Патенты автора Соколов Сергей Викторович (RU)

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, вычисляющего операцию компромиссности непрерывной логики в реальном масштабе времени. Устройство содержит оптический Y-разветвитель, электрооптический модулятор, два фотоприемника, усилитель, источник излучения, двумерный электрооптический дефлектор, n групп по n равноудаленных оптических волноводов, матричный оптический транспарант размерности n×n, группу n оптических n-входных объединителей, оптический n-входной объединитель, оптический Y-объединитель. 1 ил.

Изобретение относится к средствам вычислительной техники. Оптический наносумматор по модулю два содержит два входных оптических нановолокна, две телескопические нанотрубки - внутреннюю и внешнюю, оптический нановолоконный Y-разветвитель и оптический нановолоконный объединитель. Причем информационными входами устройства являются входы первого и второго входных оптических нановолокон, выходы которых оптически связаны с торцами внутренней нанотрубки. Телескопические нанотрубки расположены между первым и вторым входными оптическими нановолокнами. Выход источника постоянного оптического сигнала подключен к входу оптического нановолоконного Y-разветвителя. При этом в крайнем левом положении внутренней нанотрубки отсутствует оптическая связь между первым выходом оптического нановолоконного Y-разветвителя и первым входом оптического нановолоконного объединителя, а в крайнем правом положении внутренней нанотрубки присутствует оптическая связь между первым выходом оптического нановолоконного Y-разветвителя и первым входом оптического нановолоконного объединителя, причем в центральном (исходном) положении внутренней нанотрубки отсутствуют оптические связи между выходами оптического нановолоконного Y-разветвителя и входами оптического нановолоконного объединителя, выход которого является выходом устройства. Технический результат заключается в повышении быстродействия и реализации наносумматора в наноразмерном исполнении. 1 ил.

Изобретение относится к средствам вычислительной техники. Оптический нанорегистр состоит из источника постоянного оптического сигнала, двух N-выходных нановолоконных оптических разветвителей, N телескопических нанотрубок, N нановолоконных оптических Y-разветвителей, N нановолоконных оптических объединителей. Информационными входами устройства являются первые входы нановолоконных оптических объединителей, входом сброса устройства является вход второго N-выходного нановолоконного оптического разветвителя. Выход источника постоянного оптического сигнала подключен к входу первого N-выходного нановолоконного оптического разветвителя, выходы которого оптически связаны с входами соответствующих нановолоконных оптических Y-разветвителей. Между выходами нановолоконных оптических объединителей и соответствующими выходами второго N-выходного нановолоконного оптического разветвителя расположены телескопические нанотрубки. Технический результат заключается в реализации регистратора в наноразмерном исполнении. 1 ил.

Изобретение относится к средствам преобразования оптических сигналов и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемо-передающих устройств. В оптический цифроаналоговый преобразователь введены оптический объединитель, оптический Y-разветвитель, оптический волновод обратной связи. Входом устройства является первый вход оптического объединителя, выход которого подключен ко входу оптического Y-разветвителя, первый выход которого подключен ко входу оптического волновода обратной связи, выход которого подключен ко второму входу оптического объединителя, а второй выход оптического Y-разветвителя является выходом устройства. Устройство направлено на решение задачи цифроаналогового преобразования последовательных оптических кодов с быстродействием, потенциально возможным для оптических устройств. 1 ил.

