Патенты автора Тарасенко Виктор Федотович (RU)

Изобретение относится к газоразрядным источникам излучения, а именно к йодным лампам с отпаянным излучателем в виде трубки, предназначенным для получения излучения на длине волны 206.2 нм при возбуждении емкостным разрядом, и может быть использовано в устройствах, где необходимо узкополосное ультрафиолетовое (УФ) излучение с длиной волны в области 200-210 нм. Технический результат - увеличение плотности мощности излучения на выходе из окна йодной лампы, возбуждаемой емкостным разрядом и обеспечение озонобезопасности. Йодная лампа, возбуждаемая емкостным разрядом, содержит импульсный источник питания, отражатель, вентилятор, установленный на боковом торце корпуса для охлаждения лампы, и излучатель, расположенный в металлическом корпусе с окном для выхода излучения, которое закрыто металлической сеткой. Излучатель, содержащий пары йода, состоит из трубки кварцевого стекла с запаянными торцами, у обоих концов которой на внешней поверхности установлены цилиндрические электроды, один из них высоковольтный, а второй заземлен. Трубка излучателя изогнута от высоковольтного электрода, а обе прямые части колбы изготовлены под углом друг к другу в интервале 15-90 градусов. Прямая часть трубки размещена вплотную к сетке на выходном окне, а заземленный электрод вплотную к корпусу; высоковольтный электрод размещен на удалении от корпуса лампы и отражателя; вентилятор установлен на торце корпуса со стороны высоковольтного электрода и всасывает облученный воздух через окно для выхода излучения и отверстия, находящиеся на торце корпуса, противоположном от высоковольтного электрода, и направляет воздух из корпуса лампы в вытяжной шкаф или фильтр. 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к источникам излучения, в частности к лампам барьерного разряда, и может быть использована в различных областях науки и техники, где необходима подсветка коротковолновым ультрафиолетовым или вакуумным ультрафиолетовым излучением, например в фотохимии, в фотобиологии, фотоионизационных приборах. Технический результат - упрощение конструкции, получение плазменных струй атмосферного давления в воздухе без принудительной прокачки воздуха и снижение расхода газа в средах, содержащих смеси легкоионизуемых газов с электроотрицательными газами. Способ заключается в том, что зажигают искровой разряд между двумя острийными электродами, один электрод оставляют под плавающим потенциалом, причем на второй электрод подают высоковольтные импульсы напряжения положительной полярности с фронтом нарастания 0.1<τ<10 мкс, зажигание разряда осуществляют между электродами, установленными под углом 0<α<160°, формируя плазменную струю в месте максимальной кривизны токового канала. Устройство, реализующее способ, содержит два острийных электрода, образующих искровой разрядный промежуток, один электрод является свободным, высоковольтный источник питания, второй электрод, расположенный под углом 0<α<160° к первому, является высоковольтным и имеет положительную полярность напряжения с фронтом нарастания 0.1<τ<10 мкс, разрядный промежуток составляет 5<d<20 мм. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к плазменной технике, в частности к источникам получения и управления потоком плазмы атмосферного давления. Источник образован цилиндрической трубкой из диэлектрического материала, с входной частью - трактом для поступления газа и выходной частью - соплом для вывода плазмы. Источник содержит пару электродов 4 и 5, подключенные к импульсному источнику питания и расположенные на внешней поверхности трубки на расстоянии друг от друга. Источник дополнительно содержит электрод 6, размещенный на внутренней поверхности цилиндрической трубки входной части, и соединенный с ним штыревой электрод 7, введенный соосно в сопло, при этом параметры частей (длина, радиус, толщина, диэлектрическая проницаемость) таковы, что электрическая емкость входной части много больше емкости выходной части. Технический результат - возможность получения плазменных струй атмосферного давления в общедоступных и дешевых газах (воздух, азот) при сниженном расходе газа. 2 ил.

Изобретение относится к способу газоразрядного выполнения пленок. С помощью высоковольтных импульсов напряжения с длительностью импульсов на полувысоте не более 10 наносекунд и длительностью фронта не более 4 наносекунд формируют разряд, инициируемый пучком электронов в газовых средах при давлениях от 100 Торр до атмосферного. В промежутке между высоковольтным распыляемым электродом с головкой, которая имеет радиус кривизны, равный 0,2 мм, и электропроводящей поверхностью для напыления, на которую одновременно воздействуют электронный пучок, ударная волна, ультрафиолетовое и вакуумное ультрафиолетовое излучение плазмы, сопровождающие разряд. Изобретение позволяет упростить процедуру напыления пленки. 2 ил., 1 пр.

