Патенты автора Мартынов Петр Никифорович (RU)

Изобретение относится к технологии формирования защитных покрытий на стальных поверхностях, контактирующих с расплавом Pb-Bi, и может быть использовано для формирования защитных покрытий на стальных поверхностях, контактирующих с газовыми средами. Способ включает предварительное приготовление неокисленного расплава Pb-Bi, нагретого до температуры 400-700°С, с последующим добавлением в него алюминия до концентрации, равной 0,1-1,0 мас. %, после чего в образовавшийся расплав Pb-Bi-Al помещают детали со стальной поверхностью и выдерживают их в течение 15-25 часов. Затем детали извлекают из расплава и помещают в окисленный расплав Pb-Bi, нагретый до температуры 350-650°С, и выдерживают в течение 15 часов. Изобретение обеспечивает создание защитного оксидного покрытия, позволяющего повысить эксплуатационные характеристики реакторных установок за счет повышения рабочих температур и продления ресурса работы стальных деталей. 2 з.п. ф-лы, 2 ил., 1 пр.

Устройство относится к измерительной технике и может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в газовых средах в широком интервале температур и давлений. Датчик водорода в газовых средах включает рабочий элемент, плотно прилегающий посредством уплотнителя к верхней части корпуса датчика. Дополнительная герметичность обеспечена гайкой. Нижняя часть корпуса датчика оконтуривается изоляцией, обеспечивающей плотный контакт с нагревателем, обеспечивающим температурный режим рабочей среды, подаваемой на водородопроницаемую мембрану пароводяной камеры. Через измерительный платиновый электрод, вплотную примыкающий к нижней части керамического чувствительного элемента, герметично соединенного ситаллом с металлическим корпусом чувствительного элемента, возмущение, вносимое измерительным потоком, передается на центральную жилу потенциалосъемника. Эталонный электрод расположен во внутренней полости керамического чувствительного элемента. Наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец центральной жилы потенциалосъемника выведен в объем эталонного электрода. Изобретение обеспечивает повышение точности показаний датчика водорода за счет обеспечения герметичности внутренней полости керамического чувствительного элемента и поддержания стабильной рабочей температуры на чувствительной части рабочего элемента вследствие наличия постоянного надежного подогрева при помощи нагревателя и теплоизоляции. 3 з.п. ф-лы, 3 ил.

Изобретение относится к ядерным реакторным установкам с жидкометаллическим теплоносителем. Раскрыт способ предотвращения коррозии металлоконструкций реактора путем управления вводом газа в теплоноситель ядерной реакторной установки. Способ имеет следующие шаги: в объем над теплоносителем из газовой системы подают газ, предназначенный для ввода в теплоноситель; газ вводят в теплоноситель; из объема над теплоносителем выводят газ в газовую систему. Технический результат: предотвращение повторного использования загрязненного газа. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к способам диагностики ядерных реакторов на быстрых нейтронах. Способ диагностики включает процесс измерения параметров теплоносителя, причем процедура контроля и управления включает измерение активности кислорода в свинцово-висмутовом теплоносителе в центральной буферной емкости реакторного моноблока, измерение активности кислорода в свинцово-висмутовом теплоносителе в периферийной буферной емкости реакторного моноблока, контрольное измерение активности кислорода в свинцово-висмутовом теплоносителе в «холодной» фазе резервным датчиком, который в основное время сохраняет свои параметры вне теплоносителя и погружается в свинцово-висмутовый теплоноситель только на время измерения. Способ также включает управление массообменным аппаратом для ввода растворенного кислорода в теплоноситель с целью обеспечения заданного кислородного режима теплоносителя, управление дожиганием и диспергатором газа для реализации водородной очистки теплоносителя. Технический результат - повышение эффективности диагностики теплоносителя свинцово-висмутового быстрого реактора. 2 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к области ядерной энергетики. Устройство для очистки жидкометаллической среды от взвешенных примесей содержит корпус с входным и выходными патрубками и расположенный внутри корпуса фильтр. Фильтр выполнен в виде сердечника, содержащего оболочку с решетками на входе и выходе и размещенные в ней по потоку жидкометаллической среды по меньшей мере одну секцию грубой очистки от взвешенных частиц размером, большим или равным десяти микрометрам, и установленную после нее по меньшей мере одну секцию тонкой очистки от взвешенных частиц микронного или субмикронного размера. Секция грубой очистки состоит из по меньшей мере одного слоя фильтрующего материала с пористостью от 80-90% в виде иглопробивного полотна на основе металловолокон размером 40-60 мкм. Секция тонкой очистки состоит из по меньшей мере одного слоя фильтрующего материала с пористостью 70-80% в виде иглопробивного полотна на основе металловолокон размером 10-40 мкм и/или стеклоткани на основе волокон размером 6-20 мкм. Обеспечивается повышение эффективности очистки жидкометаллической среды от взвешенных примесей. 7 з.п. ф-лы, 2 ил.

