Патенты автора Бурдин Владимир Александрович (RU)

Изобретение относится к области измерительной техники и касается способа определения места повреждения оптического кабеля. При осуществлении способа с помощью импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна, на которой выделяют участок с событием, отображающим повреждение оптического волокна. С помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния того же волокна и по результатам совместной обработки этих характеристик обратного рассеяния определяют участок с повреждением. Затем над кабелем перемещают работающий на одной частоте источник направленного акустовибрационного воздействия и с помощью фазочувствительного рефлектометра измеряют характеристику обратного рассеяния оптического волокна. Место повреждения определяют по местоположению источника акустовибрационного воздействия над кабелем. Местоположение источника акустовибрационного воздействия относительно оси волокна определяется на участке характеристики обратного рассеяния оптического волокна, который был определен как участок с повреждением оптического волокна. Технический результат заключается в уменьшении погрешности измерений и расширении области применения способа. 1 ил.

Изобретение относится к волоконно-оптической технике, в частности к монтажу муфт оптического кабеля, и предназначено для крепления оптических модулей оптического кабеля на кассете муфты при сращивании длин оптического кабеля. Заявлен способ фиксации оптических волокон в модульной трубке оптического кабеля, в котором в месте выхода оптических волокон из модульной трубки оптического кабеля внутрь модульной трубки вводят силиконовый герметик, при этом предварительно на модульную трубку оптического кабеля надевают термоусаживаемую трубку с внутренним диаметром на 0,2–0,3 мм больше внешнего диаметра модульной трубки оптического кабеля и длиной до 10–30 мм, а после того как модульные трубки оптического кабеля обрезают, смывают гидрофобный гель как с внешней поверхности модульной трубки, так и с ее внутренней поверхности на расстоянии 2-5 мм от торца модульной трубки оптического кабеля, выдавливая гидрофобный гель из модульной трубки оптического кабеля, обезжиривают оптические волокна и внешнюю поверхность модульных трубок оптического кабеля на расстоянии 20-30 мм и их внутреннюю поверхность на расстоянии 2-5 мм от торца модульной трубки оптического кабеля. Затем в месте выхода оптических волокон из модульной трубки оптического кабеля внутрь модульной трубки на глубину 2-5 мм вводят силиконовый герметик, наносят равномерно силиконовый герметик на внешнюю поверхность модульной трубки на расстояние 5–10 мм от торца модульной трубки и на оптические волокна на расстоянии до 5 мм от торца модульной трубки, надвигают термоусаживаемую трубку на конец модульной трубки так, чтобы в месте выхода оптических волокон из модульной трубки оптического кабеля она примерно на 5-10 мм заходила на выходящие из модульной трубки оптического кабеля оптические волокна, после чего осаживают термоусаживаемую трубку, равномерно нагревая ее, и через 20-30 минут после этого при полимеризации наружного слоя силиконового герметика приступают к сращиванию оптических волокон. Технический результат - расширение области применения. 5 ил.

Настоящее изобретение относится к волоконно-оптической технике связи. Техническим результатом является компенсация дисперсионных искажений оптического сигнала в многомодовой волоконно-оптической линии передачи, функционирующей в маломодовом режиме. Упомянутый технический результат достигается тем, что в служебном режиме обучения компенсатора 2 используется известная последовательность, состоящая из нечетного числа символов, причем все символы, за исключением центрального, являются "0", и только центральный - "1"; количество символов в обучающей последовательности определяется по искаженному импульсному отклику, предварительно измеренному на выходе оптического волокна линии, либо оценивается через известное значение дифференциальной модовой задержки; осуществляется многократная посылка обучающей последовательности с накоплением и последующим усреднением; далее в результате проведения математической обработки формируется маска, которая записывается в модуль хранения 13; в штатном режиме функционирования после прохождения линии и преобразования в фотоприемном устройстве информационный сигнал поступает в модуль памяти 11, фиксирующий фрагмент этого сигнала с длительностью, аналогичной длительности обучающей последовательности, этот фрагмент информационного сигнала поступает в сумматор 14, где осуществляется вычитание опорного сигнала маски; далее из обработанного фрагмента выделяется последний символ, который поступает на решающее устройство 9; одновременно в модуль памяти 11 вновь дозагружается недостающий фрагмент сигнала с выхода фотоприемного устройства 6 для достижения искомой длительности со сдвигом по временной шкале на один символ, таким образом, что предпоследний символ предыдущего фрагмента информационного сигнала становится последним символом, в сумматоре 14 осуществляется процедура вычитания опорного сигнала маски, последний символ поступает в решающее устройство 9, и далее описанная процедура снова повторяется. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в модуле оптического кабеля. Технический результат состоит в исключении погрешностей измерений, вносимых за счет скручиванием оптических волокон. Для этого в модуле оптического кабеля измеряют и запоминают поляризационную характеристику обратного рассеяния оптического волокна, измеренную характеристику обратного рассеяния оптического волокна разбивают на одинаковые участки, для каждого k-го участка по этим характеристикам определяют оценку длины биений оптического волокна и рассчитывают избыточную длину птического волокна в модуле оптического кабеля на k-м участке , при этом измеряют поляризационные характеристики обратного рассеяния оптического волокна на двух длинах волн и , запоминают их, после чего каждую из этих характеристик обратного рассеяния оптического волокна разбивают на одинаковые участки, для каждого k-го участка по этим характеристикам определяют оценки длины биений оптического волокна на двух длинах волн и и рассчитывают избыточную длину оптического волокна в модуле оптического кабеля на k-м участке. 1 ил.

Изобретение относится к области неразрушающего контроля прочности оптических волокон из плавленого кварцевого стекла. Сущность: на контролируемый объект оказывают акустическое воздействие на первой частоте и на второй частоте, измеряют сигнал нелинейной акустической эмиссии на разностной частоте и по результатам обработки данных измерений оценивают степень разрушения контролируемого объекта. В качестве контролируемого объекта и распределенного акустического сенсора используют одно и то же оптическое волокно, на которое оказывают акустическое воздействие и с помощью которого измеряют сигналы на первой, второй и разностной частотах. Регулируют уровни сигналов акустического воздействия так, чтобы обеспечить равенство амплитуд сигналов, измеряемых на первой и второй частотах, после чего измеряют сигналы на первой, второй и разностной частотах, при этом предварительно выполняют измерения на образцовом оптическом волокне, прочность которого известна, а затем, при тех же условиях, на тестируемом оптическом волокне, после чего определяют прочность тестируемого оптического волокна по формуле. Технический результат: расширение области применения. 1 ил.

Изобретение относится к волоконно-оптической технике связи и может быть использовано для компенсации дисперсии маломодовой волоконно-оптической линии связи. Согласно способу компенсации дисперсии маломодовой волоконно-оптической линии связи в волоконно-оптическую линию связи периодически на ее длине включают линейные оптические усилители, на которых включают оптическое волокно, компенсирующее хроматическую дисперсию. При этом между каскадами линейных оптических усилителей в маломодовое оптическое волокно последовательно включают модовый демультиплексор и модовый мультиплексор, выходы модового демультиплексора соединяют с соответствующими входами модового мультиплексора через последовательное соединение оптических волокон с положительной и отрицательной хроматической дисперсией для соответствующей моды в рабочем диапазоне длин волн, причем длины этих оптических волокон, их параметры и расстояния между линейными оптическими усилителями выбирают из условия минимизации дифференциальной модовой задержки, хроматической дисперсии и потерь на рабочих модах на усилительном участке на выходе линейного оптического усилителя. Изобретение позволяет увеличить динамический диапазон для маломодовой волоконно-оптической линии связи и снизить требования к вычислительным ресурсам на приеме в конце регенерационного участка. 1 ил.

