Патенты автора Морозов Владимир Сергеевич (RU)

Изобретение относится к области машиностроения, а именно к технологическим методам очистки, нейтрализации внутренних поверхностей топливных баков жидкостных ракет после слива агрессивных и токсичных компонентов жидкого ракетного топлива (КРТ). Способ нейтрализации топливных баков жидкостных ракет после слива агрессивных и токсичных компонентов ракетного топлива (КРТ): окислитель - четырехокись азота (N2O4) и горючее - несимметричный диметилгидразин (C2H8N2) методом удаления из баков жидких не сливаемых остатков, паровой фазы и адсорбированной на внутренних поверхностях баков фазы КРТ. Процесс удаления остатков топлива выполняют в два этапа. На первом этапе удаляют остатки жидкой и одновременно паровой фазы компонентов топлива путем выпаривания при температуре 35-50,0°С и одновременном удалении откачкой паров до остаточного их содержания в объемах баков, равновесного с адсорбированной фазой жидкостей на их внутренних поверхностях: для N2O4 - Саадс=70,0 - 80,0 мг/м3, для C2H8N2 - Сгадс=6,0 - 9,0 мг/м3. На втором этапе адсорбированную на внутренних поверхностях баков фазу КРТ удаляют смыванием растворителя на основе транс-1,2-дихлорэтилена и хлористого метилена при температуре до 50°С пароконденсатным методом до минимального остаточного содержания паров компонентов топлива в объемах баков: для КРТ N2O4 - Cадоп≤2,0 мг/м3, для КРТ C2H8N2 - Сгдоп≤0,1 мг/м3. На первом этапе процесса удаляемые из объемов топливных баков пары компонентов топлива рекуперируют и переводят в жидкое состояние путем сжатия и охлаждения при давлении - не менее 2,0 МПа и температуре - минус (8,0 - 10,0)°С для паров N2O4 и минус (50,0 - 55,0)°С для паров C2H8N2. Технический результат: расширение технологических возможностей процесса очистки и нейтрализации топливных баков после слива КРТ путем применения альтернативных ХФУ-113 озонобезопасных растворителей, с условием достижения высокого качества очистки поверхностей и исключения эффектов коррозионного поражения конструкционных материалов и загрязнения внутренних поверхностей баков. 1 з.п. ф-лы, 1 ил., 1 табл.

Заявленное изобретение относится к установкам для рекуперации и повторного использования контрольных газов при испытании изделий на герметичность. Сущность: установка включает линию (1) дренажа газа из объема изделия по окончании испытания и линию (2) подачи рекуперированного контрольного газа в объем изделия при повторном испытании. Линия (1) дренажа состоит из двух параллельных линий: линии (3) с установленными на ней последовательно компрессором (4) и первой накопительной емкостью (5) и линии (8) с установленными на ней последовательно вакуумным перекачивающим насосом (9) и второй накопительной емкостью (10), соединенными клапанами. Объем первой накопительной емкости (5) сообщается через клапаны, газовый редуктор (24), фильтр (26) и адсорбер (25) с линией (2) подачи сжатого газа в объем изделия. Внутри второй накопительной емкости (10) смонтирован герметичный эластичный “мешок” (15), к объему которого через клапаны подключены линия (8) от выхлопного патрубка перекачивающего вакуумного насоса (9) и линия (3), сообщающая герметичный эластичный “мешок” (15) с входным патрубком компрессора (4) линии (1). Объем первой накопительной емкости (5) сообщен с линией (38) входа газа в компрессор (4) трубопроводом с перепускным клапаном (36). Объем между оболочкой второй накопительной емкости (10) и оболочкой герметичного эластичного “мешка” (15) соединен через клапаны с линией подачи сжатого воздуха в этот объем. На внутренних стенках второй накопительной емкости (10) установлены чувствительные контактные датчики (32). Технический результат: возможность использования при испытаниях герметичности изделий, имеющих большие внутренние объемы, с относительно высокими давлениями контрольного газа. 1 ил.