Изобретение относится к регулированию концентрации кислорода и водорода в теплоносителе реакторной установки (РУ). РУ включает реактор, теплоноситель, размещенный в реакторе, газовую систему, массообменный аппарат, диспергатор и датчик концентрации кислорода в теплоносителе. Способ содержит следующие шаги: оценивают концентрацию кислорода; сравнивают концентрацию кислорода с верхним и нижним допустимыми значениями; если концентрация кислорода больше верхнего допустимого значения, проверяют, активирован ли массообменный аппарат, и деактивируют его, а из газовой системы в реактор подают газ, содержащий водород, и/или активируют диспергатор; если концентрация кислорода в теплоносителе меньше нижнего допустимого значения, проверяют, деактивирован ли диспергатор, и деактивируют диспергатор или прекращают подачу газа, содержащего водород, и активируют массообменный аппарат. Технический результат: предотвращение совместной подачи в теплоноситель водорода и кислорода, увеличение безопасности и срока эксплуатации реакторной установки. 3 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к эксплуатации реакторных установок с жидкометаллическими теплоносителями. Способ управления газовой системой имеет следующие шаги: перед подачей кислорода проверяют, подают ли в реактор водород и/или прекращают подачу водорода; подают кислород в том случае, если в реактор не подают водород; перед подачей водорода проверяют, подают ли в реактор кислород и/или прекращают подачу кислорода; подают водород в том случае, если в реактор не подают кислород. Технический результат: предотвращение совместной подачи в реактор водорода и кислорода, предотвращение формирования гремучего газа, увеличение безопасности и срока эксплуатации реакторной установки. 6 н. и 19 з.п. ф-лы, 8 ил.

Изобретение может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в жидких и газовых средах в широком интервале температур и давлений. Датчик водорода в жидких и газовых средах включает селективную мембрану и корпус, внутри которого расположен потенциалосъемник, керамический чувствительный элемент из твердого электролита, в полости которого размещен эталонный электрод, пористый платиновый электрод, нанесенный на наружную поверхность керамического чувствительного элемента, гермоввод, расположенный герметично внутри корпуса над керамическим чувствительным элементом, потенциалосъемником, проходящим через центральное отверстие гермоввода, и нижней втулкой. Керамический чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и днища, расположенного в нижней части цилиндрического элемента. Наружная цилиндрическая поверхность керамического чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса. Эталонный электрод расположен во внутренней полости керамического чувствительного элемента. Наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец центральной жилы потенциалосъемника выведен в объем эталонного электрода. Нижняя втулка, выполненная в виде трубки, соединенной с нижней частью корпуса со стороны керамического чувствительного элемента. Нижний конец нижней втулки имеет дно с центральным отверстием, к которому прикреплена селективная мембрана. Нижний свободный конец селективной мембраны герметично закрыт заглушкой, а полость, ограниченная внутренней поверхностью нижней втулки, внешней частью днища керамического чувствительного элемента и внутренними поверхностями селективной мембраны и заглушки, выполнена герметичной. Вверху потенциалосъемника установлена верхняя втулка, при этом кольцевая полость между внутренней поверхностью стенки верхней втулки и наружной поверхностью потенциалосъемника заполнена ситаллом. Изобретение обеспечивает повышение ресурса и надежности работы датчика водорода в широком диапазоне параметров рабочей среды, посредством обеспечения герметичности внутренней полости керамического чувствительного элемента. 2 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике. Сущность изобретения: датчик водорода в жидких и газовых средах включает селективную мембрану (11), пористую электроизоляционную керамику (7) и корпус (5) с потенциалосъемником (9), керамический чувствительный элемент (4) с эталонным электродом (14), пористый платиновый электрод (8), кремнеземную ткань (6), соединительный материал (12), пробку (10) с отверстием, гермоввод (2), цилиндрическую втулку (1). Полость корпуса (5) между гермовводом (2) и керамическим чувствительным элементом (4) герметична. Керамический чувствительный элемент (4) выполнен в виде сопряженных между собой цилиндрического элемента и части сферы, расположенной в нижней части цилиндрического элемента. Верхняя часть наружной цилиндрической поверхности керамического чувствительного элемента (4) герметично соединена с корпусом (5) посредством соединительного материала (12). Эталонный электрод (14) расположен в полости, образованной внутренней поверхностью керамического чувствительного элемента (4) и поверхностью пробки (10). Наружная сферическая часть керамического чувствительного элемента (4) покрыта слоем пористого платинового электрода (8). Конец центральной жилы (13) выведен через отверстие в пробке (10) в объем эталонного электрода (14). Втулка (1) соединена с нижней частью корпуса (5). Технический результат изобретения состоит в расширении функциональных возможностей, снижении стоимости и увеличении быстродействия датчика. 10 з.п. ф-лы, 1 ил.