Использование: изобретение относится к измерительной технике и может быть использовано для контроля глубины прокладки оптического кабеля, в том числе кабеля без проводящих элементов. Сущность: согласно способу контроля глубины прокладки оптического кабеля создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна, при этом сигнал акустического воздействия формируют от двух источников направленного акустического воздействия с сигналами на выходе, одинаковыми по уровню, но разными по частоте, расположенными вертикально над кабелем на известном расстоянии друг от друга так, что один источник направленного акустического воздействия располагается на поверхности над кабелем, а второй источник направленного акустического воздействия - над ним, строго вертикально на известном расстоянии H, по характеристике обратного рассеяния оптического волокна, измеренной помощью фазочувствительного импульсного оптического рефлектометра, определяют амплитуды сигналов на частотах источников акустического воздействия и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле , где - амплитуды сигналов на частотах источников акустического воздействия , измеряемые в месте воздействия, от источника акустического воздействия, расположенного на поверхности над кабелем и над ним на расстоянии H по вертикали соответственно. Технический результат: исключение возникновения погрешностей, обусловленных перемещениями источника направленного акустического воздействия, упрощение контроля положения источника направленного акустического воздействия, сокращение объема измерений. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для контроля глубины прокладки оптического кабеля, в том числе кабеля без проводящих элементов. Технический результат: расширение области применения. Сущность: источник направленного акустического воздействия размещают на поверхности над кабелем и измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра. При этом на кабель воздействуют акустическим сигналом на одной частоте. Источник направленного акустического воздействия перемещают по нормали к оси оптического кабеля в одном направлении от кабеля и измеряют характеристики обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра в трех точках, расположенных по нормали к оси оптического кабеля на расстоянии . По результатам обработки характеристик обратного рассеяния оптического волокна, измеренных фазочувствительным импульсным оптическим рефлектометром, определяют время задержки сигналов на частоте воздействия в точке на оси волокна, соответствующей пересечению нормалью, по которой перемещают источник акустического воздействия при размещении источника акустического воздействия на расстоянии относительно сигнала, полученного для этой точки при размещении источника акустического воздействия на расстоянии . Определяют глубину прокладки оптического кабеля , решая уравнение . 1ил.

Изобретение относится к измерительной технике и предназначено для определения трассы прокладки оптоволоконного кабеля, проложенного в кабельной канализации и, в частности, по технологии «микрокабель в микротрубке» в транспортной многоканальной коммуникации. Технической задачей заявленного способа является разработка способа маркировки оптоволоконного кабеля. Техническим результатом предлагаемого способа является расширение области применения заявленного изобретения. Технический результат достигается тем, что согласно способу электронного маркирования трассы оптоволоконного кабеля множество электронных маркеров с заданными интервалами закрепляют на протяженной структуре, выполненной из непроводящего материала, а затем эту структуру прокладывают вдоль трассы маркируемого оптоволоконного кабеля, при этом множество электронных маркеров с заданными интервалами закрепляют внутри выполненного из непроводящего материала гибкого прутка, который имеет заданную жесткость, а затем этот пруток прокладывают в пакете защитных трубок, в котором проложен маркируемый оптоволоконный кабель, в свободном канале. 1 ил.

Изобретение относится к волоконно-оптической технике, в частности к монтажу муфт оптического кабеля, и предназначено для испытания защиты соединений оптического кабеля от выдавливания оптических волокон из модульных трубок в муфту. Сущность: выбирают длину соединяемых оптических кабелей в пределах от 5 до 6 метров. Соединяют оптические кабели в муфте с защитой соединений оптического кабеля от выдавливания оптических волокон из модульных трубок в муфту. Измеряют потери в оптических волокнах в муфте. На конце оптического кабеля к модульной трубке подключают компрессор и создают в ней повышенное давление в течение заданного интервала времени, после чего снова измеряют потери в оптических волокнах в муфте и полагают, что защита прошла испытания, если изменения потерь в оптических волокнах в муфте не превысили заданного порогового значения. Технический результат: обеспечение существенного снижения потребления энергии в процессе испытаний. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Техническим результатом является способ повышения точности нахождения трассы прокладки оптического кабеля, который заключается в создании направленного акусто-вибрационного воздействия на трассу прокладки кабеля, источник которого перемещается продольно-поперечно относительно предполагаемой трассы, посредством управления по отдельному каналу связи. С помощью фазочувствительного импульсного оптического рефлектометра производят измерение характеристик обратного рассеяния оптического волокна, при этом выбирают и фиксируют на местности точку «А» на трассе прокладки с одной стороны кабеля. Указанные выше операции проводят в той же последовательности до тех пор, пока не будет найдена точка «В» на трассе с другой стороны кабеля, для которой измеренные параметры совпадут с заданной погрешностью с распределениями амплитудной и фазовой характеристик принимаемого рефлектометром сигнала на частоте воздействия в точке «А», после чего определяют местоположение кабеля в середине отрезка прямой, соединяющей точки «А» и «В». 1 ил.

Использование: для неразрушающего контроля прочности оптического волокна. Сущность изобретения заключается в том, что в оптическом волокне создают напряжение с помощью источника акустического воздействия, расположенного вблизи оптического волокна, это же оптическое волокно с подключенной к нему измерительной системой используют как распределенный акустический датчик, с помощью которого регистрируют акустической сигнал в зоне акустического воздействия, по результатам обработки данного сигнала выделяют сигнал акустической эмиссии и сигнал акустического воздействия, причем при одних и тех же условиях измерения предварительно выполняют для образцового оптического волокна, прочность которого известна, а затем для контролируемого оптического волокна, после чего рассчитывают прочность контролируемого оптического волокна, при этом напряжение в оптическом волокне создают источником акустического воздействия, работающим на одной частоте, при обработке регистрируемого сигнала выделяют из него сигнал нелинейной акустической эмиссии на гармониках частоты источника акустического воздействия и рассчитывают прочность контролируемого оптического волокна по определенной формуле. Технический результат: обеспечение возможности уменьшения погрешности при оценке прочности оптического волокна. 1 ил.

Использование: для контроля состояния смотровых устройств на трассе волоконно-оптической кабельной линии. Сущность изобретения заключается в том, что акустическим сигналом зондируют ограниченное разделом сред пространство в смотровом устройстве, принимают акустический сигнал, запоминают этот сигнал при нормальном состоянии смотрового устройства в качестве образцового и впоследствии сравнивают образцовый сигнал с сигналами, измеряемыми в дальнейшем, и по результатам совместной обработки этих сигналов судят о количественных показателях в изменениях в условиях распространения акустической волны в наблюдаемом пространстве, при этом измеряют акустический сигнал в ограниченном пространстве в смотровом устройстве, используя в качестве акустического сенсора оптическое волокно кабеля волоконно-оптической кабельной линии, проложенного в смотровом устройстве, и по количественным показателям изменений в условиях распространения акустической волны в наблюдаемом пространстве в смотровом устройстве оценивают состояние смотрового устройства. Технический результат: обеспечение возможности контроля состояния смотрового устройства с использованием акустического сигнала при наличии слоя грунта или дорожного покрытия над смотровым устройством. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Технический результат состоит в расширении области применения. Для этого когерентным фазочувствительным оптическим рефлектометром, работающим во временной области, измеряют характеристику обратного рассеяния оптического волокна кабеля, по которой определяют характеристики распределений акустических сигналов вдоль оптического кабеля, вдоль трассы прокладки оптического кабеля перемещают средство передвижения с источником акустического сигнала, с помощью оборудования глобальной позиционирующей системы определяют координаты средства передвижения, и по характеристикам распределений акустических сигналов вдоль оптического кабеля определяют расстояния от оптического кабеля до средства передвижения, по которым, зная координаты средства передвижения, определяют координаты оптического кабеля, при этом вдоль трассы прокладки оптического кабеля перемещают не одно, а группу средств передвижения с источниками акустических сигналов, причем в качестве группы средств передвижения перемещают рой беспилотных летательных аппаратов (БПЛА), соединенных каналами связи между собой и с центральной станцией управления, а на каждом БПЛА источник акустического сигнала формирует сигнал на акустической частоте, отличной от акустических частот источников акустических сигналов других БПЛА в рое, через каналы связи управляют траекторией полета БПЛА по заданным координатам в рое, взаимным расположением БПЛА в рое и высотой полета БПЛА над поверхностью земли в рое, с помощью оборудования глобальной позиционирующей системы определяют координаты каждого БПЛА в рое, и по характеристикам распределений акустических сигналов вдоль оптического кабеля, выделяя параметры акустических сигналов на частотах, формируемых источниками акустических сигналов БПЛА в рое, по которым идентифицируют отдельные БПЛА, определяют расстояния от оптического кабеля до БПЛА, по которым, зная координаты БПЛА, определяют координаты оптического кабеля. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки и определения глубины прокладки пакета микротрубок без металлических элементов на волоконно-оптической линии связи, в частности на транспортной многоканальной коммуникации с полностью диэлектрическим оптическим кабелем. Технический результат состоит в расширении области применения. Для этого предварительно между смотровыми устройствами в свободном канале одной из микротрубок пакета микротрубок волоконно-оптической линии связи прокладывают изолированный проводник, на одном конце которого между проводником и заземлением включают генератор электромагнитных сигналов, а другой конец проводника заземляют, измеряют распределение уровней напряженностей электромагнитного поля над трассой волоконно-оптической линии связи, создаваемого током, протекающим по изолированному проводнику, по результатам обработки этих распределений определяют местоположение и глубину прокладки пакета микротрубок и после завершения поиска трассы прокладки и глубины прокладки пакета микротрубок на участке волоконно-оптической линии связи между смотровыми устройствами изолированный проводник отключают и извлекают из канала микротрубки. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Согласно способу поиска трассы прокладки оптического кабеля создают направленное акустовибрационное воздействие на кабель, источник направленного акустовибрационного воздействия перемещают продольно-поперечно относительно предполагаемой трассы прокладки кабеля и по отдельному каналу связи управляют его перемещениями и уровнем акустовибрационного воздействия, и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна. При этом над предполагаемым местоположением оптического кабеля на фиксированном расстоянии друг от друга размещают два работающих на разных частотах источника направленного акустовибрационного воздействия, не изменяя расстояния между ними, изменяют угол между соединяющей их прямой и предполагаемой осью трассы прокладки, добиваясь совпадения местоположений отображений сигналов частот этих источников на характеристике обратного рассеяния оптического волокна, измеряемой фазочувствительным импульсным оптическим рефлектометром. Затем, не изменяя расстояния между источниками направленного акустовибрационного воздействия и угла между соединяющей их прямой и предполагаемой осью трассы прокладки, перемещают их относительно предполагаемой трассы прокладки кабеля, добиваясь равенства уровней сигналов частот источников направленного акустовибрационного воздействия, отображаемых на характеристике обратного рассеяния оптического волокна, измеряемой фазочувствительным импульсным оптическим рефлектометром. После чего определяют трассу прокладки кабеля по местоположению центра оси между источниками направленного акустовибрационного воздействия, а направление трассы прокладки оптического кабеля по направлению перпендикуляра к этой оси. Технический результат – расширение области применения. 2 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для контроля герметичности каналов междугородной кабельной канализации (МКК) (1) волоконно-оптической линии передачи (ВОЛП). Сущность: в смотровом устройстве (2) к трубопроводу (3) подключают источник (7) вибрационного воздействия. Измеряют распределение сигналов акустической эмиссии вдоль трубопровода (3), используя оптическое волокно (5) кабеля (4) ВОЛП, проложенного в канале МКК (1), в качестве распределенного акустического сенсора. По параметрам сигналов акустической эмиссии определяют места негерметичности каналов МКК (1). Технический результат: повышение достоверности контроля, расширение области применения. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Технический результат: снижение погрешности определения трассы прокладки оптического кабеля, исключение необходимости выполнения измерений при отсутствии акусто-вибрационного воздействия. Сущность: над предполагаемым местоположением оптического кабеля на фиксированном расстоянии друг от друга размещают два работающих в противофазе источника направленного акусто-вибрационного воздействия. Перемещают их продольно-поперечно относительно предполагаемой трассы прокладки кабеля, не изменяя расстояния между ними так, чтобы соединяющая их ось была бы приблизительно перпендикулярна трассе прокладки кабеля. С помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна. Определяют трассу прокладки кабеля по местоположению центра оси между двумя работающими в противофазе источниками направленного акусто-вибрационного воздействия, соответствующему локальному минимуму, расположенному между двумя локальными максимумами. 2 ил.

Использование: для контроля наличия воды и/или ила в канале междугородной кабельной канализации волоконно-оптической линии передачи. Сущность изобретения заключается в том, что при контроле наличия воды и/или ила в канале междугородной кабельной канализации (МКК) волоконно-оптической линии передачи (ВОЛП) возбуждают распространяющуюся вдоль трубопровода акустическую волну, принимают ее в точке приема, параметры принимаемого сигнала сравнивают с параметрами эталонного сигнала и по их отличию оценивают наличие воды и/или ила в канале трубопровода, при этом возбуждают акустическую волну, распространяющуюся в трубопроводе МКК, с помощью источника импульсного вибрационного воздействия, подключенного к трубопроводу, используют оптическое волокно оптического кабеля ВОЛП, проложенного в канале МКК, в качестве распределенного акустического сенсора, с помощью измерительной системы, подключенной к этому оптическому волокну, измеряют распределенную вдоль МКК ВОЛП виброакустическую характеристику, при этом предварительно измеряют эталонную виброакустическую характеристику при условии отсутствия воды и/или ила в каналах МКК ВОЛП, а затем в процессе эксплуатации МКК ВОЛП контрольную виброакустическую характеристику, по виброакустическим характеристикам определяют скорости распространения акустических импульсов в канале трубопровода и по результатам сравнения оценок, полученных по контрольной и эталонной виброакустическим характеристикам, оценивают наличие воды и/или ила в канале трубопровода МКК ВОЛП. Технический результат: расширение области применения. 1 ил.

