Патенты автора Абраимов Николай Васильевич (RU)

Изобретение относится к способу упрочнения поверхностного слоя лопаток компрессора газотурбинных двигателей. Осуществляют отпуск шариков и заполняют ими рабочую камеру. Осуществляют закрепление в камере лопатки с возможностью взаимодействия ее упрочняемых поверхностей с шариками и обработку упрочняемых поверхностей лопатки ультразвуковыми колебаниями. Отпуск упомянутых шариков, диаметром 0,68 мм и твердостью 59-61 HRC из стали ШХ15 со структурой мартенсита с карбидами хрома, осуществляют при температуре 350-450°С в течение 25-45 мин для повышения упругости и снижения твердости шариков до 40-50 HRC с изменением их структуры на троостомартенсит и троостит с карбидами хрома. Ультразвуковые колебания осуществляют с амплитудой от 10-30 мкм при частоте 18-22 кГц в течение 80-250 с. Плотность загрузки шариков в рабочей камере устанавливают в количестве 130-200 шт./см3 объема ее рабочего пространства. В результате уменьшают шероховатость упрочняемых поверхностей и обеспечивают повышение предела выносливости лопаток компрессора. 2 ил.

Изобретение относится к области газотурбинных двигателей, их эксплуатации, в частности к средствам герметизации газовоздушного тракта двигателей высокотемпературными уплотнениями. Способ изготовления двухслойного кольцевого жаропрочного уплотнения узлов ГТД заключается в следующем. Вначале готовят заготовки наружного и внутреннего слоев уплотнения из жаропрочных материалов. При этом заготовку наружного слоя получают в виде полосы с заданными параметрами, слои соединяют и формируют требуемый профиль уплотнения. Внутренний слой уплотнения получают напылением материала на заготовку наружного слоя с последующим вальцеванием и термообработкой, причем напыляемый материал используют с более высоким температурным коэффициентом линейного расширения, чем материал наружного слоя. Причем толщину напыляемого слоя выполняют в интервале от 1 до 3 толщин заготовки наружного слоя. Для обеспечения надежности соединения слоев в двухслойном уплотнении напыляемую поверхность наружного слоя подвергают пескоструйной обработке, напыление выполняют на воздухе, в вакууме или в нейтральной среде при температуре выше 700°С, а термообработку выполняют при температуре не менее 950°С в вакууме или нейтральной среде. Использование изобретения позволяет сократить влияние релаксации материала при работе уплотнения под нагрузкой при высокой температуре, увеличить надежность герметизации разделяемых полостей узла и увеличить ресурс работы, упростить технологический процесс изготовления уплотнения за счет сокращения количества операций и их механизации, исключая ручной труд. 3 з.п. ф-лы, 8 ил.

