Патенты автора Псахье Сергей Григорьевич (RU)

Группа изобретений относится к медицине, а именно к потенцированию действия антибиотиков, и может быть использована для лечения ран кожного покрова и мягких тканей, инфицированных множественно-устойчивыми бактериями. Для этого применяют низкоразмерные двумерные (2D) складчатые структуры оксигидроксида алюминия формулы AlOOH и/или их агломераты, имеющие величину удельной поверхности не менее 250 м2/г и дзета-потенциал, измеренный в воде при 25°С, не менее +30 мВ в качестве средства преодоления устойчивости бактерий к антибиотикам. Группа изобретений относится также к способу преодоления устойчивости к антибиотику в отношении как грамположительной, так и грамотрицательной бактерии, способу лечения у субъекта инфицированной раны с использованием указанных структур к комбинации с антибиотиком и продукту, содержащему указанные структуры и антибиотик в виде комбинированного препарата. Группа изобретений обеспечивает возможность использования низкотоксичных антибиотиков и позволяет уменьшить дозу антибиотика при лечении ран, инфицированных множественно-устойчивыми бактериями, за счет повышения чувствительности резистентных штаммов бактерий к антибиотикам. 4 н. и 8 з.п. ф-лы, 7 ил., 1 табл., 8 пр.

Изобретение относится к аддитивному производству изделий с функционально-градиентной структурой из титановых сплавов. Способ включает изготовление, по меньшей мере, части изделия путем подачи первой проволоки и второй проволоки в ванну расплава с обеспечением плавления высокоэнергетическим воздействием электронного пучка. Подачу проволок осуществляют с изменением скорости подачи по меньшей мере одной из упомянутых проволок. Угол наклона подачи в ванну расплава первой проволоки составляет от 20° до 50°, а угол наклона подачи в ванну расплава второй проволоки составляет от 20° до 60°. В качестве первой проволоки используют сплошную проволоку из титанового сплава, а в качестве второй проволоки используют порошковую проволоку, состоящую из оболочки, выполненной из материала сплошной проволоки, и наполнителя в виде порошка карбидов или боридов металлов, или их смеси со средним размером частиц от 2 мкм до 180 мкм. Обеспечивается высокая твердость и износостойкость изделий за счет минимального количества композиционных неоднородностей, газовой пористости, дефектных пограничных зон и протяженных границ раздела фаз. 7 з.п. ф-лы, 6 ил., 4 пр.

Изобретение относится к получению наноразмерных материалов, пригодных для сорбции биологических сред и биомолекул и может быть использовано в медицине и фармакологии. Для получения микро-мезопористого наноматериала на основе оксигидроксида алюминия осуществляют гидротермальное окисление наноразмерных частиц материала на основе алюминия при температуре от 190 до 210°С в течение 4-6 часов. Процесс проводят в присутствии стеклянных волокон с номинальным диаметром не более 0,65 мкм. Микро-мезопористый наноматериал на основе оксигидроксида алюминия представляет собой полые нановолокна с оболочкой из сплошного слоя складчатых нанолистов оксигидроксида алюминия (бемита) с размером от 50 до 200 нм и толщиной от 2 до 5 нм и рентгеноаморфными включениями оксида кремния. Изобретение позволяет получить микро-мезопористый наноматериал (МПН) на основе оксигидроксидов алюминия, позволяющий повысить эффективность преимущественной адсорбции катионов, катионных молекул и положительно-заряженных частиц за счет полой трубчатой структуры. 2 н. и 4 з.п. ф-лы, 4 ил., 3 пр.