Изобретение может быть использовано для контроля глубины прокладки оптического кабеля, в том числе кабеля без проводящих элементов. Техническим результатом является контроль глубины прокладки оптического кабеля и расширение области применения способа. В способе создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристики обратного рассеяния оптического волокна, при этом источник направленного акустического воздействия размещают на поверхности над кабелем и измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e1, затем, сохраняя неизменным положение источника в горизонтальной плоскости, поднимают его над поверхностью на известное расстояние H, после чего измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e2, и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле. 1 ил.

Изобретение относится к области неразрушающего контроля прочности оптических волокон из плавленого кварцевого стекла. В заявленном способе контроля прочности оптического волокна в контролируемом объекте создают напряжение и измеряют акустической сигнал, по результатам обработки которого выделяют сигнал акустической эмиссии и оценивают характеристики контролируемого объекта. При этом объектом контроля является оптическое волокно, в котором создают напряжение с помощью источника акустического воздействия, расположенного вблизи оптического волокна, это же оптическое волокно с подключенной к нему измерительной системой используют как распределенный акустический датчик, с помощью которой измеряют акустической сигнал в зоне акустического воздействия, по результатам обработки которого выделяют сигнал акустической эмиссии и сигнал акустического воздействия. Причем при одних и тех же условиях измерения предварительно выполняют для образцового оптического волокна, прочность которого известна, а затем для контролируемого оптического волокна, после чего определяют прочность контролируемого оптического волокна по формуле (3), где σ0, σT - оценки прочности образцового и контролируемого оптического волокна соответственно. Wa0, WaT - оценки энергии акустической эмиссии, полученные в результате измерений на образцовом и контролируемом оптических волокнах для зоны акустического воздействия соответственно; Ws0, WsT - оценки энергии сигнала акустического воздействия, полученные в результате измерений на образцовом и контролируемом оптических волокнах для зоны акустического воздействия соответственно; n - коэффициент коррозии плавленого кварцевого стекла оптического волокна. Технический результат - расширение области применения. 1 ил.

Использование: для крепления оптических модулей оптического кабеля на кассете муфты при сращивании длин оптического кабеля. Сущность заявленного изобретения заключается в том, что в способе крепления оптических модулей оптического кабеля на кассете муфты при сращивании длин оптического кабеля концы соединяемых длин оптического кабеля разделывают по шаблону, в том числе по шаблону обрезают трубки оптических модулей так, что расстояние от места крепления оптических модулей на вводе в кассету до места обреза трубок оптических модулей в зависимости от конструкции кассеты составляет 4-8 мм, с оптических модулей и оптических волокон смывают гидрофобный гель, обезжиривают оптические волокна, оптические модули собирают в пучки, обматывают пучок оптических модулей в месте крепления оптических модулей в кассету несколькими слоями липкой полимерной ленты и закрепляют его на вводе в кассету на корпусе кассеты без натяжения двумя стяжками, при этом гидрофобный гель смывают как с внешней поверхности трубок оптического модуля, так и с их внутренней поверхности на расстоянии 1-2 мм от торца трубки оптического модуля, выдавливая гидрофобный гель из трубок оптических модулей, обезжиривают оптические волокна и внешнюю поверхность тру-бок оптических модулей на расстоянии 20-30 мм и их внутреннюю поверхность на расстоянии 1-2 мм от торца трубки оптического модуля, а также зачищают и обезжиривают поверхность кассета на вводе в месте крепления пучка оптических модулей, несколько слоев липкой полимерной ленты накладывают на пучок оптических модулей так, чтобы расстояние от нижнего края пучка до поверхности кассеты при закреплении оптических модулей на кассете составляло 1–2 мм, и после закрепления пучка оптических модулей на вводе в кассету на корпусе кассеты без натяжения двумя стяжками на участке около места обреза трубок оптических модулей в пучке накладывают силиконовый компаунд на расстоянии примерно на 5 мм над внешней поверхностью трубок оптических модулей и примерно на 5 мм над оптическими волокнами от торца трубок оптического модуля, равномерно распределяют силиконовый компаунд, в том числе между пучком оптических модулей и кассетой и внутри трубок оптических модулей на расстояние до 1–2 мм от их торца, через 15-20 минут после этого при полимеризации наружного слоя силиконового компаунда приступают к сращиванию оптических волокон. Технический результат: обеспечение возможности расширения области применения. 3 ил.

Изобретение относится к волоконно-оптической технике и предназначено для управления состоянием поляризации оптического излучения на выходе волоконно-оптического контроллера поляризации. Согласно способу управления волоконно-оптическим контроллером поляризации оптическое излучение подают на вход оптического волокна, в которое последовательно включены три двулучепреломляющих элемента волоконно-оптического контроллера поляризации, к каждому из которых прикладывают механическую нагрузку, которую регулируют сигналами, поступающими от блока управления, на вход блока управления подают сигнал обратной связи, который формируют, выделяя часть оптического излучения, проходящего через волоконно-оптический контроллер поляризации, для чего с выхода волоконно-оптического контроллера поляризации с помощью оптического ответвителя выделяют часть оптического излучения, эту выделенную часть оптического излучения подают на линейный оптический поляризатор, с выхода которого оптическое излучение подают на вход фотоприемника, в котором формируют сигнал обратной связи, который и подают на вход блока управления, где контролируют изменения состояния поляризации оптического излучения на выходе волоконно-оптического контроллера поляризации, и по результатам обработки сигналов, поступивших из цепи обратной связи, формируют сигналы, регулирующие механическую нагрузку, прикладываемую к двулучепреломляющим элементам волоконно-оптического контроллера поляризации так, чтобы обеспечить заданное состояние поляризации оптического излучения на выходе волоконно-оптического контроллера поляризации, при этом предварительно калибруют двулучепреломляющие элементы волоконно-оптического контроллера поляризации. 1 ил.

Изобретение относится к технике связи и может использоваться в системах связи по оптическим волокнам кабельных линий с низкоскоростной передачей данных. Технический результат состоит в расширении области применения. Для этого в способе симплексной передачи данных по оптическому волокну кабельной линии, заключающемуся в том, что оптическое излучение от источника когерентного оптического излучения вводят в оптическое волокно волоконно-оптического кабеля, воздействуют через волоконно-оптический кабель на оптическое волокно на локальном участке кабельной линии акустовибрационным сигналом от передатчика, модулируют оптическое излучение акустовибрационным сигналом и на дальнем конце принимают модулированное оптическое излучение фотоприемником, с помощью которого выделяют передаваемый сигнал, при этом воздействуют акустовибрационным сигналом с несущей. 1 ил.