Изобретение относится к способам изготовления контрольных капиллярных течей. Сущность: вытягивают стеклянный капилляр с получением требуемого потока пробного газа в рабочем диапазоне давления течи. Устанавливают и герметизируют капилляр в корпусе контрольной течи. Вакуумируют внутреннюю полость течи и заполняют ее пробным газом, контролируя температуру заполнения пробного газа. При этом давление заполнения выбирают таким, чтобы оно не превышало давления конденсации пара в капилляре при температуре заполнения. Технический результат: повышение надежности контрольной течи. 3 табл., 2 ил.

Изобретение относится к контрольным течам и может быть использовано, например, для получения количественных характеристик негерметичности изделий, настройки и определения чувствительности течеискательной аппаратуры. Сущность: контрольная течь содержит герметичный непроницаемый корпус (1), заполненный пробным газом, с герметично встроенным в него проницаемым элементом (3); датчик давления (4) пробного газа в корпусе (1), электронное устройство (5), отражающее на дисплее (8) в текущий момент времени цифровое значение потока пробного газа через проницаемый элемент (3); электронный таймер (6) и датчик (7) температуры, сообщенные с электронным устройством (5). При этом в память электронного устройства (5) заложены значение измеренного внутреннего объема полости течи и соотношения, позволяющие автоматически определять поток пробного газа. Технический результат: повышение точности определения потока пробного газа от контрольной течи. 1 ил.

Изобретение относится к области испытаний на герметичность и может быть использовано для контроля герметичности днищ топливных баков жидкостных ракет. Сущность: изделие (2) размещают в испытательной вакуумной камере, состоящей из монтажного стола (1) и вакуумного колпака (3). Заглушкой (4) герметизируют верхний патрубок изделия (2). С помощью системы (6) вакуумной откачки из объема испытательной вакуумной камеры откачивают атмосферный воздух. С помощью системы (5) подачи в объем изделия контрольного газа изделие (2) заполняют гелием или смесью гелия с воздухом. Регистрируют утечку гелия в объем испытательной вакуумной камеры масс-спектрометрическим течеискателем (7). Если измеренный поток контрольного газа превышает допустимое значение, приступают к поиску зоны сквозной микронеплотности. Для этого используют две локальные камеры (9, 10), покрывающие симметричные относительно осевой линии изделия (2) сектора его поверхности. Локальные камеры (9, 10) выполнены способными пошагово перемещаться по поверхности изделия (2), создавая герметичное соединение с поверхностью изделия (2) после каждого шага перемещения. После каждого перемещения локальных камер (9, 10) и после герметизации у поверхности изделия (2) объемы локальных камер (9, 10) гибкими вакуумпроводами (12, 13) соединяют с системой масс-спектрометрического течеискателя (7). Выполняют контроль герметичности части поверхности изделия (2), покрываемой локальными камерами (9, 10). При этом для локального инспектирования всей поверхности изделия (2) операцию повторяют необходимое количество раз, а для более точного установления местонахождения дефекта герметичности на поверхности изделия (2), покрываемой локальной камерой, выполняют операцию контроля концентрации накопленного гелия в локальных долях ее объема. Технический результат: повышение чувствительности контроля, сокращение затрат труда и времени, повышение производительности испытаний. 2 н.п. ф-лы, 1 ил.

Изобретение относится к методам градуировки объемов по уровням. Предложен способ, заключающийся в определении объема топливного бака под каждым i-м уровнем срабатывания контролирующего датчика Vi, который предварительно определен при испытании каждого из датчиков в вертикально установленной камере при заполнении и сливе ее жидкостью. Расчет объемов производится по соотношению: . Значения Vндн и , а также среднее значение внутреннего диаметра цилиндрической части бака определяются по результатам предварительного измерения газовым методом объемов составляющих элементов топливного бака, в т.ч. полного внутреннего объема окончательно собранного топливного бака, внутренних объемов верхнего и нижнего днищ, внешних объемов внутрибаковых систем. Значение рассчитывается по соотношению: . Изобретение расширяет технологические возможности методики измерений, уменьшает затраты труда и времени на выполнение контрольных работ, повышает качество и корректность результатов контроля. 2 ил.