Изобретения относятся к методам дефектоскопии объектов с использованием ультразвукового метода с фазированной антенной решеткой и могут быть использованы в технике для ручного контроля сварных соединений. Предлагаемое устройство подачи и отвода контактной жидкости включает блок датчика ультразвукового контроля (1), имеющий корпус (47), распределительный блок (2), имеющий корпус (4), с установленной внутри корпуса (4) герметичной емкостью (5) для хранения контактной жидкости, и совмещенный тракт подачи и отвода контактной жидкости (3), соединяющий распределительный блок (2) и блок датчика ультразвукового контроля (1) и представляющий собой гибкую трубку малого диаметра (34), расположенную коаксиально в гибкой трубке большего диаметра (35), при этом в корпусе распределительного блока установлены два насоса: один насос (9), соединенный с упомянутой емкостью (5) и совмещенным трактом подачи и отвода контактной жидкости (3), для подачи контактной жидкости в зону контакта датчика ультразвукового контроля и поверхности объекта контроля, а второй насос (22) - для создания разрежения в емкости (5) для отвода контактной жидкости из зоны контакта. Новым в способе подачи и отвода контактной жидкости в процессе ультразвукового контроля объекта является то, что подачу контактной жидкости и ее отвод осуществляют синхронно, а после отвода отработанной контактной жидкости осуществляют ее возврат в емкость для хранения, используя два отдельных насоса, при этом отвод контактной жидкости и ее возврат осуществляют под действием разрежения, создаваемого одним из насосов над контактной жидкостью в емкости для ее хранения. Технический результат - повышение технологичности процесса и технологичности конструкции, за счет возможности раздельного варьирования технологическими параметрами процессов подачи и отвода контактной жидкости, в том числе за счет синхронной подачи и отвода контактной жидкости и за счет наличия быстроразъемных соединений между трактом подачи и отвода жидкости и блоками распределения и ультразвукового контроля, а также снижение доли ручного труда и повышение экономичности и экологичности процесса операции ультразвукового контроля, за счет подачи и отвода контактной жидкости в замкнутом автоматическом цикле и за счет возможности точной дозировки количества подаваемой контактной жидкости. 2 н. и 15 з.п. ф-лы, 9 ил.

Изобретение может быть использовано для соединения сваркой трением с перемешиванием деталей из дисперсно-упрочненных алюминиевых сплавов. Детали прижимают по линии соединения друг к другу и вводят вращающийся сварочный инструмент в зону соединения деталей. На одной из свариваемых деталей жестко фиксируют сонотрод с ультразвуковым генератором. При перемещении инструмента вдоль линии соединения одновременно осуществляют ультразвуковое воздействие на материал свариваемых деталей путем наложения ультразвуковых колебаний на материал соединяемых деталей в течение всего процесса сварки трением с перемешиванием. Способ обеспечивает равнопрочность формируемого сварного соединения деталей из дисперсно-упрочненных алюминиевых сплавов и снижение остаточных внутренних напряжений в объеме материала сварного соединения. 4 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области получения нанопористых материалов на основе кремний-алюминиевых аэрогелей и может быть использовано для создания чувствительных элементов измерительных устройств газовых сенсоров, используемых в энергетике, химической промышленности, а также анализа выдыхаемого воздуха - в медицине. Предложен способ получения нанопористого материала, представляющего собой композитный кремний-алюминиевый аэрогель состава SiO2/Al2O3, золь-гель процессом, в котором для получения золя оксида алюминия используют продукт взаимодействия нанопорошка алюминия и/или алюмонитридной композиции с размером частиц от 50 до 500 нм с водой, который затем пептизируют до получения золя. Предложен также соответствующий нанопористый материал. Технический результат - возможность получения нанопористого материала на основе кремний-алюминиевого аэрогеля с требуемыми зарядовыми свойствами: дзета-потенциалом от -20 до -26 мВ, поверхностной плотностью заряда от 10-3 до 10-2 Кл/м2, в порах которого возможно осуществить трансформацию (изменение) спектров молекул газов, а также возможность получения аэрогеля без применения сверхкритической сушки в процессе его синтеза. 2 н. и 7 з.п. ф-лы, 4 ил., 1 табл., 5 пр.