Изобретение относится к средствам преобразования оптических сигналов и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемо-передающих устройств. В оптический цифроаналоговый преобразователь введены оптический объединитель, оптический Y-разветвитель, оптический волновод обратной связи. Входом устройства является первый вход оптического объединителя, выход которого подключен ко входу оптического Y-разветвителя, первый выход которого подключен ко входу оптического волновода обратной связи, выход которого подключен ко второму входу оптического объединителя, а второй выход оптического Y-разветвителя является выходом устройства. Устройство направлено на решение задачи цифроаналогового преобразования последовательных оптических кодов с быстродействием, потенциально возможным для оптических устройств. 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, выполняющего операцию компромиссности в реальном масштабе времени. Устройство содержит электрооптический модулятор, два оптических Y-разветвителя, два управляемых оптических транспаранта, фотоприемник, источник излучения, оптический транспарант, электрооптический дефлектор, группу n равноудаленных оптических волноводов, линейный оптический транспарант, оптический n-входной объединитель, оптический Y-объединитель. 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, выполняющего операцию компромиссности в реальном масштабе времени. Устройство содержит электрооптический модулятор, два оптических Y-разветвителя, два управляемых оптических транспаранта, фотоприемник, источник излучения, оптический транспарант, электрооптический дефлектор, группу n равноудаленных оптических волноводов, линейный оптический транспарант, оптический n-входной объединитель, оптический Y-объединитель. 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, выполняющего операцию компромиссности в реальном масштабе времени. Устройство содержит электрооптический модулятор, два оптических Y-разветвителя, два управляемых оптических транспаранта, фотоприемник, источник излучения, оптический транспарант, электрооптический дефлектор, группу n равноудаленных оптических волноводов, линейный оптический транспарант, оптический n-входной объединитель, оптический Y-объединитель. 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, выполняющего операцию компромиссности в реальном масштабе времени. Устройство содержит электрооптический модулятор, два оптических Y-разветвителя, два управляемых оптических транспаранта, фотоприемник, источник излучения, оптический транспарант, электрооптический дефлектор, группу n равноудаленных оптических волноводов, линейный оптический транспарант, оптический n-входной объединитель, оптический Y-объединитель. 1 ил.

Изобретение относится к способам навигации по спутниковым радионавигационным системам (СРНС) и может быть использовано для определения параметров навигационных спутников и повышения точности определения координат навигационного приемника. Достигаемый технический результат - повышение точности определения местоположения навигационного приемника за счет коррекции и учета погрешности взаимной синхронизации часов навигационных спутников, а также инструментальных погрешностей передатчиков спутников. 1 ил.

Изобретение относится к способам навигации по спутниковым радионавигационным системам (СРНС) и может быть использовано для определения параметров навигационных спутников и повышения точности определения координат навигационного приемника. Достигаемый технический результат - повышение точности определения местоположения навигационного приемника за счет коррекции и учета погрешности взаимной синхронизации часов навигационных спутников, а также инструментальных погрешностей передатчиков спутников. 1 ил.

Изобретение относится к способам навигации по спутниковым радионавигационным системам (СРНС) и может быть использовано для определения координат навигационных спутников. Технический результат состоит в определении точности координат навигационных спутников. Для этого в способе определения координат навигационных спутников в группе из четырех навигационных спутников, находящихся в зоне прямой видимости, состоящей из первой пары навигационных спутников, находящихся на одной орбите, и второй пары навигационных спутников, находящихся на другой орбите, реализуются одновременные измерения линейных расстояний между всеми четырьмя спутниками группы, передача от каждого спутника к каждому и прием каждым спутником от каждого результатов измерений линейных расстояний между всеми четырьмя спутниками группы, а также вычисление на каждом спутнике сферического расстояния между ним и точкой пересечения орбит, по которому определяются значения координат данного спутника. 5 ил.

Изобретение относится к получению многофункциональных композиционных материалов с керамической матрицей из карбонитрида кремния, сформированной на основе пористого армирующего каркаса, выполненного из углеродных тканей или волокон в виде нитей, пучков или слоистых филаментов непрерывной или дискретной структуры. Такие материалы применяют в силовых теплонагруженных деталях летательных аппаратов, камерах сгорания и других изделиях для ракетной и авиационной техники. Согласно заявленному способу получения многофункциональных керамоматричных композиционных материалов в объеме пористого армирующего каркаса, выполненного из углеродных тканей или волокон в виде нитей, пучков и слоистых филаментов непрерывной или дискретной структуры, формируют керамическую матрицу из карбонитрида кремния путём химического осаждения из газовой фазы (ХОГФ) силана с азотсодержащим прекурсором до заданной плотности и процесса многократной цикловой пропитки каркаса предкерамическим полимером (силазаном) с последующей полимеризацией и пиролизом (ППП). Химическое осаждение проводят в газо-вакуумных печах при температуре 500…900°С и давлении 50…500 Па, а многократную (от 2 до 4 раз) цикловую пропитку каркаса предкерамическим полимером и последующую полимеризацию и пиролиз реализуют в вакуум-компрессионых печах при температуре до 1600°С и давлении до 20 МПа. В другом варианте способа сначала осуществляют стадию ППП, а затем - ХОГФ. Техническим результатом патентуемых вариантов реализации способа является получение керамоматричных композиционных материалов, обладающих плотностью в пределах 1,8…2,1 г/см3, стойкостью к механическим и теплоцикловым нагрузкам и уровню окислительной стойкости в диапазоне температур 400…1400°С. 3 н. 7 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к способам навигации по спутниковым радионавигационным системам (СРНС) и может быть использовано для идентификации параметров навигационных спутников и повышения точности определения координат навигационного приемника. Достигаемый технический результат - повышение точности определения местоположения навигационного приемника. Достигаемый технический результат - исключение ошибок взаимной синхронизации часов навигационных спутников и навигационного приемника. Указанный результат достигается за счет компенсации возникающих погрешностей при определении координат навигационного приемника. 1 ил.

