Патенты автора Леоненко Нина Александровна (RU)

Изобретение относится к горнодобывающей и перерабатывающей промышленности и может быть использовано для закрепления пылящей поверхности и рекультивации нарушенных земель, занятых хвостохранилищем, содержащих токсичные отходы переработки оловорудного сырья, загрязненных тяжелыми металлами (ТМ). Состав содержит биоуголь, природные цеолиты и техногенные компоненты, отличающийся тем, что в качестве природного цеолита используется клиноптилолит, а техногенные компоненты - это отходы рудообогащения оловосодержащего сырья, класса крупности - 5+0,074 мм при следующих соотношениях компонентов, мас. %: биоуголь - 30%, цеолиты - 10%, отходы рудообогащения оловосодержащего сырья - 60%, причем отходы рудообогащения оловосодержащего сырья представляют собой пылящие отходы, стабилизированные в естественных условиях от 3 до 10 лет. Изобретение обеспечивает снижение отрицательного воздействия отходов переработки оловорудного сырья на объекты экосферы от техногенного загрязнения, обусловленного токсичными отходами, складированными в хвостохранилище, и повышение эффективности рекультивации. 3 ил., 3 пр.

Изобретение относится к выделению ультрадисперсных и коллоидно-ионных благородных включений из минерального сырья и техногенных продуктов. Способ включает подачу исходного сырья на подложку и его обработку лазерным излучением с интенсивностью, достаточной для их высокоскоростного нагрева. Обработку ведут комплексным инициированием процессов полной дефрагментации путем оплавления без испарения, с последующим термокапиллярным высокоуровневым извлечением благородных включений при их агломерации до размеров, достаточных для обнаружения и выделения гравитационными методами. При этом оптимальную интенсивность источника лазерного излучения, его режим работы, скорость подачи сырья на подложку и скорость ее перемещения в области лазерного излучения устанавливают в зависимости от уровня наиболее полного переплава исходного сырья, определяемого по яркости цифровых изображений регистрируемых поперечных профилей рассеянного излучения. Установка для осуществления способа имеет цифровую камеру со щелевым коллиматором для определения яркости цифровых изображений регистрируемых поперечных профилей рассеянного излучения и устройством обратной связи с персональным компьютером. Техническим результатом является расширение минерально-сырьевой базы выделения тонкого золота и других благородных металлов. 2 н.п. ф-лы, 6 ил., 2 пр.

Изобретение относится к горной промышленности и принадлежит к электрофизическим способам разрушения горных пород, преимущественно для вторичного дробления негабарита, и может быть использовано для подготовки горных пород высокой крепости для последующей переработки. Технический результат заключается в улучшении технологической эффективности за счет формирования в поверхностном слое обрабатываемого куска горной породы спиралевидных многорядных зон перекрытия лазерных щелей, обеспечивающих высокую концентрацию напряжений, знакопеременные нагрузки и деформацию при лазерной обработке значительной поверхности в условиях оптимизации технологических режимов с помощью математической модели управления процессом с построением трехмерной модели наружной поверхности негабарита; повышении производительности процесса разрушения и дезинтеграции за счет формирования направленного вверх-вниз в вертикальной плоскости совмещенного с круговым движением кассет перемещения; обеспечении экологической безопасности. Оптимизацию технологических режимов с помощью математической модели управления процессом осуществляют посредством построения трехмерной модели наружной поверхности негабарита после предварительного сканирования обрабатываемой поверхности, расчета оптимальных значений расстояния, углов наклона и позиционирования кассет оптоволоконных излучателей на оптимальном расстоянии от поверхности негабарита и с учетом управления режимами скоростной экспозиции лазерного излучения на негабарит. 2 н.п. ф-лы, 4 ил.

Изобретение относится к горной промышленности и может быть использовано для управления процессом лазерного воздействия на скальные породы переменной крепости при подготовке горных пород к безвзрывному разупрочнению для последующего послойно-полосового фрезерования и выемки карьерными комбайнами. Способ управления включает контроль интенсивности высокотемпературного термодинамического лазерного воздействия на зону лазерного излучения, регулирование изменения волнового фронта лазерного излучения, контроль усилия резания фрезы P, параметров прочности f горной породы посредством датчика регистрации прочности горной породы, установленного на раме оптоволоконного лазерного излучателя, контроль скорости перемещения карьерного комбайна Vki, введение в программу алгоритма вычисления волнового фронта мощности лазерного излучения W в зависимости от параметров прочности f горной породы и шага позиционирования оптоволоконных излучателей li на основе уравнения. Изобретение позволяет повысить эффективность управления технологической подготовки к выемке скальных пород и обеспечивает возможность дистанционного управления разрушением горных пород. 2 н.п. ф-лы, 10 ил.

Изобретение относится к горной промышленности и может быть использовано для подготовки горных пород средней крепости к безвзрывному разупрочнению для последующего послойно-полосового фрезерования и выемки карьерными комбайнами. Техническим результатом является улучшение технологической эффективности за счет формирования в приповерхностном слое обрабатываемого массива зон перекрытия лазерных щелей, обеспечивающих высокую концентрацию напряжений, знакопеременные нагрузки и деформацию при лазерной обработке значительной поверхности; повышение производительности процесса разрушения, дезинтеграции и уменьшение объемов фракции, требующей дополнительного последующего дробления, за счет совмещения процесса нарезания щелей и послойно-полосового фрезерования скальных пород карьерными комбайнами и обеспечение экологической безопасности. Способ выполняется с помощью автоматизированного комплекса, который включает лазерный прибор с возможностью продольного перемещения и снабжен демпфирующей платформой, размещаемой на раме карьерного комбайна и шарнирно связанной с рамой лазерного прибора. Лазерный прибор размещается на направляющих рамы с возможностью продольного перемещения по направляющим на опорах качения с помощью привода, связанного с блоком автоматического управления, и выполнен в виде кассеты с оптоволоконными излучателями, размещаемыми вдоль направления перемещения карьерного комбайна. 2 н.п. ф-лы, 5 ил.
Изобретение относится к горно-металлургической промышленности и может быть использовано при освоении месторождений руд самородных металлов и руд минералов, содержащих легко высвобождаемые металлы под термическим или высокочастотным энергетическим воздействием

Изобретение относится к способу извлечения дисперсного золота из золотосодержащего высокоглинистого минерального сырья

Изобретение относится к области электротехники, в частности к созданию твердотельных электрохимических первичных источников тока Согласно изобретению твердотельный наноструктурированный первичный источник тока включает анод, выполненный из меди (или другого переходного металла) с различной формой и размерами, и катод, выполненный из наноструктурированного графитового покрытия на аноде, покрытый токопроводящей пленкой

Изобретение относится к области неразрушающего контроля структурных несовершенств строения массивов горных пород при отработке открытых и подземных месторождений полезных ископаемых
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх