Патенты автора Коноплев Борис Георгиевич (RU)

Заявленное изобретение относится к устройствам преобразования емкости в двоичный код и может быть использовано в устройствах обработки информации емкостных преобразователей микромеханических гироскопов и акселерометров. Техническим результатом является уменьшение числа логических элементов и, как следствие, уменьшение потребляемой мощности и занимаемой площади на кристалле, а также устранение влияния фазовых шумов на точность преобразования емкости. Изобретение представляет собой цифровой фазовый преобразователь емкости в двоичный код, содержащий два образцовых конденсатора, четыре логических элемента НЕ, измеряемую емкость, логический элемент 2И, генератор опорной частоты, генератор прямоугольных импульсов, логический элемент ИСКЛЮЧАЮЩЕЕ-ИЛИ, логический элемент 2И-НЕ, счетчик импульсов. 1 ил.
 // 

Изобретение относится к области измерительной техники и микросистемной технике. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит четыре неподвижных электрода емкостных преобразователей перемещений, четыре неподвижных электрода электростатических приводов, восемь дополнительных опор, восемь дополнительных П-образных систем упругих балок, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде Т-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, соединенных с инерционной массой с помощью Ш-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, четыре неподвижных электрода емкостных преобразователей перемещений попарно объединены в два, а инерционная масса выполнена с перфорацией и состоит из двух частей: внутренней и внешней, соединенных двумя торсионами. Технический результат – возможность измерения величин угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки устройства. 2 ил.

Изобретение относится к области микросистемной техники и может быть использовано в интегральной электронике для коммутации сигналов. Техническим результатом является коммутации сигналов сантиметрового волнового диапазона с низкими вносимыми потерями, низкой индуктивностью, низким напряжением смещения, малым временем переключения из одного состояния в другое, исключение чувствительности к вибрациям, внешним ускорениям, исключение произвольных срабатываний переключателя при коммутации сигналов высокой мощности, повышение жесткости конструкции неподвижного верхнего электрода электростатического привода. Упомянутый технический результат достигается за счет введения двух электростатических приводов, первых из которых содержит емкостной переключающий элемент, образованный двумя неподвижными нижними электродами электростатического привода, выполненными из проводникового материала, расположенными непосредственно на подложке симметрично по обе стороны линии передачи, диэлектрическим слоем, расположенным на поверхности двух неподвижных предохранителей и линии передачи, подвижным электродом электростатического привода, разделенным на три составные части, при этом центральная часть соединена с левой и правой частью при помощи двух пар упругих подвесов, выполненных в виде упругих балок из проводникового материала, каждая из частей подвижного электрода электростатического привода выполнена в виде пластины с перфорацией из проводникового материала и расположена с зазором относительно диэлектрического слоя на поверхности линии передачи и двух неподвижных предохранителей, закрепленным на подложке с помощью четырех опорных элементов, выполненных из проводникового материала и расположенных непосредственно на заземляющих линиях копланарного волновода, по средством упругих элементов подвеса, выполненных в виде упругих балок в форме меандра из проводникового материала, неподвижным верхним электродом электростатического привода, выполненным в виде пластины с перфорацией из проводникового материала с нанесенными на его поверхность поперечными упругими балками из проводникового материала, закрепленного на двух опорных элементах, расположенных непосредственно на подложке, второй электростатический привод состоящий из двух подвижных электродов электростатического привода, выполненных из проводникового материала в виде гребенчатых структур с одной из сторон, расположенных симметрично по обе стороны подвижного электрода первого электростатического привода и закрепленных на опорных элементах крепления подвижного электрода первого электростатического привода с помощью двух пар упругих подвесов, выполненных в виде упругих балок из проводникового материала и двух упругих элементов, выполненных из проводникового материала и закрепленных непосредственно на подвижном электроде первого электростатического привода, двух неподвижных электродов электростатического привода, выполненных из проводникового материала в виде гребенчатых структур с одной из сторон и расположенных непосредственно на подложке по обе стороны от подвижных электродов второго электростатического привода с возможностью электростатического взаимодействия с ними в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов. 2 ил.