Изобретение относится к газоразрядным источникам излучения, в частности к лампам барьерного разряда, и может быть использовано в различных областях науки и техники, где необходимо ультрафиолетовое и вакуумное ультрафиолетовое излучение, например в фотохимии, фотобиологии, фотомедицине, микроэлектронике. Источник включает в себя разрядную колбу с газовой средой, образованную двумя цилиндрическими трубками из прозрачного на рабочей длине волны материала, источник питания с электродами, высоковольтный электрод, расположенный во внутренней трубке колбы, заземленный электрод, расположенный на поверхности внешней трубки. При этом ось внутренней трубки колбы смещена относительно оси внешней трубки, образуя газоразрядный промежуток и буферный объем колбы, при этом колба ориентирована относительно вертикали на угол 45°<φ<75°, где φ - угол между газоразрядным промежутком и вертикалью, проходящей через центр внешней трубки в поперечном сечении колбы. Технический результат - увеличение ресурса и энергетической светимости. 2 ил.

Изобретение относится к области микробиологии, в частности к методам определения чувствительности штаммов Pseudomonas aeruginosa (P. aeruginosa) к антибиотикам. Способ определения чувствительности по спектрам флуоресценции включает культивацию штаммов P. aeruginosa на питательных средах, стимулирующих синтез пиовердина, центрифугирование и фильтрование культур для получения пробы, облучение пробы спонтанным ультрафиолетовым излучением в интервале длин волн 200-300 нм, получение спектров флуоресценции, маркером резистентности штамма к антибиотикам служит наличие в полосе флуоресценции максимума в диапазоне длин волн 435-445 нм. Маркером чувствительности штамма к антибиотикам служит наличие в полосе флуоресценции максимума в диапазоне длин волн 455-470 нм. Изобретение позволяет упростить технологию оптических методов исследования и оптимизировать лечение бактериальных инфекций. 2 ил.

Изобретение относится к источникам излучения, в частности к лампам барьерного разряда, и может быть использовано в различных областях науки и техники, где необходима подсветка коротковолновым ультрафиолетовым или вакуумным ультрафиолетовым излучением, например в фотохимии, в фотобиологии, фотоионизационных приборах. Технический результат - упрощение конструкции, повышение срока службы и плотности мощности излучения в плоскости выходного окна. Источник излучения содержит цилиндрическую колбу с плоским выходным окном, заполненную инертным газом или его смесью с галогеноносителем, источник питания, подключенный к двум электродам, один электрод перфорирован и размещен на внешней поверхности выходного окна. Высоковольтный электрод размещен на внешней поверхности цилиндрической колбы, соединенной с буферным объемом. Положение высоковольтного электрода а также диаметры выходного окна и цилиндрической колбы выбраны такими, чтобы не допустить пробоя по внешней поверхности колбы. 1 ил.
Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к катализаторам

Изобретение относится к области обеззараживания воздуха

Изобретение относится к газовой промышленности и может использоваться для извлечения тяжелых углеводородов из природного газа и для его осушки при подготовке к транспортировке

Изобретение относится к области генерации электронных пучков и рентгеновского излучения и может быть использовано в прикладных физических исследованиях, таких как взаимодействие излучения с веществом, быстропротекающие процессы, накачка лазеров, а также в плазмохимии, в радиационной химии, в биологии и т.д

Изобретение относится к газовой промышленности и может использоваться для извлечения тяжелых углеводородов из природного газа и для его осушки при подготовке к транспортировке
Изобретение относится к газоразрядным источникам ультрафиолетового излучения и может быть использовано в различных областях науки и техники, например в фотохимии и в фотомедицине

Изобретение относится к области генерирования пучков заряженных частиц и может быть использовано при исследовании взаимодействия потоков заряженных частиц с веществом, в квантовой электронике, катодолюминесцентном анализе, плазмохимии и других областях

Изобретение относится к светотехнике и может быть использовано при создании и применении эффективных газоразрядных источников спонтанного излучения, в частности, при разработке источников излучения в вакуумной и вакуумной ультрафиолетовой областях спектра и их применении в микроэлектронике при обработке и чистке поверхности посредством ее облучения

Изобретение относится к светотехнике и может быть использовано при создании и применении однобарьерных вакуумных ламп в области ультрафиолетового диапазона спектра, в частности в микроэлектронике при обработке и чистке поверхности посредством ее облучения

Изобретение относится к газовой промышленности и может использоваться при подготовке природного газа к транспортировке по трубопроводу

Изобретение относится к светотехнике и может быть использовано при создании и применении эффективных источников излучения в ультрафиолетовой (УФ) и вакуумной ультрафиолетовой (ВУФ) областях спектра

Изобретение относится к газоразрядным источникам излучения, в частности к лампам барьерного разряда, излучающим на переходах эксимерных и эксиплексных молекул, и может быть использовано в различных областях науки и техники, например в фотохимии и в медицине

 


Наверх