Изобретение относится к волоконно-оптической технике и может быть использовано для построения бортовых сетей автомобилей, воздушных судов, судов водного транспорта, космических летательных аппаратов и других движимых объектов различного назначения. Согласно способу прокладки бортового волоконно-оптического кабеля длины бортовых волоконно-оптических кабелей терминируют с двух сторон и тестируют в заводских условиях, затем с одной стороны у этих длин отрезают терминированный конец кабеля, прокладывают эти терминированные с одного конца длины бортового волоконно-оптического кабеля на борту движимого объекта, после чего проложенные длины бортового волоконно-оптического кабеля терминируют со второго конца и тестируют, при этом сначала на борту движимого объекта по заданному маршруту прокладывают защитный трубопровод из металла, пластика или иного материала, в котором прокладывают пакет микротрубок, выполненных из металла, пластика или иного материала, после чего в каналы микротрубок способом пневмопрокладки или иным способом прокладывают терминированные с одного конца длины бортового волоконно-оптического кабеля, а затем проложенные длины бортового волоконно-оптического кабеля терминируют со второго конца и тестируют. Изобретение обеспечивает расширение области применения. 2 ил.
Изобретение относится к области контроля состояния несущих конструкций антенно-мачтовых сооружений (АМС), оперативного оповещения об изменениях их состояния, предупреждения чрезвычайных ситуаций и может быть использовано в автоматизированных системах мониторинга состояния антенно-мачтовых сооружений. Сущностью предлагаемого изобретения является расширение области применения. Эта сущность достигается тем, что согласно способу контроля состояния антенно-мачтовых сооружений, заключающемуся в установке на его мачте блока с трехосным акселерометром, установке на ней, через равные расстояния, блоков с трехосными акселерометрами, установке анемометра, установке в ее заданных сечениях датчиков напряженно-деформированного состояния, установке блока с трехосным акселерометром в ее фундамент и сейсмодатчика в грунт, сборе и обработке данных измерений, при этом дополнительно вдоль мачты укладывают сенсорные оптические волокна, параллельно с которыми укладывают оптические волокна с включенными в них волоконно-оптическими решетками Брэгга, методами Бриллюэновской оптической рефлектометрии и/или иными методами оптической рефлектометрии измеряют распределения напряженно-деформированных состояний элементов конструкции АМС вдоль сенсорных оптических волокон, калибруют полученные кривые распределений напряженно-деформированных состояний по результатам обработки оптических сигналов, отраженных на волоконно-оптических решетках Брэгга, и затем в режиме online по результатам обработки данных измерений оценивают состояние АМС и причины возможных отклонений параметров состояния АМС. 1 ил.

Изобретение относится к технике связи. Согласно способу компенсации нелинейных и дисперсионных искажений оптических сигналов в волоконно-оптических линиях связи на приеме принимаемый сигнал пропускают через последовательную цепочку из N нелинейных фазовых фильтров. Каждый из фильтров состоит из звена линейной фазовой фильтрации и звена нелинейной фазовой фильтрации. При этом для линейной фазовой фильтрации применяют аналоговый оптический фазовый фильтр, дисперсионная характеристика которого имеет знак и наклон, противоположные знаку и наклону дисперсионной характеристике рабочего оптического волокна волоконно-оптической линии связи, а для нелинейной фазовой фильтрации оптическое излучение, поступающее с выхода звена линейной фазовой фильтрации, далее на входе звена нелинейной фазовой фильтрации разделяют на три равные части. Одну из частей через первый оптический аттенюатор подают на первый вход первого сумматора оптических сигналов. Вторую часть через второй оптический аттенюатор подают на первый вход второго сумматора оптических сигналов. Третью часть вводят в оптическое волокно с повышенной нелинейностью, на выходе которого сдвигают фазу оптического излучения на π и подают на второй вход второго сумматора оптических сигналов. С помощью второго оптического аттенюатора согласовывают уровни оптического излучения на первом и втором входах второго сумматора оптических сигналов, суммируют во втором сумматоре оптических сигналов оптическое излучение с его первого и второго входов и подают полученное в результате суммирования оптическое излучение на второй вход первого сумматора оптических сигналов. С помощью первого оптического аттенюатора согласовывают уровни оптического излучения на первом и втором входах первого сумматора оптических сигналов, суммируют в первом сумматоре оптических сигналов оптическое излучение с его первого и второго входов и подают полученное в результате суммирования оптическое излучение на выход звена нелинейной фазовой фильтрации. Технический результат заключается в сокращении времени обработки оптических сигналов и в снижении требований к вычислительным ресурсам на приеме волоконно-оптической линии передачи. 1 ил.

Изобретение относится к технике связи и может быть использовано для компенсации искажений в волоконно-оптических линиях передачи сетей связи. Технический результат состоит в расширении области применения. Для этого по концам усилительного участка линии передачи последовательно оптическим волокнам линии передачи включают компенсирующие модули, при этом сначала поступающий из оптического волокна усилительного участка волоконно-оптической линии передачи оптический сигнал усиливают и подают на вход компенсирующего модуля, в котором сначала компенсируют хроматическую дисперсию, накопленную в оптическом волокне на усилительном участке, а затем разделяют оптическое излучение на две части, первую часть пропускают по оптическому волокну с повышенной нелинейностью, на выходе которого компенсируют хроматическую дисперсию, накопленную на этом оптическом волокне, после чего производят поворот фазы оптического сигнала на 180° и суммируют его с оптическим сигналом второй части оптического излучения, которую предварительно пропускают через аттенюатор, с помощью которого согласовывают уровни суммируемых оптических сигналов, затем результат суммирования подают на выход компенсирующего модуля, усиливают и вводят в оптическое волокно следующего усилительного участка, при этом затухание оптического аттенюатора, усиление оптического сигнала, поступающего на вход компенсирующего модуля, и параметры оптического волокна с повышенной нелинейностью и оптического усилителя выбирают так, чтобы компенсировать нелинейные искажения в оптическом волокне усилительного участка волоконно-оптической линии передачи. 2 ил.

Изобретение относится к технике связи и может быть использовано для модового мультиплексирования и увеличения пропускной способности волоконно-оптических линий передачи сетей связи. Технический результат состоит в расширении области применения. Для этого в модовом мультиплексоре на первом этапе фундаментальные моды N одномодовых оптических волокон преобразуют в пространственные вихревые моды, переносящие различный орбитальный угловой момент (OAM), которые на втором этапе преобразуют в N ортогональных собственных мод маломодового оптического волокна, а в модовом демультиплексоре на первом этапе N ортогональных собственных мод маломодового оптического волокна преобразуют в пространственные вихревые моды, переносящие различный орбитальный угловой момент (OAM), которые на втором этапе преобразуют в фундаментальные моды N одномодовых оптических волокон. 1 ил.

Изобретение относится к технике связи, в частности к способам передачи информации по линиям связи, а именно к низкоскоростной передаче данных по оптическим волокнам кабельных линий. Технический результат состоит в расширении области применения. Для этого в способе симплексной передачи данных по оптическому волокну используют двумодовое оптическое волокно, на выходе оптического волокна среднее время задержки между двумя пространственными направляемыми модами, которые поддерживает двумодовое оптическое волокно, устанавливают в выбранном диапазоне, после чего подают обе эти моды на вход квадратичного детектора, на выходе которого выделяют полезный сигнал, причем диапазон изменений сред-него времени задержки между двумя пространственными направляемыми мода-ми, которые поддерживает двумодовое оптическое волокно, выбирают предварительно, варьируя среднее время задержки между этими модами на выходе двумодового оптического волокна, как диапазон изменений среднего времени задержки между этими модами на выходе двумодового оптического волокна, в котором отношение сигнал/помеха превышает заданный порог. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в модуле оптического кабеля. В способе измерения избыточной длины оптического волокна в модуле оптического кабеля измеряют и запоминают поляризационную характеристику обратного рассеяния оптического волокна, измеренную характеристику обратного рассеяния оптического волокна разбивают на одинаковые участки, для каждого k-того участка по этим характеристикам определяют оценку длины биений оптического волокна и рассчитывают избыточную длину оптического волокна в модуле оптического кабеля на k-том участке , при этом избыточную длину оптического волокна в модуле оптического кабеля рассчитывают по формуле: где rm - внутренний радиус модульной трубки;rF - внешний радиус оптического волокна по защитному покрытию;λ0 - длина волны, на которой измеряли поляризационные характеристики обратного рассеяния оптического волокна;LBk - оценка длины биений оптического волокна на k-том участке. Технический результат – расширение области применения. 1 ил.