Изобретение относится к области микросистемной техники и может быть использовано в интегральной электронике для коммутации сигналов. Техническим результатом является коммутация сигналов сантиметрового волнового диапазона с низкими вносимыми потерями, низкой индуктивностью, низким напряжением смещения, малым временем переключения из одного состояния в другое, исключение чувствительности к вибрациям, внешним ускорениям, исключение произвольных срабатываний переключателя при коммутации сигналов высокой мощности, повышение жесткости конструкции неподвижного верхнего электрода электростатического привода. Упомянутый технический результат достигается за счет введения двух электростатических приводов, первый из которых содержит емкостный переключающий элемент, образованный неподвижным нижним электродом электростатического привода, выполненным из проводникового материала, встроенным в линию передачи компланарного волновода с нанесенным на его поверхность диэлектрическим слоем, расположенным с зазором под подвижным электродом электростатического привода, выполненным в виде пластины с перфорацией из проводникового материала, закрепленным на подложке с помощью четырех опорных элементов, выполненных из проводникового материала и расположенных непосредственно на заземляющих линиях компланарного волновода, посредством упругих элементов подвеса, выполненных в виде упругих балок в форме меандра из проводникового материала, неподвижным верхним электродом электростатического привода, выполненным в виде пластины с перфорацией из проводникового материала с нанесенными на его поверхность поперечными упругими балками из проводникового материала, закрепленного на четырех опорных элементах, расположенных непосредственно на подложке, второй электростатический привод, состоящий из двух подвижных электродов электростатического привода, выполненных из проводникового материала в виде гребенчатых структур с одной из сторон, расположенных симметрично по обе стороны подвижного электрода первого электростатического привода и закрепленных на опорных элементах крепления подвижного электрода первого электростатического привода с помощью двух пар упругих подвесов, выполненных в виде упругих балок из проводникового материала и двух упругих элементов, выполненных из проводникового материала и закрепленных непосредственно на подвижном электроде первого электростатического привода, двух неподвижных электродов электростатического привода, выполненных из проводникового материала в виде гребенчатых структур с одной из сторон и расположенных непосредственно на подложке по обе стороны от подвижных электродов второго электростатического привода с возможностью электростатического взаимодействия с ними в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов. 2 ил.

Изобретение относится к интегральным измерительным элементам величин угловой скорости и линейного ускорения. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит восемь дополнительных неподвижных электродов емкостных преобразователей перемещений, шесть дополнительных подвижных электродов емкостных преобразователей перемещений, два подвижных электрода электростатических приводов, восемь неподвижных электродов электростатических приводов, двенадцать дополнительных опор, шестнадцать П-образных систем упругих балок, четыре Г-образные системы упругих балок, дополнительную инерционную массу, выполненную из полупроводникового материала и расположенную с зазором относительно полупроводниковой подложки. Технический результат – измерение величин линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки, и угловой скорости вдоль оси X, расположенной в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки. 2 ил.

Использование: для создания элементов интегральных коммутаторов. Сущность изобретения заключается в том, что активный элемент интегрального коммутатора содержит полуизолирующую GaAs-подложку, барьерную AlGaAs-область второго типа проводимости, образующую с ней переход Шоттки управляющую металлическую шину, AlGaAs-область спейсера собственной проводимости, GaAs-область канала собственной проводимости, четыре коммутируемые металлические шины, четыре коммутируемые области второго типа проводимости, AlGaAs-области управляющего p-n-перехода, AlGaAs-область туннельного барьера собственной проводимости, изолирующие AlGaAs-области собственной проводимости, введены GaAs-область ортогонального канала собственной проводимости, ориентированная перпендикулярно GaAs-области канала собственной проводимости, AlGaAs-область ортогонального спейсера собственной проводимости, расположенная под GaAs-областью ортогонального канала собственной проводимости и ориентированная перпендикулярно GaAs-области канала собственной проводимости. Технический результат - обеспечение возможности: увеличения быстродействия и снижения потерь энергии и токов утечки. 3 ил.

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения. Сущность изобретения заключается в том, что интегральный микромеханический гироскоп-акселерометр дополнительно содержит четыре подвижных электрода емкостных преобразователей перемещений, восемь дополнительных неподвижных электрода емкостных преобразователей перемещений, четыре дополнительных подвижных электрода электростатических приводов, девять дополнительных неподвижных электрода электростатических приводов, восемь «S»-образных систем упругих балок, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, восемь «П»-образных систем упругих балок, выполненные из полупроводникового материала и расположенные с зазором относительно подложки, и двадцать одна дополнительная опора, выполненная из полупроводникового материала и расположенная непосредственно на подложке, причем две инерционные массы выполнены с перфорацией, а подложка и неподвижные электроды емкостных преобразователей перемещений выполнены из полупроводникового материала. Технический результат – измерение величин угловых скоростей вдоль осей X и Y, расположенных в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки и величин линейных ускорений вдоль осей X, Y, Z. 2 ил.

Изобретение относится к цифровой измерительной технике, а именно к устройствам преобразования емкости в частоту, и может быть использовано в устройствах первичной обработки информации емкостных преобразователей микромеханических гироскопов и акселерометров. Высокочувствительный преобразователь емкости в частоту содержит измеряемую емкость, образцовый конденсатор, генератор опорной частоты, счетчик импульсов. Также введены генератор прямоугольных импульсов, в частотозадающую цепь которого включены образцовый конденсатор и параллельно ему измеряемая емкость, второй образцовый конденсатор, второй генератор прямоугольных импульсов, в частотозадающую цепь которого включен второй образцовый конденсатор, логический элемент 2И-НЕ, логический элемент ИСКЛЮЧАЮЩЕЕ ИЛИ, логический элемент 2ИЛИ-НЕ, логический элемент НЕ, второй счетчик импульсов, асинхронный RS-триггер, выход которого является выходной шиной устройства, причем образцовые конденсаторы имеют равные емкости. Технический результат заключается в увеличении чувствительности и снижении погрешности преобразования измеряемой емкости в частоту. 2 ил.

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных подвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с перфорацией с гребенчатыми структурами с двух сторон из полупроводникового материала и расположенные с зазором относительно подложки, восемь дополнительных неподвижных электродов емкостных преобразователей перемещений, выполненные с гребенчатыми структурами с одной стороны и расположенные непосредственно на подложке так, что они образуют с дополнительными подвижными электродами емкостных преобразователей перемещений конденсаторы в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных подвижных электрода электростатических приводов, выполненные в виде пластин с перфорацией с гребенчатыми структурами с двух сторон из полупроводникового материала и расположенные с зазором относительно подложки, девять дополнительных неподвижных электродов электростатических приводов, выполненные с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на подложке так, что они образуют электростатическое взаимодействие с подвижными электродами электростатических приводов в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, шестнадцать «П»-образных систем упругих балок, выполненные в виде пластин из полупроводникового материала и расположенные с зазором относительно подложки, и двадцать одна дополнительная опора, выполненные из полупроводникового материала и расположенные непосредственно на подложке, причем две инерционные массы выполнены с перфорацией, а подложка и неподвижные электроды емкостных преобразователей перемещений выполнены из полупроводникового материала. Технический результат - возможность измерения величин угловой скорости вдоль осей Y, расположенной в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки, и величин линейных ускорений вдоль осей Χ, Y, Z. 2 ил.

Изобретение относится к области интегральной электроники, а именно - к элементам интегральных коммутаторов. Для увеличения быстродействия и расширения функциональных возможностей в четырехконтактный элемент интегрального коммутатора, содержащий полуизолирующую GaAs-подложку, области GaAs и AlGaAs-спейсера собственной проводимости, барьерную область AlGaAs второго типа проводимости, область GaAs второго типа проводимости, расположенную над ней и образующую с ней переход Шоттки управляющую металлическую шину, первую и вторую высоколегированные области второго типа проводимости, первую и вторую металлические шины, образующие с высоколегированными областями второго типа проводимости омические контакты, введены расположенные над областью GaAs второго типа проводимости и образующие с ней переходы Шоттки первая, вторая и третья дополнительные управляющие металлические шины, третья и четвертая высоколегированные области второго типа проводимости, третья и четвертая металлические шины, причем области GaAs, AlGaAs-спейсера собственной проводимости, барьерная область AlGaAs и область GaAs второго типа проводимости имеют форму восьмиугольника, а управляющие металлические шины имеют форму ломаной, состоящей из трех отрезков, с взаимным расположением смежных отрезков под углом 135°. 2 ил.

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода, выполненные с гребенчатыми структурами из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, четыре подвижных электрода, выполненные в виде пластин с перфорацией и гребенчатыми структурами из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, так что они образуют туннельные контакты с дополнительными неподвижными электродами в плоскости их пластин, вторую и третью дополнительные инерционные массы, выполненные в виде пластин с перфорацией из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, так что они образуют туннельные контакты с неподвижными электродами в плоскости их пластин, двенадцать дополнительных упругих балок, выполненные из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, два торсиона, выполненные из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки, две дополнительные опоры, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке. Технический результат - возможность измерения величин линейного ускорения вдоль осей X и Y, расположенных взаимно перпендикулярно в плоскости подложки, и оси Z, направленной перпендикулярно плоскости подложки. 2 ил.

