Патенты автора Горшков Борис Георгиевич (RU)

Изобретение относится к информационным технологиям, а именно к системам сбора информации. Технический результат заключается в обеспечении сбора информации от множества источников с использованием одного оптического волокна без непосредственного доступа к волокну (без разделки оптического кабеля). Способ сбора информации от пространственно разнесенных источников информации (датчиков) включает в себя подключение волоконно-оптического кабеля к когерентному рефлектометру, установку на оптический кабель источников звуковых волн (или вибрации), формирование электрического сигнала, соответствующего передаваемой информации от каждого датчика, подачу этого сигнала на указанный источник звуковых волн (или вибрации), распознавание упомянутых звуковых колебаний (или вибраций) когерентным рефлектометром. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к информационно-измерительным системам на основе волоконной оптики и позволяет проводить вибронезависимый мониторинг физических воздействий на протяженных, площадных и трехмерных объектах. Устройство и способ для реализации заявленного устройства содержит источник широкополосного оптического излучения, генерирующий оптические импульсы, перестраиваемый узкополосный спектральный фильтр с полосой пропускания от 0,1 до 1 нм, осуществляющий перестраиваемую спектральную фильтрацию излучения, средство организации рефлектометрического канала, при помощи которого осуществляется ввод излучения в контролируемое оптическое волокно, само контролируемое оптическое волокно. При этом также содержит фотоприемное устройство, регистрирующее обратно рассеянное в волокне излучение, аналого-цифровой преобразователь и вычислитель, выполняющие функции разделения зарегистрированного сигнала по каналам дальности, выделения спектров для каждого из каналов дальности, сопоставления измерительных спектров с опорными спектрами и определения на этой основе величины внешних воздействий. Технический результат - повышение точности измерений величины квазистационарных воздействий на объект мониторинга в условиях вибраций и иных динамических возмущений 2 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть применено для измерения нагрузки на колеса и оси транспортных средств в движении. На основании указанных измерений может вычисляться суммарный вес транспортного средства. Устройство содержит упругодеформируемую горизонтально расположенную плиту, выполненную с возможностью восприятия нагрузки своей верхней поверхностью в результате действия измеряемой силы веса. Распределенный чувствительный элемент в виде оптического волокна жестко связан с нижней поверхностью упругодеформируемой горизонтально расположенной плиты. Оптический прибор выполнен с возможностью измерения удлинения указанного оптического волокна в результате деформации изгиба упругодеформируемой горизонтально расположенной плиты по приложении измеряемой силы веса к верхней ее поверхности. Оптический прибор представляет собой дальномер оптического диапазона - лидар, выполненный с возможностью измерения временной задержки распространения излучения по указанному оптическому волокну пропорционально приложенной измеряемой силе веса к верхней поверхности упругодеформируемой горизонтальной плиты. Оптическое волокно жестко связано с нижней поверхностью упругодеформируемой горизонтальной плиты с помощью клея и расположено в виде змейки. Технический результат, наблюдаемый при реализации заявленного устройства, заключается в обеспечении надежности и долговечности устройства за счет упрощения конструкции при одновременном повышении точности измерений. 3 з.п. ф-лы, 2 ил.
Изобретение относится к нефтяной и газовой промышленности и может быть применено для геофизических исследований скважин, имеющих горизонтальные участки. Способ включает операции оснащения гибкой насосно-компрессорной трубы (ГНКТ) кабелем на всем ее протяжении, оснащения окончания ГНКТ управляемым якорем с разрывным элементом или муфтой с нормированным усилием расстыковки, связывающей ГНКТ с якорем, спуска ГНКТ с кабелем в скважину до целевой отметки, срабатывания якоря, извлечения ГНКТ из скважины с разрывом указанного элемента или расстыковкой указанной муфты. При этом скважина остается оснащенной геофизическим кабелем, а ГНКТ может быть использована в иных целях. За счет срыва якоря при натяжении указанного кабеля возможно его извлечение по окончании исследований или процесса мониторинга. Технический результат заключается в обеспечении возможности оснащения горизонтальной скважины геофизическим кабелем. 3 з.п. ф-лы.