Изобретение относится к области обеспечения информационной безопасности переговоров в выделенных помещениях путем нейтрализации каналов утечки речевой информации через волоконно-оптические линии и может быть использовано в системах защиты конфиденциальной речевой информации. Технический результат состоит в расширении области применения. Для этого в способе защиты от утечки речевой информации через волоконно-оптические линии, заключающемся в том, что в волоконно-оптический канал передачи информации вводят оптическое излучение, модулированное на акустических частотах с шумовым или другим специальным спектром, при этом по концам участка, ограничивающего длину волоконно-оптической линии, проходящую вблизи защищаемого помещения, в оптические волокна волоконно-оптической линии включают устройства ввода/вывода, с помощью которых распространяющееся в обратном направлении оптическое излучение выводят из оптического волокна, модулируют сигналом на акустических частотах с шумовым или другим специальным спектром, после чего это оптическое излучение через устройства ввода/вывода вводят в оптическое волокно и передают в обратном направлении. 1 ил.

Изобретение относится к технике связи и может быть использовано для обеспечения информационной безопасности переговоров в выделенных помещениях от угроз утечки акустической (речевой) информации через волоконно-оптические коммуникации. Технический результат состоит в повышении защиты конфиденциальной речевой информации. Для этого в способе обнаружения акустооптоволоконного канала утечки речевой информации через оптические волокна кабельных линий и защиты от утечки речевой информации через оптические волокна в оптическом волокне регистрируют все световые потоки и проводят анализ возможности подслушивания, при этом одним из признаков утечки акустической (речевой) информации служит наличие в распространяющемся по оптическому волокну оптическом излучении копий сигналов с задержкой более 50 мкс, а при обнаружении копий их удаляют. 1 ил.

Изобретение относится к области обеспечения информационной безопасности переговоров в выделенных помещениях путем нейтрализации каналов утечки речевой информации через волоконно-оптические линии и может быть использовано в системах защиты конфиденциальной речевой информации. Технический результат состоит в расширении области применения. Для этого в способе защиты от утечки речевой информации через волоконно-оптические линии, заключающемся в том, что на волоконно-оптической линии создают участок, где осуществляют воздействие на оптоволокно, приводящее к модуляции проходящих через него в обоих направлениях потоков света на частотах акустических шумов различного спектра или специально обработанной речи, при этом осуществляют акустовибрационное воздействие на оптоволокно по всей длине защищаемого помещения. 1 ил.

Изобретение относится к технике связи, в частности к способам передачи информации по линиям связи, а именно к низкоскоростной передаче данных по оптическим волокнам кабельных линий.Технический результат состоит в расширении области применения. Для этогов способе симплексной передачи данных по оптическому волокну кабельной линии, заключающемуся в том, что оптическое излучение от источника когерентного оптического излучения вводят в оптическое волокно волоконно-оптического кабеля, воздействуют через волоконно-оптический кабель на оптическое волокно на локальном участке кабельной линии акустовибрационным сигналом от передатчика, расположенного на некотором расстоянии от волоконно-оптического кабеля, в результате чего модулируют по фазе распространяющееся в оптическом волокне оптическое излучение виброакустическим сигналом и принимают модулированное оптическое излучение фазочувствительным когерентным приемником, с помощью которого выделяют передаваемый сигнал, при этом оптическое излучение от источника когерентного оптического излучения перед вводом в оптическое волокно модулируют по фазе сигналом с постоянным периодом, а распространяющийся по оптическому волокну сигнал принимают фазочувствительным когерентным приемником на дальнем конце кабельной линии. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для дистанционного поиска трасс подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте. Способ дистанционного поиска местоположения подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте дополнительно содержит этапы, на которых к приемнику подключают трехкоординатную магнитную антенну, приемник с трехкоординатной антенной размещают на беспилотном летающем аппарате (БПЛА), трехкоординатную антенну стабилизируют относительно поверхности земли, управляемый с центральной станции БПЛА перемещают по заданной траектории на заданных высотах над поверхностью земли над участком, в пределах которого предположительно проложено подземное сооружение, определяют координаты БПЛА и при известных координатах с помощью приемника измеряют уровни составляющих магнитного поля, данные с результатами измерений передают на центральную станцию, на которой их обрабатывают и строят распределения уровней компонент магнитного поля по поверхностям над подземным сооружением, получают распределения уровней компонент магнитного поля по поверхностям над подземным сооружением, при этом распределения получают не менее чем для двух значений высоты над поверхностью земли, а затем по данным распределениям определяют местоположение подземной коммуникации, ее поперечного размера и глубины залегания в грунте. Технический результат – повышение точности определения местоположения подземных коммуникаций. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения трассы прокладки и локализации мест повреждений кабелей со сложной конфигурацией прокладки. Сущность изобретения заключается в том, что способ определения трассы прокладки и локализации места повреждения кабеля содержит этапы, на которых все датчики компонент магнитного поля разбивают на группы, каждую группу датчиков компонент магнитного поля размещают с заданным интервалом вдоль линий, перпендикулярных направлению перемещения устройства, с заданными расстояниями между линиями, на которых размещают группы датчиков компонент магнитного поля, причем датчики компонент магнитного поля каждой группы смещают вдоль координаты, перпендикулярной направлению движения устройства, относительно датчиков компонент магнитного поля других групп на заданные расстояния, по результатам измерений компонент магнитного поля всеми группами датчиков компонент магнитного поля с учетом расстояний между ними и данных отсчета курвиметра строят двумерные функции распределений уровней компонент магнитного поля на поверхности над кабелем в выделенной прямоугольной области, по местоположению локальных экстремумов которых определяют трассу и место повреждения кабеля. Технический результат – улучшение разрешающей способности, расширение области применения способа определения трассы прокладки и локализации места повреждения кабеля. 2 ил.

