Патенты автора Шабуневич Виктор Иванович (RU)

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля состояния длинномерных объектов, а именно протяженных грузонесущих конструкций в виде рельсовой колеи железнодорожного полотна, а также для измерения собственных или вынужденных колебаний упругих объектов, например рельсов и колес подвижного состава. Стенд включает рельсошпальную решетку, прикрепленную к основанию кронштейнами, тензодатчики, установленные на шейку рельсов рельсошпальной решетки с обеих сторон, для проведения измерений деформации рельса. С одной из торцевых сторон рельсошпальной решетки к концам рельсов установлены упоры с гидравлическими домкратами для продольного нагружения рельсов. При этом упоры выполнены с возможностью установки в них тяги для изменения направления продольного нагружения рельсов, также в упоры установлены тензорезистивные датчики силы с шариками для контроля величины силы, приложенной к рельсам. На рельсы установлены вибропреобразователи для измерения собственных и вынужденных колебаний рельсов, рядом с вибропреобразователями наклеены тензодатчики для измерения продольных и изгибных деформаций рельсов, в непосредственной близости от рельсов установлен микрофон шумомера для измерения уровня звукового давления, а вдоль рельсов установлен оптоволоконный кабель для измерения вибраций, возникающих при собственных и вынужденных колебаниях рельсов. Технический результат заключается в повышении точности обнаружения и идентификации дефектов рельсов и колес подвижного состава, а также осуществление одновременной оценки продольного напряжения в рельсах бесстыкового пути. 4 ил.

Изобретение относится к исследованию упругих свойств конструкций или сооружений, а именно объектов транспортной инфраструктуры и самих транспортных средств, посредством создания их физических и конечно-элементных (КЭ) моделей. В ходе реализации способа создают геометрически подобные масштабные физические и конечно-элементные модели упругих объектов, производят их гармоническое нагружение различными видами нагрузок, определенными в соответствии с масштабными критериями подобия, измеряют частоты и амплитуды резонансных колебаний различных параметров напряженно-деформированного состояния созданных моделей. Дополнительно производят тепловое нагружение геометрически подобных масштабных физических и КЭ моделей упругих объектов, измеряют и рассчитывают частоты и амплитуды резонансных колебаний различных параметров напряженно-деформированного состояния физических и КЭ моделей во всем диапазоне их собственных частот с учетом обратной пропорциональности изменения величин частот при изменении масштаба физических и КЭ моделей, которые дорабатывают, добиваясь соответствия измеренных и рассчитанных величин частот и амплитуд резонансных колебаний этих параметров реальным их значениям для натурных объектов. Технический результат заключается в повышении точности исследования параметров напряженно-деформированного состояния натурных объектов с целью достижения соответствия частот резонансных колебаний для физических, КЭ моделей и самих натурных объектов во всем диапазоне их собственных частот с учетом обратной пропорциональности изменения частот в зависимости от масштаба физических и КЭ моделей, и их теплового нагружения. 5 ил.
Изобретение относится к контрольно-измерительной технике, в частности к области диагностики напряженно-деформированного состояния упругих объектов, в частности рельсовых плетей бесстыкового пути. При реализации способа создают конечно-элементную модель упругого объекта, определяют формы и частоты собственных колебаний конечно-элементной модели упругого объекта при различном напряженно-деформированном состоянии, измеряют собственные частоты колебаний исследуемого упругого объекта вне зависимости от направления и способа их возбуждения, определяют идентичные формы колебаний конечно-элементной модели упругого объекта и исследуемого упругого объекта, сравнивают значения частот соответствующих форм колебаний, на основании сравнения делают выводы о напряженно-деформированном состоянии исследуемого упругого объекта. Технический результат заключается в повышении точности определения нагруженности упругих объектов, а также упрощении способа регистрации и анализа форм собственных колебаний. 3 ил.

Предложен способ регулирования резонансных колебаний, заключающийся в том, что резонансные колебания центральной цилиндрической или сферической массы (или физического поля), связанной с внешней цилиндрической или сферической массой (или взаимно проникающим полем), концентричной с центральной массой, возбуждают путем принудительного периодического возбуждения, создаваемого, например, электромагнитным вибратором. Путем настраивания и изменения параметров действующей на массы вынуждающей силы, при этом, например, амплитуду вынуждающей силы инерции настраивают на заведомо меньшее значение, чем требуется для номинального режима резонансных колебаний, изменяют период вынуждающей силы инерции и настраивают регулируемый параметр резонансных колебаний массы на максимальное значение. При этом создают дополнительные связанные с первыми двумя (центральной и внешней) и вращающиеся, например, синхронно и одновременно или по очередности программы управления с первыми сферические или цилиндрические массы или взаимно проникающие поля. Также предложено устройство для возбуждения и регулирования резонансных колебаний. Оно содержит центральную цилиндрическую или сферическую массу (поле) с установленным на ней, например, электромагнитным вибратором, и соединенную с внешней цилиндрической или сферической массой (или взаимно проникающим полем), концентричной с центральной массой. При этом оно имеет дополнительные связанные с первыми двумя (центральной и внешней) и вращающиеся, например, синхронно и одновременно или по очередности программы управления с первыми, сферические или цилиндрические массы или взаимно проникающие поля. 2 н.п. ф-лы, 11 ил.
Изобретение относится к области интерферометрических исследований поверхности Земли и может быть использовано для обнаружения возможности наступления катастрофических явлений. Сущность: проводят межвитковую дифференциальную интерферометрию поверхности Земли, получая пары комплексных радиолокационных изображений (КРЛИ). Пары КРЛИ, образующие интерференционную пару, получают на витках, разделенных по времени. Кроме того, запись пары КРЛИ производят в соответствии с фазами приливных воздействий Луны и Солнца. Сравнивают полученные дифференциальные интерферометрические картины с эталонными интерферометрическими картинами. При обнаружении значительных отличий между этими картинами рассчитывают параметры напряженно-деформированного состояния земной коры и оценивают опасность ее повреждений. Технический результат: повышение точности обнаружения возможных катастрофических явлений.

 


Наверх