Изобретение относится к области контроля устройств на герметичность и может быть использовано для контроля герметичности цилиндрических обечаек корпусов жидкостных ракет. Сущность: размещают изделие (2), объем которого герметизирован по торцам, в вертикальном положении осевой линии на монтажном столе (1) испытательной вакуумной камеры (3). Подключают к внутреннему объему изделия (2) магистраль подачи давления контрольного газа. Устанавливают на монтажном столе (1) и герметизируют вакуумный колпак испытательной вакуумной камеры (3). Удаляют из объема испытательной камеры (3) атмосферный воздух. Нагружают изделие (2) избыточным давлением контрольного газа. Регистрируют и измеряют утечку контрольного газа в объем испытательной камеры (3) масс-спектрометрическим течеискателем (7). Дополнительно к измерению общей негерметичности контролируемого изделия (2) определяют зону расположения сквозной микронеплотности на его поверхности. Для этого используют кольцевую локальную камеру (8), объем которой сообщен гибким вакуум-проводом (11) с вакуумной системой масс-спектрометрического течеискателя (7). Последовательно пошагово перемещают локальную камеру (8) вдоль всей боковой цилиндрической поверхности изделия (2), создавая герметичное соединение с его поверхностью после каждого шага. Регистрируют показания масс-спектрометрического течеискателя (7). Определяют кольцевую зону расположения дефекта герметичности на поверхности изделия (2). При этом образованный под кольцевой камерой (8) объем условно разделен по ее периметру на равные контрольные доли в четном количестве. Для установления местонахождения дефекта герметичности под периметром кольцевой камеры (8) отключают системы вакуумной откачки испытательной (3) и локальной (8) камер. Затем производят напуск атмосферного воздуха в объем испытательной камеры (3) и чистого сухого воздуха в объем локальной камеры (8) до атмосферного давления при сохранении избыточного испытательного давления контрольного газа в объеме контролируемого изделия (2). Производят выдержку в течение определенного времени, по истечении которого обеспечивают циркуляцию воздуха в объеме локальной камеры (8) в направлении штуцера подключения гибкого контрольного вакуум-провода (11) с известным объемным расходом. При этом одновременно напускают чистый сухой воздух с тем же объемным расходом через гибкий трубопровод (16), подключенный к объему локальной камеры (8) в точке, противоположной подключению контрольного гибкого вакуум-провода (11). Координату L∂ расположения дефекта под периметром локальной камеры (8) определяют по значению времени установления максимального сигнала масс-спектрометрического течеискателя (7) на поток гелия, поступающего в систему напуска течеискателя через щуп-зонд (30), подключенный к контрольному вакуум-проводу (11). Для установления, под какой из симметрично расположенных долей объема кольцевой локальной камеры (8) находится дефект герметичности, после прекращения циркуляции воздуха в объеме локальной камеры (8) выполняют повторную выдержку в течение такого же времени. Затем контролируют содержание фактически накопленного в объеме локальной камеры (8) гелия при его поступлении из микронеплотности путем обследования через два симметричных контрольных штуцера (24) на поверхности локальной камеры, расположенных на расстояниях по периметру кольцевой камеры (8), близких значению L∂, слева и справа от точки соединения контрольного вакуум-провода (11) с объемом локальной камеры (8). Технический результат: повышение чувствительности и надежности контроля герметичности, сокращение затрат труда и времени на поиск дефектов герметичности, повышение производительности испытаний. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, а именно к технологическим методам градуировки датчиков системы управления расходом топлива жидкостных ракет (СУРТ), т.е. определения объемов топливных баков, соответствующих контрольным уровням срабатывания датчиков, расположенных в системе равномерно по всей длине топливных баков. Предложен способ градуировки СУРТ в топливных баках жидкостных ракет, заключающийся в обмере наружной поверхности баков с помощью лазерных дальномеров и определении значений объемов бака по сечениям, соответствующим расположению датчиков уровня СУРТ, за вычетом объема наружного контура бака и объемов внутрибаковых агрегатов. Перед монтажом конструкции СУРТ ее дополнительно подвергают операции градуировки в снабженной уровнемерной трубкой технологической испытательной камере с внутренним объемом не более 3…5 объема конструкции СУРТ при вертикальном ее положении заливом или сливом контрольной жидкости для установления практических положений уровня контрольной жидкости относительно стыковочной плоскости конструкции СУРТ, соответствующих моменту появления сигнального импульса при срабатывании каждого из датчиков уровня СУРТ., После окончания градуировки в технологической камере и сушки для удаления остатков контрольной жидкости конструкция СУРТ монтируется в объеме топливного бака при совмещении стыковочной плоскости СУРТ с базовой плоскостью топливного бака, координата которой по продольной оси бака в его конструкции предварительно строго определена. Способ обеспечивает достижение показателей точности, сопоставимых и более высоких в сравнении с традиционно применяемым методом градуировки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для поиска мест негерметичности изделий. Сущность: устройство включает контрольную течь (1) с линейной шкалой (7) и течеискатель (10) со щупом (9). Контрольная течь (1) и течеискатель (10) соединены с электронным устройством (5). На щуп (9) течеискателя (10) установлено приспособление (11) с чувствительным элементом, соединенное с электронным устройством (5). Электронное устройство (5) выполнено с возможностью определения и контроля скорости перемещения щупа (9). Технический результат: повышение вероятности обнаружения дефектов. 3 ил.