Изобретение относится к стеклу с оптически прозрачным покрытием и способу его изготовления и может быть использовано при изготовлении оптических элементов космических аппаратов. Стекло с оптически прозрачным защитным покрытием содержит подложку из оптически прозрачного стекла и нанесенное на подложку двухслойное прозрачное покрытие. Покрытие состоит из двух слоев, при этом нижний слой выполнен нанокристаллическим металлическим толщиной от 20 до 40 нм, а верхний керамический слой - из нитрида алюминия и нитрида кремния толщиной от 5 до 15 мкм с нанокристаллической, или аморфно- нанокристаллической, или аморфной структурой. Способ состоит из трех этапов: 1) бомбардировки поверхности подложки импульсно-периодическим высокоэнергетическим пучком ионов того же металла, из которого состоит нижний слой покрытия, 2) униполярного импульсного магнетронного осаждения нижнего нанокристаллического металлического слоя, 3) биполярного импульсного магнетронного осаждения верхнего двухфазного керамического слоя, проводимых в едином вакуумном цикле. Технический результат состоит в получении стекла, обладающего повышенной стойкостью против ударного воздействия высокоскоростных твердых микрочастиц. 2 н. и 9 з.п. ф-лы, 8 ил., 3 пр., 2 табл.
Изобретение относится к изготовлению градиентных керамических материалов на основе порошков оксидов металлов. Получают полидисперсный керамический порошок оксида металла или смеси порошков оксидов металлов посредством распыления водных растворов солей металла или смесей солей металлов в плазму высокочастотного разряда через щелевую форсунку переменного сечения от 0,1 до 100 мкм, затем к упомянутому порошку добавляют органическую связку, перемешивают формовочную смесь, заливают ее в форму, выдерживают формовочную смесь для расслоения ее по фракциям и спекают полученную заготовку с изотермической выдержкой. Полидисперсный керамический порошок может представлять собой порошки следующих оксидов: Al2O3, ZrO2, CaO, Y2O3, MgO. Формовочная смесь может иметь следующее соотношение компонентов: порошок оксида металла или смесь порошков оксидов металлов 80-85 вес. %, органическая связка - остальное. В качестве органической связки может быть использован парафин, или воск, или смесь парафина и воска в соотношении 9:1. Обеспечивается получение керамического градиентного материала со структурой, обеспечивающей равномерное изменение механических свойств по сечению изделия и имеющей высокую устойчивость к термическим воздействиям - не менее 200 циклов при температуре 1600°C. 7 з.п. ф-лы, 4 пр.

Изобретение относится к области неорганической химии. Предложен продукт в виде агломератов оксигидроксидов металлов, выбранных из группы, состоящей из Al, Fe, Mg, Ti или их смеси. Агломераты образованы множеством элементов, имеющих размеры от 200 до 500 нм и представляющих собой низкоразмерные складчатые структуры, имеющие складки и грани неправильной формы. Структуры обладают локально высоким уровнем напряженности электрического поля на упомянутых складках, гранях и ребрах граней, составляющим 106-107 В/м. Изобретение обеспечивает получение агломератов оксигидратов, которые могут быть использованы в качестве сорбентов или в качестве средства, обладающего ранозаживляющей и антибактериальной активностью, а также для угнетения пролиферативной активности опухолевых клеток. 4 н. и 10 з.п. ф-лы, 12 ил., 5 табл., 11 пр.

Группа изобретений относится к медицине, конкретно к абсорбирующим нетканым материалам, содержащим дисперсные сорбенты. Описан антисептический сорбционный материал, обладающий противовоспалительным, ранозаживляющим, абсорбирующим, вяжущим и антисептическим действием, представляющий собой микроволокнистую матрицу с закрепленным на ее волокнах дисперсным сорбентом, содержащим высокопористые частицы гидрата оксида алюминия и частицы оксида цинка. Описан способ его получения и повязка на его основе. Материал пригоден для производства раневых повязок с дополнительными функциональными свойствами - ранозаживляющими, противовоспалительными, абсорбирующими, антибактериальными при одновременном сохранении поглотительных свойств материала, обеспечивающего возможность поглощения раневого содержимого (экссудата), подавления размножения бактерий внутри повязки и предотвращения вторичного заражения раны. 3 н. и 12 з.п. ф-лы, 4 ил., 2 табл., 3 пр.