Изобретение относится к способу многокомпонентного диффузионного насыщения поверхности деталей из жаропрочных никелевых сплавов и может быть использовано в энергетическом и/или авиационном двигателестроении или других отраслях народного хозяйства. Многокомпонентное диффузионное насыщение проводят в газоциркуляционной установке, содержащей реактор, состоящий из муфеля, установленной на раме крышки с вентилятором и введенного в указанную крышку вакуумного насоса, и электропечь, установленную на упомянутой раме поверх реактора. На упомянутую крышку устанавливают кассеты с деталями, кассеты с источниками диффундирующих элементов и источником исходной газовой галогенидной среды. Затем на упомянутую крышку опускают муфель и устанавливают на реактор электропечь, проводят откачку воздуха из реактора с обеспечением вакуума 10-2-5×10-2 мм рт.ст. и осуществляют нагрев электропечи. При температуре в реакторе 600-950°С выключают вакуумный насос, при температуре в реакторе 600-900°С включают вентилятор, при температуре 1000-1050°С проводят выдержку в течение 2-8 часов, при температуре 800-1050°С включают вакуумный насос для удаления остаточных продуктов химических реакций, протекающих в реакторе во время диффузионного насыщения, при температуре 500-700°С выключают вентилятор. При температуре 100-120°С снимают электропечь, затем муфель, кассеты с деталями и кассеты с источником диффундирующих элементов и источником исходной газовой галогенидной среды. В качестве источника диффундирующих элементов используют гранулы хрома, гранулы сплава хрома с алюминием, гранулы сплава никеля с иттрием, а в качестве источника исходной газовой галогенидной среды используют безводный хлорид никеля. Достигается улучшение получения стабильных по толщине и химическому составу покрытий и повышение их долговечности, а также улучшение свойств деталей по жаростойкости и термостойкости с такими покрытиями. 1 з.п. ф-лы, 12 табл., 13 ил.
Изобретение относится к способу получения многослойного защитного покрытия лопаток турбомашин из титановых сплавов. Способ включает вакуумно-плазменное осаждение легирующих элементов хрома, алюминия и иттрия на поверхность лопаток и термическую обработку. Легирующие элементы наносят первым слоем в составе сплавов системы алюминий-кремний конденсационным методом, а вторым слоем - в составе сплавов системы алюминий-хром-иттрий-никель. Термическую обработку проводят последовательно после получения каждого слоя при температуре не выше 850°C. Нанесение первого слоя защитного покрытия осуществляют составом, содержащим, мас. %: кремний 0,1-1,65; и алюминий - остальное до 100%, а нанесение второго слоя защитного покрытия осуществляют составом, содержащим, мас. %: алюминий 5-12, хром 20-25, иттрий 0,01-3,0, никель - остальное до 100%. Изобретение обеспечивает повышение долговечности и ресурса лопаток турбомашин, изготовленных из жаропрочных титановых сплавов, при этом достигается повышение эрозионной стойкости и сопротивления высокотемпературному окислению. 1 пр.
Изобретение относится к области сварки и наплавки и может быть использовано при ремонте изношенных или поврежденных бандажных полок лопаток турбомашин, выполненных из жаропрочных никелевых сплавов. Способ восстановления бандажных полок лопаток турбомашин из жаропрочных никелевых сплавов включает удаление с бандажной полки покрытия с поврежденным слоем, наплавку на бандажную полку до заданных размеров жаропрочного никелевого сплава и механическую обработку наплавленного участка, последующее проведение отжига лопатки и нанесение износостойкого покрытия на наплавленный участок бандажной полки. Наплавку бандажной полки осуществляют жаропрочным никелевым сплавом с более высоким температурным коэффициентом линейного расширения, чем у жаропрочного никелевого сплава бандажных полок лопаток. В качестве износостойкого покрытия используют износостойкий материал на карбидной основе с кобальтовым связующим с более низким температурным коэффициентом линейного расширения, чем у жаропрочного никелевого сплава бандажных полок лопаток. В частных случаях осуществления изобретения наплавку бандажной полки осуществляют жаропрочным никелевым сплавом ЖС32 с температурным коэффициентом линейного расширения 17,6⋅10-6 K-1 в интервале температур от 800 до 900°С с характеристиками жаропрочности не ниже, чем у жаропрочного никелевого сплава бандажных полок лопаток турбомашин, представляющего собой жаропрочный никелевый сплав ЖС26 с температурным коэффициентом линейного расширения 15,2⋅10-6 К-1 в упомянутом интервале температур. В качестве износостойкого материала на карбидной основе с кобальтовым связующим используют СМ-64, ХТН-61, ХТН-62 с коэффициентом линейного расширения αt=(7,2-7,8)⋅10-6 K-1. Удаление с бандажной полки лопатки покрытия с поврежденным слоем осуществляют алмазным шлифованием. Отжиг лопатки осуществляют в среде нейтрального газа или в вакууме 10-3-10-4 мм рт.ст. при температуре не выше 1050°С. Обеспечивается повышение надежности, ресурса лопаток турбин, работоспособности бандажной полки лопатки при высокой температуре нагрева 1000-1060°C и качество наплавленных участков, при этом достигается высокая точность восстановления геометрических размеров и формы бандажных полок и обеспечивается высокое качество ремонта. 4 з.п. ф-лы.

Изобретение относится к области сварки и может быть использовано при производстве или ремонте бандажированных лопаток турбин турбомашин, выполненных из жаропрочных никелевых сплавов. Выполняют бандажную полку лопатки турбины. Наносят на подготовленную к наплавке контактную поверхность бандажной полки износостойкое покрытие и удаляют излишки упомянутого покрытия до получения требуемого размера бандажной полки. Бандажную полку выполняют с припуском, компенсирующим последующую ее усадку при нанесении износостойкого покрытия, а после наплавки упомянутого покрытия выполняют отжиг лопатки в вакууме 10-3-10-4 мм рт.ст. при температуре не выше 1050°C. При этом наплавку износостойкого покрытия на контактную поверхность бандажной полки осуществляют за один проход без разрыва электрической дуги на минимальном токе 30-40 А. Припуск бандажной полки превышает величину последующей ее усадки не более чем на 5-10%. Изобретение позволяет повысить надежность и ресурс работы лопаток турбины. 1 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к способу восстановления бандажных полок лопаток компрессора газотурбинных двигателей (ГТД). Определяют линии ремонтного среза бандажных полок. Удаляют по указанной линии их дефектные части. Изготавливают накладки из твердосплавного материала толщиной не более 0,9 мм со сквозными проточкам по контуру, совпадающему с плоскостями ремонтного среза бандажных полок. Фиксируют их на плоскостях срезов с соблюдением требования сохранения установленной длины бандажных полок, осуществляют термообработку и заключительную финишную механообработку. При этом после удаления по указанной линии ремонтного среза дефектных частей бандажных полок осуществляют наплавление на ремонтный срез слоя титанового сплава заданной толщины, а затем - фиксацию накладок путем индукционной пайки. Предлагаемый способ позволит повысить надежность изделия при его эксплуатации, а также увеличить ремонтный ресурс лопаток в 1,5-2 раза, 4 з.п. ф-лы, 3 ил.