Изобретение относится к области машиностроения, а именно к технике испытания на герметичность изделий, и может быть использовано в ракетно-космической и авиационной технике, атомной промышленности, приборостроении и других отраслях, связанных с изготовлением изделий высокой степени герметичности. Способ контроля герметичности элементов корпуса изделия заключается в изоляции контролируемых элементов (сварных и разъемных соединений, оболочек корпуса и др.) с помощью накладных локальных вакуумных камер, получении рабочего вакуума в объемах локальных камер, подаче давления контрольного газа (гелия, гелиево-воздушной смеси и др.) в объемы корпуса изделия, последующей регистрации и измерении потоков контрольного газа в объеме каждой локальной камеры, изолирующей контролируемые элементы корпуса. После монтажа накладных локальных вакуумных камер изделие помещается в камеру общего вакуумирования, а перед контролем герметичности из объема этой камеры удаляется атмосферный воздух до остаточного давления менее 1·10-1 мм рт.ст. Операции контроля элементов корпуса изделия могут совмещаться с контролем общей герметичности корпуса изделия при остаточном давлении в объеме камеры общего вакуумирования, меньшем 1·10-4 мм рт.ст. Техническим результатом является повышение чувствительности контроля герметичности элементов корпуса изделий. 1 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области машиностроения, а именно к технологическим методам измерения полных объемов топливных баков жидкостных ракет, а также к методам градуировки объемов по уровням. Предложен способ, заключающийся в горизонтальном размещении бака на опорах, обеспечивающих возможность поворота его вокруг оси в пределах ±360°C, сканирования наружной поверхности лазерным радаром с целью измерения наружных размеров изделия с плотностью облака точек, обеспечивающей требуемую точность измерения контура внутренней поверхности, размеры которой получают вычитанием из наружных размеров изделия размера толщины его стенок, и вычисления значений объемов до каждой последовательной плоскости контроля уровня. Для оценки влияния веса заполняющей среды и давления над ее поверхностью предварительно и однократно проводят испытания по измерению объемов контрольной среды под каждой контрольной плоскостью вертикально установленного топливного бака или его полноразмерного макета последовательно при смоделированных реальных условиях его эксплуатации. В результаты градуировки бака с использованием лазерного радара вносятся коррективы в соответствии с соответствующим соотношением. Техническим результатом является повышение точности измерений за счет учета изменений геометрии топливных баков в реальных условиях полета ракеты. 2 ил.