Изобретение относится к технологии производства сорбентов, иммобилизованных на полимерных волокнистых носителях, и может быть использовано для термической и термохимической обработки листовых материалов в различных отраслях промышленности. Устройство для термической обработки микроволокнистой матрицы содержит каркас из шести элементов коробчатой формы, каждый из которых имеет внутреннюю полость и является левой, правой, верхней, нижней, задней и разделительной секциями каркаса, в стенках которых выполнены отверстия. Устройство снабжено парогенератором, контуром подачи рабочей среды в виде пара, парогазовой смеси или воздуха в рабочий объем и вентилятором для перемещения рабочей среды. Разделительная секция установлена таким образом, что делит рабочий объем устройства на две отдельные верхнюю и нижнюю камеры нагрева. Рабочие объемы камер нагрева и рабочие объемы упомянутых четырех секций соединены между собой системой упомянутых отверстий для перемещения рабочей среды в упомянутом контуре по рабочему объему секций каркаса и рабочему объему камер нагрева. Способ термической обработки микроволокнистой матрицы включает нагрев микроволокнистой матрицы, содержащей на поверхности и в ее объеме предварительно нанесенные наноразмерные частицы на основе алюминия, во влажной насыщающей реактивной атмосфере и в условиях конвективного нагрева. При этом обеспечивают равномерный нагрев и формование в ней кристаллического сорбента одновременно как по всей поверхности, так и в объеме микроволокнистой матрицы. Технический результат заключается в обеспечении равномерного нагрева микроволокнистой матрицы и полного превращения частиц на основе алюминия в объеме матрицы. 2. н. и 17 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области медицины и может быть использовано для модификации поверхностного слоя объемных изделий, например кардиоимплантатов. Установка ионно-плазменной обработки изделий содержит: рабочую камеру с источником ионов; шлюзовую камеру; вакуумный затвор; системы вакуумирования, прогрева и охлаждения рабочей и шлюзовых камер; пневмосистему; системы управления и электропитания, а также систему позиционирования обрабатываемых изделий, включающую механизм перемещения рабочего стола. На рабочем столе расположены вертикальные шпиндели со звездочками, соединенными между собой замкнутой цепью, причем один из шпинделей с нижней стороны рабочего стола оснащен звездочкой или шестерней, которая выполнена с возможностью катиться по закрепленной на основании рабочей камеры рейке, на которой расположена цепь или соответственно зубчатая рейка, и вращать вертикальные шпиндели стола, в посадочные отверстия которых установлены легкосъемные поводки. На указанные поводки установлены малые шпиндели, выполненные с возможностью катиться своим шкивом по поверхности стола и вращаться вместе с установленными на них изделиями вокруг собственной оси, наклоненной под углом к поверхности стола. Изобретение обеспечивает возможность обработки объемных изделий сложной формы для получения заданной структуры и состава приповерхностного слоя изделия. 3 з.п. ф-лы, 10 ил.

Изобретение относится к получению суспензии металлических порошков и может быть использовано для дезагрегации в жидкой среде наноразмерных порошков металлов и их соединений. Может использоваться для нанесения равномерного слоя наноразмерных частиц на волокнистую или зернистую подложку для получения тонкого равномерного пористого покрытия. Проводят ультразвуковое диспергирование в дисперсионной среде порошка в виде агрегатов наноразмерных частиц и механическое перемешивание со скоростью 250-1000 об/мин. Механическое перемешивание и ультразвуковое диспергирование осуществляют последовательно при перемещении суспензии по замкнутому гидравлическому контуру со скоростью 0,06-0,15 м/с. Устройство содержит быстроходную мешалку, установленную в емкости-смесителе в виде круглодонного бака, ультразвуковую проточную камеру и средство для перемещения суспензии по замкнутому гидравлическому контуру. Емкость-смеситель и ультразвуковая проточная камера последовательно соединены между собой трубопроводами. Обеспечивается получение седиментационно-устойчивой суспензии, содержащей высокодисперсные частицы. 2 н. и 11 з.п. ф-лы, 3 ил., 3 пр.

Изобретение относится к медицине. Описано устройство зонтичное (окклюдер) с модифицированным поверхностным слоем для окклюзии ушка левого предсердия. Устройство зонтичное (окклюдер) с модифицированным поверхностным слоем выполнено из сплава на основе никелида титана, при этом оно имеет поверхностный модифицированный слой толщиной 80-95 нм, который состоит, по меньшей мере, из двух подслоев: наружный подслой толщиной 20-25 нм содержит кислород, углерод, кремний и титан при следующем соотношении элементов, ат.%: кислород 25-65, углерод 1-5, кремний 1-10, титан остальное; промежуточный подслой толщиной 60-70 нм содержит кислород, углерод, кремний, титан и никель при следующем соотношении элементов, ат.%: кислород 5-30, углерод 1-5, кремний 10-30, никель 1-50, титан остальное, причем максимальную концентрацию кремний достигает на глубине 30-35 нм от поверхности. Модифицированный поверхностный слой устройства зонтичного (окклюдера) не обладает выраженной поверхностью раздела между подслоями, характерной для осажденного слоя. Устройство зонтичное с модифицированным поверхностным слоем обладает биосовместимостью, коррозионной стойкостью и отсутствием токсичности. 8 з.п.ф-лы, 2 ил.

