Патенты автора Саулин Дмитрий Владимирович (RU)

Способ испытания высокотемпературной газовой коррозии, абразивной и температурной стойкости материалов и покрытий газотурбинных двигателей в высокоскоростных газовых потоках относится к области аэрокосмического и энергетического машиностроения и может использоваться для нанесения регламентированных коррозионных повреждений, одновременных испытаний коррозионной, абразивной и температурной стойкости материалов и сплавов в среде продуктов сгорания жидких и/или газовых топлив, загрязненных оксидами серы, углерода, азота, пылью, парами воды, хлористым водородом, солями и другими коррозионно-активными агентами. Предложен способ испытания высокотемпературной газовой коррозии, абразивной и температурной стойкости материалов и покрытий газотурбинных двигателей в высокоскоростных газовых потоках, включающий размещение исследуемых образцов во вращающейся кассете, которая вращается с заданной скоростью и снабжена коллектором ввода охлаждающего воздуха, подачу и регулирование расхода горючего газа в реакторе, подачу и регулирование расхода воздуха для охлаждения исследуемых образцов снаружи и по внутренним каналам посредством системы распределения сжатого воздуха, подающей воздух, необходимый для внутреннего охлаждения образцов, внутрь вращающейся кассеты, и холодный воздух на поверхность исследуемых образцов, ввод абразивных частиц в солевой раствор, который далее впрыскивают в реактор, ввод и вывод исследуемых образцов в факел пламени посредством серверного электродвигателя с приводом, размещенного на подвижной платформе, передвигающейся по рельсам, расположенным перпендикулярно потоку пламени. Причем ход привода задан таким образом, чтобы исследуемые образцы в одном крайнем положении находились в зоне нагрева, а в другом - в зоне охлаждения. При этом для испытаний при высоких температурах в качестве горючего газа используют один из газов - пропан, водород или ацетилен, а абразивные частицы представляют собой измельченные порошки диоксида кремния и/или корунда и/или железа и/или вулканического пепла. Технический результат - обеспечение возможностей нанесения регламентированных коррозионных повреждений, одновременных испытаний коррозионной, абразивной и температурной стойкости в диапазоне 500-2350°С образцов сплавов, в том числе лопаток газовых турбин, охлаждаемых по внутренним каналам воздухом, в среде высокоскоростных потоков продуктов сгорания жидких и/или газовых топлив, загрязненных оксидами серы, углерода, азота, пылью, парами воды, хлористым водородом, солями и другими коррозионно-активными агентами. 2 з.п. ф-лы, 1 ил.

Изобретение относится к литейному производству. Способ нанесения покрытия на литейные керамические формы, подготовленные для литья титановых сплавов, включает нанесение покрытия путем пропитки, просушку формы на воздухе и повторную прокалку. В качестве пропитывающего состава используют алюмозоль, содержащий от 2 до 20% коллоидных частиц размерами от 20 до 250 нм, способствующих равномерному распределению алюмозоля внутри пор лицевого слоя керамической формы и их максимальной герметизации. Пропитку формы осуществляют методом заливки алюмозоля в керамическую оболочку при избыточном давлении воздуха не менее 1 атм. Обеспечивается получение плотного, равномерно распределенного по поверхности и в объёме лицевого слоя керамической формы нейтрального покрытия, устойчивого при температурах литья титановых сплавов, значительно снижающего образование альфа-слоя на титановых отливках. 5 ил., 1 табл., 6 пр.

Изобретение относится к литейному производству, а именно к способам нанесения пироуглеродных покрытий на литейные керамические формы для литья преимущественно титановых и других химически активных сплавов. Способ нанесения пироуглеродного покрытия на литейные керамические формы включает термическую обработку путем прокалки литейной формы с нанесенным углерод-содержащим компонентом. В качестве углерод-содержащего компонента используют водную суспензию дисперсного пироуглерода, которую наносят на лицевой слой формы путем пропитки на стадии охлаждения прокаленной формы с последующим удалением избытка суспензии, а далее осуществляют прокалку формы с нанесенным пироуглеродным покрытием при температуре не более 350°С. При этом температура литейной формы и суспензии на стадии пропитки не превышает 100°С, размер частиц пироуглерода составляет 0,100-2 мкм, а содержание частиц пироуглерода в суспензии составляет 1-6 мас.%. Изобретение позволяет получать устойчивое, плотное, равномерно распределенное по поверхности покрытие простым способом, при меньшей температуре с низкими трудо- и энергозатратами. 2 табл., 11 пр.
Изобретение относится к производству теплоизоляционных материалов, а именно к производству блочного пеностекла. Технический результат заключается в получении экологически безопасного конечного изделия, упрощение способа производства, сохранение повышенной трещиностойкости получаемого блочного пеностекла, позволяющей увеличить выход целых пеностекольных блоков. Способ производства блочного пеностекла включает получение тонкомолотого стекольного порошка путем помола стеклобоя, добавление в тонкомолотый стекольный порошок порообразователя и связующего с получением пеностекольной смеси, гранулирование пеностекольной смеси до размера сырцовых гранул полуфабриката 2-40 мм, вспенивание в печи смеси сырцовых гранул полуфабриката с пеностекольным щебнем 0.2-20% от массы сырцовых гранул полуфабриката с получением пеностекольных блоков, отжиг пеностекольных блоков. Сырцовые гранулы полуфабриката после гранулирования высушивают при температуре 100-450°C и направляют в бункер временного хранения. Пеностекольный щебень выбирают фракции 2-40 мм. 1 пр., 2 з.п. ф-лы.
Изобретение относится к производству гранулированного пеностекла. Технический результат изобретения заключается в расширении сырьевой базы, упрощении способа производства гранулированного пеностекла при сохранении высокой щелочностойкости получаемого гранулированного пеностекла. Несортовой стеклобой измельчают с получением тонкомолотого стекольного порошка. К стекольному порошку добавляют порообразователь, крупнопористый силикагель и связующее с получением пеностекольной смеси. Крупнопористый силикагель измельчен до размера частиц не более 80 мкм. Смесь гранулируют и вспенивают сырцовые гранулы в печи с получением гранулированного пеностекла. 2 з.п.ф-лы,2 табл.
Изобретение относится к производству легковесных строительных материалов, а именно к производству пеносиликата типа пеностекла

Изобретение относится к производству бетона, содержащего в своем составе стекольный заполнитель (стеклобой) и ингибитор коррозии бетона, способствующий подавлению процессов расширения бетона в результате протекания реакции между щелочами бетона и кремнеземом наполнителя

Изобретение относится к туннельным печам для производства блочных легковесных строительных материалов

Изобретение относится к производству насыпных легковесных строительных материалов

Изобретение относится к барабанным проходным печам для производства насыпных, легковесных строительных материалов, а именно к печам для производства гранулированного пеносиликата

Изобретение относится к производству насыпных, легковесных строительных материалов
Изобретение относится к производству строительных материалов, а именно к производству пеносиликата

 


Наверх