Изобретение относится к машиностроению, в частности к подготовке изделий к высокочувствительному контролю герметичности. Предложен способ подготовки изделий к высокочувствительным испытаниям на герметичность, заключающийся в помещении изделия в специальную герметичную камеру, заполнении камеры растворяющей жидкой средой, переводе ее в состояние сверхкритического флюида и выдержке в течение определенного времени. После выдержки изделия под давлением сверхкритического флюида в течение определенного времени удаляют жидкую фазу среды из камеры, а пары откачивают, после чего производят выдержку изделия при достигнутом окружающем давлении также в течение определенного времени. Давление растворителя в камере в процессе выдержки устанавливают из условия: P ≥ 4,08 ⋅ 10 − 6 σ d , кгс/см2, где σ - коэффициент поверхностного натяжения насыщенного раствора вещества закупоривающего загрязнения, д и н с м ; d - размер сечения канала сквозной микронеплотности, см. Время выдержки изделия под давлением сверхкритического флюида составляет: τ 1 ≥ 0,5 l 2 D , сек, при двустороннем контакте флюида с поверхностями оболочек изделия (наружной и внутренней), τ 1 ≥ 2,0 l 2 D , сек, при одностороннем контакте флюида с поверхностью оболочки изделия (наружной или внутренней), где l - максимальная толщина стенок изделия в зонах возможной локализации дефектов негерметичности, см; D - коэффициент взаимной диффузии молекул веществ, закупоривающих каналы сквозных микронеплотностей, и молекул сверхкритического флюида в процессе взаимного растворения при давлении Р, с м 2 с е к . А длительность выдержки изделия после удаления из специальной герметичной камеры жидкой фазы и паров растворяющей среды составляет: τ 2 ≥ 4,08 ⋅ 10 − 6 η ⋅ l 2 P ⋅ d 2 , сек, где η - коэффициент динамической вязкости насыщенного раствора закупоривающего вещества в растворяющей жидкой среде, г с м ⋅ с е к ( п у а з ) . Изобретение позволяет повысить качество и надежность работ и сократить цикл и трудоемкость. 4 ил., 5 табл.

Изобретение относится к машиностроению, в частности к очистке поверхностей изделий от загрязнений, а также к подготовке изделий к контролю герметичности. В предложенном способе подготовки топливной емкости к контролю герметичности емкости 11 помещают в герметичную камеру 1, из объемов камеры и емкости 1 вакуумным насосом 4, 5 удаляют атмосферный воздух. Затем выполняют обработку поверхностей емкости 11 подаваемым через форсуночные устройства 6, 7 растворителем при условии равенства расходов подаваемого и удаляемого из объемов растворителя. На первой стадии процесса подготовки производят обработку поверхностей емкости 11 струями подогретого до допустимой температуры растворителя с общим расходом, обеспечивающим удаление поверхностных загрязнений и нагрев емкости 11 до температуры подаваемого растворителя за технологически установленное время. На последующей стадии периодически чередуют операции воздействия на поверхности мелкокапельно-распыленного растворителя с общим расходом, обеспечивающим поддержание на поверхностях емкости ламинарно-стекающей пленки растворителя, с операциями вакуумной осушки. Общая длительность операций периодической обработки τо, без учета общего времени, затрачиваемого на удаление из емкости остатков жидкой и паровой фаз растворителя перед каждой операцией вакуумной осушки, τо=τэ+τвл+τр, где τэ - необходимая общая длительность удаления из канала сквозной микронеплотности растворимых закупоривающих загрязнений путем экстракции растворителем; τвл - необходимая общая длительность удаления из канала сквозной микронеплотности капиллярной влаги при вакуумной осушке; τр - необходимая общая длительность удаления из канала сквозной микронеплотности растворителя при вакуумной осушке. Длительность каждого периода воздействия растворителя и вакуумной осушки τ i = τ о n , где n - общее количество периодов воздействия, назначаемое из условия: n ≤ τ о − τ э τ у д , где τуд - длительность удаления из объемов остатков жидкой и паровой фаз растворителя перед каждой операцией вакуумной осушки; при этом длительность обработки растворителем τiэ и вакуумной осушки τio каждом периоде определяются τ i э = τ э n ; τ i o = τ в л + τ р n . Способ позволяет обеспечить повышение эффективности и надежности подготовки топливных емкостей к контролю герметичности, снижение трудовых и финансовых затрат на выполнение этих работ. 1 ил., 1 табл.

Изобретение относится к области машиностроения, в частности к способам удаления загрязнений с поверхностей и из полостей разнообразных изделий. Предложен способ очистки изделий легколетучими растворителями, проводимый в замкнутом объеме при рабочем давлении, включающий очистку и ультразвуковую обработку, причем ультразвуковую моечную ванну 1 с изделием 2 помещают в герметичную камеру 4, из которой удаляют атмосферный воздух. Ванну 1 заполняют растворителем, проводят очистку, после чего растворитель сливают, пары рекуперируют, напускают в камеру атмосферный воздух и извлекают изделие из ванны 1. Способ можно вести в условиях, при которых температуру растворителя поддерживают ниже температуры корпуса герметичной камеры, а рабочее давление создают подачей сухого очищенного газа в герметичную камеру 4. Интенсивность способа можно увеличить созданием движения жидкости прокачкой растворителя через ванну, а также покачиванием ванны в процессе удаления загрязнений. Способ позволяет снизить пожарную опасность в случае применения легковоспламеняющихся растворителей, повысить эффективности способа ультразвуковой очистки.4 з.п. ф-лы, 1 ил.