Изобретение относится к области порошковой металлургии алюминидов никеля, в частности к высокотемпературному синтезу интерметаллида Ni3Al. Способ получения интерметаллического соединения Ni3Al включает приготовление порошковой смеси никеля с алюминием стехиометрического 3Ni+Al состава, размещение ее в пресс-форме, нагрев пресс-формы для инициирования в смеси реакции самораспространяющегося высокотемпературного синтеза СВС интерметаллического соединения Ni3Al в режиме теплового взрыва смеси и компактирование для пластического деформирования интерметаллического продукта реакции СВС. Компактирование продукта реакции СВС проводят при приложении давления прессования до 400-500 МПа с задержкой по времени 1-2 секунды с момента теплового взрыва с экструзией продукта реакции СВС через одно или несколько калиброванных отверстий в нижней части пресс-формы. Пресс-форма имеет конусообразную или цилиндрическую форму. Интерметаллическое соединение Ni3Al обладает повышенной прочностью и пластичностью. 1 з.п. ф-лы, 9 ил., 3 табл.

Изобретение относится к изготовлению кардиоимплантатов из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированным ионно-плазменной обработкой поверхностным слоем, предназначенных для длительной эксплуатации в сердечно-сосудистой системе организма и обладающих коррозионной стойкостью, биосовместимостью и нетоксичностью в биологических средах. Описан способ изготовления кардиоимплантата, включающий: изготовление кардиоимплантата, химическую и электрохимическую очистку его поверхности, обработку поверхности кардиоимплантата потоками ионов кремния, полученных путем распыления кремниевого катода в вакууме, в режиме высокодозовой ионной имплантации с флюенсом (0,5÷6,0)×1017 см-2 с получением поверхностного модифицированного слоя толщиной 80-95 нм, состоящего, по меньшей мере, из двух подслоев: наружный подслой толщиной 20-25 нм содержит кислород, углерод, кремний и титан при следующем соотношении элементов, ат.%: кислород 25-65, углерод 1-5, кремний 1-10, титан - остальное; промежуточный подслой толщиной 60-70 нм содержит кислород, углерод, кремний, титан и никель при следующем соотношении элементов, ат.%: кислород 5-30, углерод 1-5, кремний 10-30, никель 1-50, титан остальное, причем максимальную концентрацию кремний достигает на глубине 30-35 нм от поверхности. Модифицированный поверхностный слой с измененным составом не обладает выраженной поверхностью раздела между подслоями, характерной для осажденного слоя. 8. з.п. ф-лы, 1 ил.

Изобретение относится к химико-фармацевтической промышленности и медицине и представляет собой контрастное средство для T 1 и/или T2 магнитно-резонансного сканирования, состоящее из наноразмерного суперпарамагнитного порошка кубической кобальтовой феррошпинели CoxFe3-xO 4, где 0.1 x 0.99, с размером частиц 3÷20 нм

Изобретение относится к области очистки воды от примесей и микроорганизмов путем фильтрации с помощью сорбентов и может быть использовано для обеззараживания и очистки питьевой воды в полевых, экстремальных условиях при заборе воды из необорудованных источников воды или в неблагоприятных бытовых условиях

Изобретение относится к области разработки сорбционно-бактерицидных материалов для очистки жидкостей и газов от высокодисперсных частиц и микробиологических загрязнений, в том числе медицинского назначения

Изобретение относится к фильтрующим средам с высокими адсорбирующими и фильтрующими свойствами и может быть использовано для очистки воздуха, газа, воды, водных растворов и других жидкостей от микробиологических загрязнений, включая бактерии и вирусы

Изобретение относится к области машиностроения и может быть использовано для восстановления ресурса работы изделий из электропроводных материалов, в частности при ремонте деталей, имеющих на поверхности микротрещины различного происхождения глубиной не более 500 мкм, а также при ремонте изделий, работающих при циклическом виде нагружения
Изобретение относится к технологии производства сорбционных фильтрующих материалов

Изобретение относится к области очистки газов от органических и неорганических химических веществ, в частности к получению сорбционно-фильтрующих материалов, и может быть использовано для очистки воздушной среды

Изобретение относится к области упрочнения твердых сплавов инструментального назначения, преимущественно на основе карбида титана и никельхромовой связки (TiC-NiCr), и может быть использовано для повышения ресурса работы инструментов, деталей машин и механизмов, работающих в условиях резания, трения и абразивного износа

Изобретение относится к области сорбционной очистки воды от тяжелых металлов, предпочтительно, от мышьяка
Изобретение относится к сорбентам для фильтрации жидкостей и может быть использовано в комплексной очистке воды от примесей тяжелых металлов

Изобретение относится к производству фильтрующих материалов с высокими адсорбирующими и фильтрующими свойствами

Изобретение относится к области сейсмогеологии, а именно к способам управления режимом инициированных смещений в зонах сейсмоопасных разломов

 


Наверх