Изобретение относится к измерительной технике, а именно к способу поиска трассы и определения места повреждения оптического кабеля. В оптическое волокно вводят модулированный зондирующий сигнал, над кабелем продольно-поперечно относительно предполагаемой трассы кабеля перемещают источник направленного вибрационного воздействия. По отдельному каналу связи управляют перемещениями источника направленного вибрационного воздействия и уровнем вибрационного воздействия. Предварительно с помощью импульсного оптического рефлектометра, источник оптического излучения которого имеет длину когерентности меньше длины зондирующего импульса, измеряют характеристику обратного рассеяния оптического волокна, затем с помощью фазочувствительного импульсного оптического рефлектометра, у которого длина когерентности оптического источника излучения больше длительности зондирующего импульса, измеряют характеристику обратного рассеяния того же волокна при отсутствии вибрационного воздействия, затем производят вибрационное воздействие на кабель с поверхности земли, перемещая источник направленного вибрационного воздействия над предполагаемой трассой. С помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния того же волокна при вибрационном воздействии и совместно обрабатывают характеристики обратного рассеяния, измеренные импульсными оптическими рефлектометрами до начала и при вибрационном воздействии. Определяют трассу прокладки кабеля по местоположению источника направленного вибрационного воздействия, при котором разница между характеристиками обратного рассеяния в месте вибрационного воздействия максимальна. Место повреждения оптического волокна кабеля определяют по местоположению источника направленного вибрационного воздействия, при котором на характеристиках обратного рассеяния оптического волокна участки, на которых идентифицируют повреждение и вибрационное воздействие, совпадают. Технический результат заключается в расширении области применения. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для дистанционного определения местоположения подземных коммуникаций (трубопроводов, кабелей и т.п.), их поперечного размера и глубины залегания в грунте. Технический результат: расширение области применения. Сущность: формируют рой беспилотных летательных аппаратов (БПЛА), соединенных каналами связи между собой и с центральной станцией управления. Через каналы связи управляют траекторией полета БПЛА, взаимным расположением БПЛА и высотой полета БПЛА над поверхностью земли. На нескольких БПЛА помещают передатчики с передающими антеннами. На каждом из остальных БПЛА помещают приемники с приемными антеннами для приема компонент электромагнитного поля. С БПЛА с передатчиком и передающей антенной 4 генерируют первичное электромагнитное поле. На приемных БПЛА с помощью приемников с приемными антеннами принимают сигналы первичного электромагнитного поля и вторичного результирующего электромагнитного поля, возникающего в результате взаимодействия первичного поля с подземными проводящими объектами, над которыми перемещают рой БПЛА. Данные координат БПЛА и принимаемые приемниками сигналы компонент электромагнитного поля по каналам связи передают на центральную станцию управления. По результатам совместной обработки принимаемых сигналов компонент электромагнитного поля и данных координат БПЛА определяют местоположение подземных коммуникаций, их поперечный размер и глубину залегания в грунте. В процессе поиска БПЛА в рое под управлением с центральной станции управления могут перестраиваться, изменяя направление, скорость, высоту и взаимное расположение БПЛА в рое для обеспечения оптимальных условий поиска и безопасности полета. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для дистанционного определения местоположения подземных коммуникаций (трубопроводов, кабелей и т.п.), их поперечного размера и глубины залегания в грунте. Способ применения роя беспилотных летательных аппаратов для дистанционного определения местоположения подземных коммуникаций, их поперечного размера и глубины залегания в грунте заключается в том, что на одном конце подземной коммуникации к ее цепи «проводник-земля» подключают генератор низких частот, устройство с датчиками компонент магнитного поля перемещают над поверхностью земли над участком, в пределах которого предположительно проложена подземная коммуникация. Затем определяют координаты устройства с датчиками компонент магнитного поля и при данных координатах измеряют уровни компонент магнитного поля, по результатам измерений строят двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземной коммуникацией. При этом используют N устройств с датчиками компонент магнитного поля при N≥4, каждое из которых устанавливают на один из N беспилотных летательных аппаратов (БПЛА), образующих рой БПЛА, управляют этим роем БПЛА с центральной станции, под управлением которой перемещают рой БПЛА по заданной траектории с заданным взаимным расположением БПЛА по вертикали и горизонтали над поверхностью земли над участком, в пределах которого предположительно проложена подземная коммуникация. Во время полета роя БПЛА фиксируют координаты каждого БПЛА, при которых по каналам связи с каждого БПЛА передают на центральную станцию данные измерений уровней компонент магнитного поля, по результатам измерений уровней компонент магнитного поля и данных о координатах БПЛА строят двумерные функции распределений уровней компонент магнитного поля над поверхностью над подземной коммуникацией для более чем двух значений высоты над поверхностью земли, по результатам обработки которых определяют местоположения подземных коммуникаций, их поперечный размер и глубину залегания в грунте. Техническим результатом заявленного изобретения является расширение области применения БПЛА. 1 ил.

Изобретение относится к радиотехнике и технике КВЧ и СВЧ и может быть использовано для формирования в пространстве структуры с киральными свойствами, в частности малотражающей экранирующей структуры. Сущностью изобретения является расширение области применения. Эта сущность достигается тем, что согласно способу формирования киральной структуры киральные элементы с заданной формой и размерами размещают в пространстве по заданной схеме с заданной ориентацией в пространстве, при этом формируют рой беспилотных летательных аппаратов (БПЛА), на каждом из которых закрепляют киральный элемент, управляют роем БПЛА с центральной станции, при этом несущую частоту радиосигналов управления выбирают за пределами рабочего диапазона киральной структуры, под управлением с центральной станции размещают рой БПЛА в пространстве с заданными координатами, при этом размещают БПЛА в пространстве по заданной схеме и ориентируют их в пространстве так, чтобы обеспечить заданное положение в пространстве кирального элемента. 1 ил.

Изобретение относится к антенной технике и может быть использовано для оперативного развертывания фазированной антенной решетки. В некотором пространстве размещают блоки автономного питания, приемо-передающие блоки и элементы фазированной антенной решетки, соединяют отдельные блоки и элементы с центральной станцией каналами связи, по которым передают рабочие сигналы и сигналы управления, причем рабочие сигналы и сигналы управления передают по разным каналам связи. При этом формируют рой беспилотных летательных аппаратов (БПЛА). По одному блоку автономного питания и одному приемо-передающему блоку размещают на одном БПЛА, на котором закрепляют элемент фазированной антенной решетки. Соединяют блоки и элементы на БПЛА с центральной станцией и между собой каналами связи, по которым управляют роем БПЛА. Размещают БПЛА и ориентируют их в пространстве так, чтобы обеспечить заданную диаграмму направленности. При этом для управления БПЛА и фазированной антенной решеткой используют каналы радиосвязи, а для передачи рабочих сигналов либо каналы радиосвязи, либо каналы связи по отдельным кабелям, которыми в этом случае элементы фазированной антенной решетки на каждом БПЛА соединяют с центральной станцией. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения трассы прокладки и локализации мест повреждений кабелей со сложной конфигурацией прокладки и/или расположенных в многопроводной системе в условиях сложной электромагнитной обстановки. Технический результат: расширение области применения. Сущность: по кабелю передают низкочастотный электромагнитный сигнал. На устройстве, способном перемещаться по поверхности только по прямой и в одном направлении, закрепляют датчики компонент магнитного поля и курвиметр. На поверхности над кабелем выделяют прямоугольную область и перемещают устройство параллельно одной из сторон этой прямоугольной области вдоль всей длины этой стороны. С помощью датчиков магнитного поля измеряют уровни компонент магнитного поля на высоте h по поверхности над кабелем, а с помощью курвиметра – расстояние, которое прошло устройство. Запоминают результаты измерений как функции уровней компонент магнитного поля от расстояния. Повторяют эту операцию многократно для других выделенных прямоугольных областей на поверхности над кабелем. Затем измеряют распределение уровней компонент магнитного поля на высоте Н такой, чтобы выполнялось условие Н-h>0.5 м. Определяют разность между распределениями уровней магнитных полей на указанных высотах. По результатам строят двумерные функции распределений разности уровней компонент магнитного поля на поверхности над кабелем. По местоположению локальных экстремумов двумерной функции распределения этой разности по поверхности над кабелем определяют трассу и место повреждения кабеля. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в оптическом модуле оптического кабеля. Согласно способу измерения избыточной длины оптического волокна в модульной трубке оптического кабеля характеристики обратного релеевского рассеяния оптического волокна оптического кабеля модульной конструкции измеряют по крайней мере при двух значениях температуры среды, окружающей кабель, в том числе, при низкой отрицательной температуре. По данным характеристикам определяют оценки избыточной длины оптического волокна в модульной трубке оптического кабеля на регулярных участках при низкой отрицательной температуре, при этом характеристики обратного релеевского рассеяния оптического волокна оптического кабеля модульной конструкции измеряют при положительной и при низкой отрицательной температуре среды, окружающей кабель, а значение избыточной длины оптического волокна в модульной трубке оптического кабеля на регулярном участке при низкой отрицательной температуре, при которой были выполнены измерения, рассчитывают по формуле: ,где α(Т0) - коэффициент затухания оптического волокна, определенный для регулярного участка по характеристике обратного релеевского рассеяния, измеренной при положительной температуре; α(Ti) - коэффициент затухания оптического волокна, определенный для регулярного участка по характеристике обратного релеевского рассеяния, измеренной при i-й низкой отрицательной температуре; В - параметр, постоянный для заданной конструкции кабеля на длине волны, на которой были выполнены измерения. Технический результат - расширение области применения и уменьшение погрешности измерения избыточной длины оптического волокна в модульной трубке оптического кабеля. 1 ил.