Изобретение относится к области исследований устройств на герметичность. Сущность: перед испытаниями определяют реакцию течеискателя (3) на фоновое содержание контрольного вещества в испытательной камере (1) с контролируемым изделием (2). Затем предварительно взвешенный проницаемый корпус (6) с контрольным веществом помещают в испытательную камеру (1) с контролируемым изделием (2) и выдерживают в течение времени накопления. Определяют реакцию течеискателя (3) на накопленное контрольное вещество. Извлекают проницаемый корпус (6) из испытательной камеры (1) и вновь взвешивают. Очищают испытательную камеру (1) до начального фонового содержания контрольного вещества. Заполняют полость изделия (2) контрольным веществом до требуемого давления и выдерживают в течение того же времени накопления. Определяют реакцию течеискателя (3) на контрольное вещество, накопленное в испытательной камере (1). По полученным данным рассчитывают величину негерметичности изделия (2). Технический результат: повышение точности результатов контроля герметичности за счет исключения влияния на результат испытаний адсорбции молекул контрольного вещества на поверхностях изделия и испытательной камеры. 3 ил.

Изобретение относится к области исследований устройств на герметичность и может быть использовано для контроля герметичности емкостей, изготовленных из двухслойных оболочек, например, топливных емкостей летательных аппаратов. Сущность: объем емкости заполняют рабочей или контрольной средой (жидкостью или газом). Давление заполняющей среды повышают до испытательного значения и производят выдержку для накопления в межслойном пространстве проникающей через микронеплотности внутренней оболочки среды. Затем через контрольные отверстия, равномерно расположенные на поверхности наружной оболочки, измеряют концентрации накопленной среды. Рассчитывают оценку степени общей негерметичности внутренней оболочки. Зону расположения сквозного микродефекта предварительно устанавливают как область, ограниченную контрольными точками, в которых измеренные концентрации контрольной или рабочей среды имеют максимальные значения. Технический результат: обеспечение высокой эффективности и надежности контроля. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области исследований устройств на герметичность и может быть использовано для испытания, например, ракетно-космической техники. Сущность: изделие помещают в испытательную вакуумную камеру. Удаляют из камеры и объема изделия атмосферный воздух. Наносят на внутренние поверхности изделия предварительно подогретый распыленный растворитель, обеспечивая образование на ней ламинарно стекающей пленки. Затем повышают давление подачей в объем изделия сухого газа и производят регистрацию и измерение потока паров растворителя, проникающих в объем испытательной вакуумной камеры. Технический результат: повышение эффективности, чувствительности и надежности обнаружения дефектов изделия. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, а именно к испытательной технике, и позволяет выполнять полный комплекс испытания изделий на герметичность. Изобретение расширяет технологические возможности испытания за счет использования различных контрольных газовых и жидких сред, а также повысить чувствительность и надежность контроля изделий с особо высокими требованиями по герметичности. Предложен способ испытания изделия на герметичность, заключающийся в том, что изделие 6 помещают в герметичную испытательную камеру 1, оснащенную системами охлаждения 3 и нагрева 4. После вакуумирования полости изделия 6 в нее подают контрольную среду, повышением температуры приводят контрольную среду в состояние сверхкритического флюида, затем выполняют операции регистрации и измерения потока проникающей в сквозных микронеплотностях изделия контрольной среды. Контрольную среду в виде газовой фазы сжиженного газа или в виде жидкости подают в полость изделия для испытания в количестве , где V - объем полости изделия, л; ρкр - критическая плотность вещества контрольной среды, кг/л; Рфл - необходимое давление сверхкритического флюида в полости изделия при испытании в диапазоне значений Ркр≤Рфл≤3Ркр, кгс/см2; Ркр - критическое давление вещества контрольной среды, кгс/см2; Ткр - абсолютное значение критической температуры вещества контрольной среды, К; Тфл - абсолютная температура сверхкритического флюида в полости изделия при испытании в диапазоне значений Ткр≤Тфл≤2Ткр, К. Подачу газовой фазы сжиженного газа с общим количеством Mo производят в полость изделия 6, предварительно охлажденного до температуры , при работающей системе теплосъема, при этом расход подаваемого газа: , где NQ - тепловая мощность системы съема тепла с поверхности изделия, кДж/с; tu - температура изделия при заполнении полости газом, °C; tпл - температура затвердевания контрольной среды в жидкой фазе; Clq - теплоемкость конденсированной контрольной среды при температуре , кДж/кг·град; r - теплота конденсации газовой фазы контрольной среды при температуре , кДж/кг; to - температура окружающей среды при испытании,°C. 1 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к области машиностроения, а именно к способам определения объема жидкости в емкости при ее расходе. Предложен способ градуировки сигнализаторов уровня, заключающийся в определении части объема емкости, соответствующей плоскости зеркала жидкости, при котором срабатывает сигнализатор, путем суммирования элементарных объемов, измеренных по внешнему контуру сечений, перпендикулярных оси емкости. Предложено перед измерением емкость нагружать внутренним давлением газа, обеспечивающим сохранение заданных геометрических параметров и имитирующим воздействие давления рабочей жидкости при использовании емкости, при этом ось емкости при измерении расположена горизонтально. Технический результат - повышение точности, снижение трудоемкости.