Изобретение относится к области измерительной техники и микросистемной техники. Сущность изобретения заключается в том, что в устройство дополнительно введены четыре дополнительных неподвижных электрода емкостных преобразователей перемещений, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсатор с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, четыре дополнительных неподвижных электрода электростатических приводов, выполненные в виде пластин с гребенчатыми структурами с одной стороны из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке так, что они образуют конденсаторы с подвижными электродами емкостных преобразователей перемещений в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, восемь дополнительных опор, выполненные из полупроводникового материала и расположенные непосредственно на полупроводниковой подложке, восемь дополнительных «П»-образных систем упругих балок, выполненных из полупроводникового материала и расположенных с зазором относительно полупроводниковой подложки, причем четыре подвижных электрода емкостных преобразователей перемещений выполнены в виде «Т»-образных пластин с перфорацией с гребенчатыми структурами с трех сторон, четыре неподвижных электрода емкостных преобразователей перемещений объединены в один, а инерционная масса выполнена с перфорацией. Технический результат - возможность измерения величин угловой скорости и линейного ускорения вдоль осей Z, направленной перпендикулярно плоскости подложки гироскопа-акселерометра, и X, Y, расположенных в плоскости подложки устройства. 2 ил.

Изобретение относится к квантовой электронной технике. В интегральный инжекционный лазер введены верхняя управляющая область второго типа проводимости, примыкающая к верхнему волноводному слою, нижняя управляющая область второго типа проводимости, примыкающая к нижнему волноводному слою, нижняя управляющая область первого типа проводимости, примыкающая сверху к подложке, а снизу - к нижней управляющей области второго типа проводимости и образующая с ней p-n-переход, омический контакт к нижней управляющей области первого типа проводимости, управляющий металлический контакт, примыкающий сверху к верхней управляющей области второго типа проводимости и образующий с ней переход Шоттки. Нижняя граница зоны проводимости нижнего волноводного слоя находится ниже нижней границы зоны проводимости квантоворазмерной активной области и при этом выше нижней границы зоны проводимости верхнего волноводного слоя. Верхняя граница валентной зоны нижнего волноводного слоя находится ниже верхней границы валентной зоны активной области и при этом выше верхней границы валентной зоны верхнего волноводного слоя. Технический результат заключается в обеспечении возможности увеличения быстродействия устройства. 3 ил.
Изобретение относится к области нано- и микросистемной техники и полимерных нанокомпозитов и может быть использовано для создания элементов наноэлектроники с регулируемым сопротивлением, защитных и теплоотводящих пленочных покрытий

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения

Изобретение относится к области нанотехнологии и наноматериалов, изготовлению и обработке наноструктур и может быть использовано для создания солнечных элементов, элементной базы наноэлектроники и наносистемной техники, зондов в сканирующей зондовой микроскопии, чувствительных элементов датчиков, проводящих каналов транзисторов, наполнителей композитных материалов, защитных и теплоотводящих пленочных покрытий
Изобретение относится к области полимерных нанокомпозитов

Изобретение относится к области измерительной и микросистемной техники, а более конкретно к интегральным измерительным элементам величин ускорения

Изобретение относится к области квантовой электронной техники и интегральной оптоэлектроники, а более конкретно - к интегральным инжекционным лазерам

Изобретение относится к области электронной промышленности и может быть использовано в технологии микро- и наноэлектроники для получения атомарно-гладких поверхностей и совершенных эпитаксиальных структур на разориентированных поверхностях образцов

Изобретение относится к области вычислительной техники и интегральной электроники, а более конкретно к интегральным логическим элементам СБИС

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения

Изобретение относится к области измерительной и микросистемной техники, а более конкретно к интегральным измерительным элементам величин угловой скорости и ускорения

Изобретение относится к области измерительной техники и микросистемной техники, а именно к интегральным измерительным элементам величины угловой скорости

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величины угловой скорости

Изобретение относится к области вычислительной техники и интегральной электроники

Изобретение относится к измерительной технике и может быть использовано для измерения ускорения и угла наклона

Изобретение относится к области вычислительной техники и интегральной электроники, а более конкретно - к интегральным логическим элементам СБИС

Изобретение относится к области вычислительной техники и интегральной электроники, а более конкретно к интегральным логическим элементам СБИС

 


Наверх