Изобретение относится к области электротехники. Согласно способу увеличения срока службы оптического кабеля строительную длину оптического кабеля подвергают воздействию температурных циклов, для чего барабан со строительной длиной оптического кабеля помещают в климатическую камеру, в которой после этого выполняют несколько температурных циклов, причем сначала в начале каждого цикла в климатической камере устанавливают заданную положительную температуру, затем в течение цикла последовательно понижают температуру в климатической камере до заданных отрицательных значений, затем последовательно повышают температуру в климатической камере до заданных положительных значений, после чего завершают цикл, при этом переход от одного заданного значения температуры к другому осуществляют в течение заданного интервала времени и каждое заданное значение температуры устанавливают в климатической камере на заданный интервал времени. Изобретение обеспечивает увеличение срока службы оптического кабеля модульной конструкции. 2 ил.

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего лазера разделяют на две части. Первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно. Из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий из испытуемого оптического волокна. На выходе балансного фотоприемника с помощью фильтра выделяют низкочастотную компоненту сигнала, которую подают на вход блока управления и обработки. Изменяют частоту опорного оптического сигнала с шагом менее 100 МГц и повторяют измерения для каждого шага при каждом значении частоты, затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения. Получают распределение сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна. Для формирования опорного оптического сигнала вторую часть непрерывного оптического излучения задающего лазера вводят в опорное оптическое волокно, из сигнала обратного рассеяния, поступающего из опорного оптического волокна с помощью оптического фильтра, выделяют сигнал обратного рассеяния Мандельштама-Бриллюэна, усиливают его, а затем модулируют с одной боковой полосой сигналом радиочастоты, которую изменяют с заданным шагом в диапазоне до нескольких сотен мегагерц. Далее выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, а сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоте модулирующего радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение. Техническим результатом изобретения является расширение области применения. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в модуле оптического кабеля вдоль длины кабеля. В заявленном способе измерения распределения избыточной длины оптического волокна в модуле оптического кабеля предварительно измеряют характеристики обратного рассеяния оптического волокна на двух длинах волн. По данным характеристикам определяют распределения коэффициентов затухания оптического волокна вдоль кабеля α(z, λ), где z - расстояние от ближнего конца по длине кабеля, λ - длина волны, на которой была измерена характеристика обратного рассеяния оптического волокна, затем в каждой точке z по длине кабеля рассчитывают разность между коэффициентами затухания оптического волокна, измеренными на разных длинах волн Δα(z). После чего рассчитывают оценки радиусов изгиба оптического волокна в модуле оптического кабеля вдоль длины кабеля по формуле: R(z)=R0-Δαij(z)/η(λi) (1), где R0 и η(λ) - параметры оптического кабеля, и по распределению радиусов изгиба оптического волокна в модуле оптического кабеля определяют распределение избыточной длины волокна в модуле оптического кабеля вдоль длины кабеля. При этом измерения характеристик обратного рассеяния оптического волокна выполняют при низкой отрицательной температуре после того, как оптический кабель находился при данной температуре некоторый заданный интервал времени, по распределению радиусов изгиба оптического волокна в модуле оптического кабеля определяют распределение избыточной длины оптического волокна в модуле оптического кабеля вдоль длины кабеля EFL(z, Tm) при температуре, при которой были выполнены измерения, после чего определяют распределение избыточной длины оптического волокна в модуле оптического кабеля вдоль длины кабеля при заданной температуре Τ по формуле: EFL(z, T)=EFL(z, Tm)-(T-Tm)⋅ ΔεT (2), где ΔεT - разность коэффициентов линейного расширения материала модуля и кварцевого стекла. Технический результат – снижение погрешности измерений коэффициентов затухания оптического волокна на изгибах и, как следствие, уменьшение погрешности измерений избыточной длины оптического волокна в модуле оптического кабеля по сравнению с прототипом. 1 ил.

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим волокном с базовыми станциями, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, при этом базовые станции включают в оптическое волокно последовательно, модулированное оптическое излучение из оптического волокна подают на вход полупроводникового оптического усилителя, модулированное оптическое излучение на выходе полупроводникового оптического усилителя разделяют на две части, первую часть вводят в оптическое волокно, которое подключено к другой базовой станции, вторую часть подают на отражающий элемент, отраженное оптическое излучение подают обратно на выход полупроводникового оптического усилителя, модулируют его в полупроводниковом оптическом усилителе принимаемым по радиоканалу от абонентского комплекта с помощью антенны базовой станции радиосигналом обратного канала, на входе полупроводникового оптического усилителя это модулированное отраженное оптическое излучение разделяют на две части, его первую часть подают на фотоприемник базовой станции, где преобразуют его в радиосигнал, выделяют из него радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентскому комплекту, а вторую часть модулированного отраженного оптического излучения подают в оптическое волокно, которое соединено с центральной станцией, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал, из которого выделяют радиосигнал обратного канала. 3 ил.

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего лазера разделяют на две части. Первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно. Из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника. На другой вход балансного приемника подают сигнал обратного рассеяния, поступающий обратно из испытуемого оптического волокна, причем измерения выполняют при двух ортогональных состояниях поляризации опорного оптического сигнала. Электрический сигнал с выхода балансного фотоприемника подают на один вход смесителя, на другой вход которого подают радиочастотный сигнал. Из комплексного сигнала на выходе смесителя выделяют низкочастотный сигнал биений и подают на вход блока управления и обработки, где результаты измерений запоминают для каждого шага при каждом значении частоты. Затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения. Сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоте радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение. Техническим результатом изобретения является расширение области применения. 1 ил.

Изобретение относится к области электротехники и может быть использовано для выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами. Согласно способу выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами строительную длину оптического кабеля на барабане помещают в климатическую камеру и подвергают воздействию температурных циклов, в процессе выполнения каждого температурного цикла сначала температуру последовательно понижают до заданных значений отрицательной температуры, а затем последовательно повышают до заданных значений положительной температуры, после чего цикл завершают, при этом каждое заданное значение температуры устанавливают на заданный интервал времени. Изобретение обеспечивает расширение области применения. 1 ил.

 


Наверх