Изобретение относится к машиностроению, в частности к очистке поверхностей и полостей изделий с помощью криогенных жидкостей, и может найти применение в технологии изготовления деталей и сборочных единиц с высокими требованиями к чистоте

Изобретение относится к области испытательной техники и может быть использовано при испытаниях на герметичность систем ракетно-космической техники, содержащих в процессе штатной эксплуатации в ампулизированном состоянии рабочие жидкости, а также может найти применение в тех областях техники, где предъявляются высокие требования к надежности изделий по параметру «герметичность»

Изобретение относится к области очистки - обезжириванию поверхностей и полостей изделий от минеральных масел, жиров и других загрязнений органической природы с помощью растворителей, а также к области подготовки изделий к высокочувствительным испытаниям на герметичность, и может найти применение в технологии изготовления жидкостных ракет с высокими требованиями к чистоте и степени герметичности в ракетостроении, авиастроении, приборостроении и других отраслях техники

Изобретение относится к области измерительной техники, а именно к способам контроля состояния систем терморегулирования

Изобретение относится к области измерительной техники и предназначено для использования при определении вместимости емкостей, работающих при давлениях, превышающих атмосферное

Изобретение относится к области машиностроения и может быть использовано в электронной, атомной промышленности, в машиностроении, где испытания изделий связаны с высокими требованиями по герметичности

Изобретение относится к технологии и технике достижения высокой чистоты поверхностей изделий растворителями

Изобретение относится к области испытательной техники и направлено на повышение точности и достоверности результатов контроля герметичности за счет исключения влияния фона контрольного вещества и газовыделения материалов, входящих в состав изделия и оболочек

Изобретение относится к средствам контрольно-измерительной техники и направлено на повышение чувствительности, качества и надежности контроля герметичности давлением жидкой среды

Изобретение относится к области испытательной техники и направлено на расширение диапазона контрольных потоков пробного вещества, воспроизводимых одной контрольной течью

Изобретение относится к медицинской технике и может быть использовано для лечения больных методом гипобарической гипоксии

Изобретение относится к области испытательной техники и направлено на повышение чувствительности контроля герметичности и точности измерения величины негерметичности

Изобретение относится к области испытательной техники и направлено на повышение точностных и эксплуатационных характеристик устройств, используемых для микродозирования газа

Изобретение относится к области испытательной техники и направлено на повышение точности и достоверности результатов контроля измерения герметичности за счет исключения влияния фона контрольного газа

Изобретение относится к технологическим средствам обработки изделий летучими растворителями и может найти применение при выполнении технологий промывки, очистки, обезжиривания, испытаний, контроля и других подобных операций

 


Наверх