Изобретение относится к измерительной технике и может применяться в качестве основы системы контроля технического состояния конструкций. Способ включает организацию рефлектометрической оптической схемы. Генерируют последовательность импульсов излучения или частотно-модулированного оптического излучения. Вводят указанное излучение посредством рефлектометрической оптической схемы в оптическое волокно. Перед фотоприемом рассеянного в обратном направлении излучения осуществляют спектральную фильтрацию рассеянного в обратном направлении излучения с выделением комбинационного излучения. Строят рефлектограмму. О величине механической деформации участков оптического волокна судят по интенсивности рассеянного в обратном направлении этими участками комбинационного излучения. Используют оптическое волокно, имеющее локальные участки, заведомо не испытывающие продольных механических деформаций, с известными координатами по длине указанного оптического волокна в качестве реперов. Организуют опорный канал, в качестве которого используют рефлектограмму, построенную на основе дополнительной регистрации интенсивности рэлеевского рассеяния излучения. Помимо распределения механических деформаций по длине оптического волокна дополнительно измеряют температурное распределение по отношению интенсивностей антистоксовой и стоксовой компонент комбинационного рассеяния излучения. Технический результат - упрощение технологии измерения распределения механических деформаций по длине оптического волокна. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области термометрии и может применяться для решения широкого круга задач в нефтяной и газовой промышленности. Располагают чувствительное оптическое волокно в тепловом контакте с объектом, организуют рефлектометрическую измерительную схему, содержащую оптический путь обратно рассеянного излучения, Подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного антистоксова рамановского сигнала, к фотоприемнику. Генерируют оптические импульсы и вводят их в чувствительное оптическое волокно. Осуществляют фотоприем, оцифровку и цифровое накопление сигнала обратно рассеянного антистоксова рамановского излучения до достижения заданного отношения сигнал/шум. Затем подключают оптический путь обратно рассеянного излучения через оптический фильтр, выполненный с возможностью селекции обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения, к фотоприемнику. Генерируют оптические импульсы и вводят их в чувствительное оптическое волокно. Осуществляют фотоприем, оцифровку и цифровое накопление обратно рассеянного опорного сигнала стоксова рамановского или рэлеевского излучения до достижения заданного отношения сигнал/шум. Температурное распределение в объекте определяют расчетом исходя из отношения обратно рассеянных сигнала антистоксова рамановского излучения и опорного сигнала стоксова рамановского или рэлеевского излучения, после чего осуществляют архивацию полученного результата или передачу его вовне. Также предложено устройство для реализации указанного выше способа определения температурного распределения в объекте. Технический результат - уменьшение влияния на точность измерений различия характеристик двух фотоприемных каналов при достаточном для регистрации уровне мощности двух принимаемых сигналов - измерительного и опорного. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к информационно-измерительным системам и может применяться для вибромониторинга. Оптическое волокно размещают в механической связи с контролируемым объектом, генерируют лазерный импульс и вводят его в волокно. Осуществляют фотоприем рассеянного в обратном направлении оптического излучения с получением рефлектограммы. Извлекают информацию о воздействии на волокно из фазы гармоники частотой, равной разности частот, содержащейся в рефлектограмме. Устройство, реализующее способ, содержит одномодовое оптическое волокно, импульсный лазер, связанный с волокном через последовательно установленные и связанные между собой фазовый модулятор и ответвитель. Блок приема и обработки рассеянного в обратном направлении излучения выполнен в виде вычислителя, связанного с ответвителем через последовательно установленные и соединенные между собой аналого-цифровой преобразователь, фазовый детектор и фотоприемник. Драйвер связан с фазовым модулятором и синхронизирован с импульсным лазером. Технический результат - снижение вероятности ложных срабатываний при обнаружении вибрационных воздействий и/или повышении вероятности правильного обнаружения таких воздействий. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к информационно-измерительным системам и может применяться для вибромониторинга протяженных, площадных или объемных объектов. Оптическое волокно размещают в механической связи с контролируемым объектом и генерируют оптические импульсы длительностью T. Осуществляют фотоприем рассеянного в обратном направлении оптического излучения и разделяют сигналы фототока по виртуальным каналам дальности. Определяют значения амплитуды сигналов фототока и осуществляют их коррекцию с учетом выявленного уровня шума. Устройство, реализующее способ, содержит оптическое волокно, импульсный источник лазерного излучения, ответвитель или циркулятор с оптическим волокном. Блок оценки уровня шума в каждом из сигналов и последующей коррекции амплитуды выполнен в виде подключенного к ответвителю или циркулятору фотоприемника, связанного с вычислителем через аналого-цифровой преобразователь сигнала фототока. Технический результат - повышение достоверности результатов мониторинга путем выравнивания чувствительности по виртуальным каналам дальности, что выражается в снижении вероятности ложных срабатываний при обнаружении вибрационных воздействий и/или повышении вероятности правильного обнаружения таких воздействий. 2 н. и 9 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано для распределенного измерения температуры в нефтяной, газовой промышленности, в электроэнергетике и так далее. Согласно заявленному способу регистрируют обратно рассеянное излучение на длине волны антистоксова комбинационного рассеяния с определением интенсивности антистоксова рассеяния излучения Ia. В процессе регистрации обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния дополнительно определяют интенсивность рэлеевского рассеяния излучения Ip от указанного импульсного оптического излучения. Последовательно во времени при генерировании вторым лазером импульсного оптического излучения проводят регистрацию обратно рассеянного излучения на длине волны антистоксова комбинационного рассеяния с определением интенсивности рэлеевского рассеяния излучения Ipa. Температуру Т определяют из отношения интенсивности антистоксова рассеяния излучения к интенсивности рэлеевского рассеяния излучения Ia/Ip, скорректированного с учетом интенсивности рэлеевского рассеяния излучения Ipa с условием, что температура Т пропорциональна математическому выражению. Технический результат - повышение чувствительности и точности измерений распределенного измерителя температуры при одновременном упрощении его конструкции. 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к системам контроля и управления движением воздушных судов. Способ наблюдения за наземным движением подвижных объектов в пределах установленной зоны аэродрома, представленной взлетно-посадочными полосами, рулежными дорожками и местами стоянки воздушных судов и обслуживающей техники, включает использование подключенного к когерентному оптическому рефлектометру чувствительного волоконно-оптического кабеля в качестве виртуальных датчиков вибраций. Проводят привязку координат топографических точек на площади поверхности в пределах установленной зоны аэродрома к местоположению виртуальных датчиков вибраций. В процессе наблюдения измеряют амплитуды и фазы регистрируемых вибраций и проводят совместную обработку полученной информации. Система для реализации способа включает чувствительный волоконно-оптический кабель, подключенный к когерентному оптическому рефлектометру и расположенный в пределах установленной зоны аэродрома вдоль взлетно-посадочных полос, рулежных дорожек и мест стоянок воздушных судов и/или обслуживающей техники. Расположение кабеля в плане повторяет конфигурацию расположения взлетно-посадочных полос, рулежных дорожек и мест стоянок воздушных судов и обслуживающей техники. Достигается расширение функциональных возможностей. 2 н. и 14 з.п. ф-лы, 4 ил.

Изобретение относится к информационно-измерительной технике и может быть использовано для вибродиагностики сооружений, обнаружения несанкционированных воздействий на объекты, охраны периметров и обнаружения утечек газа или жидкости из трубопроводов

Изобретение относится к измерительной технике и может быть использовано для распределенного измерения температуры в нефтяной, газовой промышленности, в электроэнергетике и других областях

Изобретение относится к измерительной технике, позволяет проводить измерение бриллюэновского сдвига частоты в зависимости от координат по длине волоконно-оптического чувствительного элемента

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для диагностики протяженных объектов, используемых при эксплуатации скважин или при транспортировке продукции на пункты сбора и далее и т.п

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано в эксплуатационных (добывающих и нагнетательных) скважинах, при транспортировке продукции скважин на пункты сбора и далее

 


Наверх