Изобретение может быть использовано при ремонте изношенных или поврежденных бандажных полок лопаток турбомашин, выполненных из титановых сплавов. С поврежденных участков удаляют покрытие и поверхностный слой металла, например, алмазным шлифованием. Осуществляют наплавку поврежденных участков титановым α-сплавом или квази-α-сплавом и механическую обработку наплавленных участков до восстановления их заданных геометрических размеров и формы. Для сохранения величины исходного базового размера бандажных полок наплавку и механическую обработку производят сначала на бандажной полке с одной стороны лопатки, а потом на бандажной полке с другой стороны лопатки. После отжига лопаток в вакууме при температуре не выше 650°C наносят износостойкое покрытие на восстановленные участки путем, например, детонационного напыления. Применение данного способа обеспечивает высокую точность восстановления геометрических размеров и формы бандажных полок, а также высокое качество ремонта, что повышает надежность и ресурс работы отремонтированных лопаток. 2 з.п. ф-лы, 2 ил.
Изобретение относится к металлургии, в частности к составам для получения карбидного барьерного слоя в алюминийсодержащем покрытии, и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности, где используют детали из безуглеродистых сплавов на никелевой основе. Состав для получения карбидного барьерного покрытия на детали из безуглеродистого жаропрочного никелевого сплава содержит тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0, углерод 0,1-0,4, хром 4-25, алюминий 2-12, иттрий 0,001-5,0 и никель - остальное. Обеспечивается защита детали из безуглеродистого жаропрочного никелевого сплава от газовой коррозии в условиях высоких температур (выше 900°C), что позволяет повысить долговечность упомянутой детали. 1 пр.

Изобретение относится к металлургии, в частности к получению на деталях из безуглеродистых жаропрочных никелевых сплавов покрытий с барьерным слоем для защиты от газовой коррозии в условиях температур выше 900°C, и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности. Способ включает формирование карбидного барьерного слоя на поверхности детали в газовой углеродсодержащей среде и последующее нанесение алюминидного покрытия, при этом формирование карбидного слоя осуществляют в вакууме от 10-1 до 10-5 мм рт.ст. и температуре детали от 850 до 10500С, при давлении газовой углеродсодержащей среды от 0,5 до 10 мм рт.ст. и выдержке в ней от 2 до 10 мин. Изобретение позволяет снизить трудоемкость и повысить долговечность деталей из безуглеродистых никелевых сплавов. 1 пр., 1 ил.
Изобретение относится к металлургии, в частности к формированию на деталях из безуглеродистых жаропрочных никелевых сплавов химико-термической обработкой комбинированных покрытий для защиты от газовой коррозии в условиях высоких температур (выше 900°С), и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности. Способ получения покрытия на детали из безуглеродистого жаропрочного никелевого сплава включает нанесение первого покрытия на наружную поверхность детали и нанесение на поверхность первого покрытия второго покрытия на основе алюминия. Первое покрытие содержит в мас.%: хром 4-25, алюминий 2-12, тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0, углерод 0,1-0,4, иттрий 0,001-5,0 и никель - остальное. Первое покрытие наносят конденсационным методом, а второе покрытие наносят диффузионным или конденсационным методами. Обеспечивается снижение трудоемкости и повышение долговечности детали.
Изобретение относится к металлургии, в частности к разделу химико-термической обработки деталей
Изобретение относится к составам для нанесения покрытий, в частности к составам для нанесения покрытий на детали диффузионным насыщением в газовой среде, и может быть использовано в авиадвигателестроении, машиностроении при химико-термической обработке деталей

Изобретение относится к химико-термической обработке и может быть использовано в авиадвигателестроении, машиностроении и других отраслях промышленности
Изобретение относится к металлургии, в частности к способам упрочнения жаростойких покрытий деталей из жаропрочных никелевых сплавов, и может быть использовано для увеличения прочности и долговечности лопаток турбин газотурбинных двигателей

Изобретение относится к области химико-термической обработки, а именно к способам нанесения покрытий на жаропрочные сплавы на основе никеля и может использоваться для защиты деталей от солевой коррозии
Изобретение относится к области химико-термической обработки, а именно к способам диффузионного насыщения деталей, изготовленных из жаропрочных сплавов на основе никеля, применяемых для работы в условиях воздействия агрессивной газовой среды при температурах 700-1100°С

Изобретение относится к области машиностроения, в частности к химико-термической обработке изделий из жаропрочных сплавов на основе никеля
Изобретение относится к покрытиям, защищающим детали от воздействия высоких температур, и может быть использовано в авиадвигателестроении, машиностроении, энергетике и других отраслях техники
Изобретение относится к восстановлению поврежденных деталей, в частности к устранению трещин в поверхностном слое детали, и может быть использовано в авиадвигателестроении и других областях техники

Изобретение относится к химико-термической обработке деталей в циркулирующей газовой среде

 


Наверх