 800-1100 нм. 1 з.п. ф-лы, 4 ил., 2 пр.
Изобретение относится к способам разделения и выделения индивидуальных ароматических аминокислот из их смесей и может быть использовано в химической, микробиологической, пищевой промышленности, сельском хозяйстве

 


Наверх