Изобретение относится к мембранному фильтрующему элементу для очистки агрессивных жидкостей. Мембранный фильтрующий элемент состоит из полого пористого цилиндра 1 из керамического материала, днища 3 и крышки 4, установленных по торцам полого пористого цилиндра 1. На наружную поверхность полого пористого цилиндра 1 нанесена мембрана 5, которая выполнена из наноструктурного керамического материала в виде оксида алюминия (α-Аl2О3), сформированного в потоке частиц эрозионной алюминиевой плазмы в кислородной среде. Кроме того, фильтрующий элемент содержит перфорированную трубу 2, установленную внутри полого пористого цилиндра 1. Изобретение позволяет обеспечить эффективную очистку агрессивных жидкостей при заданном эксплуатационном ресурсе и позволяет подвергать фильтрующий элемент многократной регенерации. 5 з.п. ф-лы, 1 ил.

Изобретение относится к ядерной энергетике и может быть использовано в энергетических и исследовательских установках с жидкометаллическим свинецсодержащим теплоносителем. Массообменный аппарат с дискретной подачей газовой среды состоит из емкости, образованной корпусом (8), днищем (3), кольцевой крышкой (9), внутри емкости размещены нижняя решетка (11), расположенная под уровнем теплоносителя (14), твердофазное средство окисления (13), помещенное над нижней решеткой (11), газового контура, включающего в себя побудитель расхода газа (7), трубопровод для подачи газовой среды (15), одна часть которого соединяет газовую полость (2) объема с теплоносителем (10) и входную часть побудителя расхода газа (7), а другая часть сообщает выходную часть побудителя расхода газа (7) через кольцевую крышку (9) с полостью емкости массообменного аппарата. Для предварительного окисления теплоносителя предусмотрена камера смешения, образованная нижней частью корпуса, днищем и нижней решеткой. Технический результат - обеспечение удобства обслуживания в процессе эксплуатации, уменьшение габаритных размеров емкости массообменного аппарата. 5 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной взрывобезопасности. Система контроля кислорода и водорода в газовых средах содержит канал, входной сенсор водорода, расположенный во входной части полости канала, входной каталитически активный элемент, установленный в поперечном сечении средней части полости канала за входным сенсором водорода, выходной сенсор водорода и сенсор кислорода, расположенные в выходной части полости канала после входного каталитически активного элемента, причем сенсоры подключены к системе регистрации и управления. Система дополнительно снабжена выходным каталитически активным элементом, установленным в поперечном сечении выходной части полости канала за выходным сенсором водорода и сенсором кислорода, причем входной и выходной каталитически активные элементы снабжены автономными нагревателями для поддержания коэффициента рекомбинации водорода на каталитически активных элементах равным 1. Изобретение обеспечивает возможность непрерывного контроля кислорода и водорода в газовой смеси в объеме помещения с высокой степенью точности и надежности. 4 з.п. ф-лы, 1 ил.

Изобретение относится к ядерной энергетике, в частности в исследовательских и энергетических установках с жидкометаллическим свинецсодержащим теплоносителем

Изобретение относится к радиохимической технологии, конкретно к очистке жидких радиоактивных отходов

Изобретение относится к способам получения адсорбционных материалов

Изобретение относится к установкам обработки продуктов с целью их обеззараживания

Изобретение относится к энергетике, транспорту, нефтехимической и другим отраслям промышленности и может быть использовано в системах для очистки питьевой и технической воды, топлив, масел и других жидкостей

Изобретение относится к энергетике, транспорту, нефтехимической и другим отраслям промышленности
Изобретение относится к способам утилизации отработанных адсорбентов путем использования их в составе вяжущего при гидратационном твердении портландцемента и получения при этом экологичного цементного камня и может быть использовано в различных отраслях промышленности для связывания отработанных адсорбентов
Изобретение относится к области очистки сточных вод, в частности сточных вод, образующихся на полигонах твердых бытовых отходов, от диспергированных, эмульгированных и растворенных органических и неорганических веществ

Изобретение относится к мембранному фильтрующему элементу для очистки агрессивных жидкостей, который состоит из полого пористого цилиндра 1, днища 3 и крышки 4, установленных по торцам полого пористого цилиндра

Изобретение относится к теплообменным аппаратам и может быть использовано в парогенераторах и опреснителях при производстве водяного пара и пресной воды

Изобретение относится к теплообменным аппаратам и может быть использовано в парогенераторах и опреснителях при производстве водяного пара и пресной воды

Изобретение относится к теплообменным аппаратам и может быть использовано в парогенераторах и опреснителях

Изобретение относится к сорбционным фильтрам для очистки технологических воздушных сред

Изобретение относится к измерительной технике

Изобретение относится к сорбционным фильтрам для очистки технологических воздушных сред

Изобретение относится к способам получения аморфного мезопористого гидроксида алюминия со слоисто-волокнистой микроструктурой и может быть использовано в керамической промышленности, производстве сорбентов, катализаторов и их носителей, а также теплоизоляционных, резинотехнических и некоторых полимерных материалов

Изобретение относится к измерительной технике и может быть использовано в металлургии, энергетике, химической промышленности для определения активности кислорода в различных средах

Изобретение относится к способам и устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в различных отраслях техники
Изобретение относится к области переработки жидких радиоактивных отходов

 


Наверх