Изобретение относится к способам навигации по Спутниковым Радионавигационным Системам (СРНС) и может быть использовано для идентификации параметров навигационных спутников и повышения точности определения координат навигационного приемника. Достигаемый технический результат изобретения - повышение точности определения местоположения навигационного приемника за счет исключения ошибок взаимной синхронизации часов навигационных спутников и навигационного приемника. Указанный результат достигается за счет того, что в группе из двух навигационных спутников, находящихся в зоне прямой видимости, реализуются одновременные передача навигационных сообщений от каждого спутника к каждому, и их прием каждым спутником от каждого, определение межспутниковых псевдодальностей, и их передача на другой спутник, с последующим решением на каждом спутнике системы двух линейных алгебраических уравнений, в результате которого определяются истинные дальности между спутниками и погрешности взаимной синхронизации их часов, после чего погрешности взаимной синхронизации часов спутников передаются в навигационных сообщениях и компенсируются в навигационном приемнике при определении ортодромических координат навигационного приемника на основе решения алгебраического уравнения четвертой степени, сформированного по разности измеренных псевдодальностей объекта между двумя спутниками и параметрам ортодромической траектории объекта. 1 ил.

Изобретение относится к измерительным приборам, в частности к измерителям угловой скорости. Датчик угловой скорости содержит двигатель вращения и диэлектрический вал, при этом в него дополнительно введены по четыре инерционные массы, оси, шарнира, стержня, пьезоэлектрических датчика, электромагнита, датчика Холла, причем инерционные массы расположены симметрично относительно диэлектрического вала и сдвинуты на 90° друг относительно друга, каждая инерционная масса закреплена на оси, соединенной с диэлектрическим валом посредством шарнира, и через стержень соединена с соответствующим пьезоэлектрическим датчиком, жестко закрепленным на диэлектрическом валу, выход каждого пьезоэлектрического датчика подключен ко входу соответствующего электромагнита, выход которого подключен ко входу соответствующего датчика Холла, выходы которых являются выходами устройства, с которых снимается информация о составляющих угловой скорости. Технический результат - повышение точности измерителя угловой скорости, одновременное измерение двух взаимно перпендикулярных составляющих угловой скорости. 1 ил.

Изобретение относится к средствам навигации и может быть использовано в транспортных средствах для определения местоположения транспортного средства. Достигаемый технический результат изобретения - обеспечение определения координат навигационного приемника с частичной компенсацией погрешностей. Указанный результат достигается за счет того, что спутниковые измерения дальности принимаются навигационным приемником и базовой станцией, причем сигналы измерения дальности, принятые базовой станцией, непосредственно транслируются в навигационный приемник, одновременно с базовой станции в навигационный приемник передается трекерный сигнал дальности базовой станции до навигационного приемника, а для определения координат навигационного приемника используется разность сигналов, полученных от спутника непосредственно и через базовую станцию. 1 ил.

Изобретение относится к области производства электрической энергии и может быть использовано в устройствах с автономным питанием, размещаемых на движущихся объектах. В устройство, расположенное на движущемся объекте, введены сообщающиеся сосуды с жидкостью, два соединителя, два преобразователя механической энергии в электрическую, два поплавка, расположенных в левом и правом сообщающихся сосудах, над которыми расположены соединенные с поплавками через соединители преобразователи механической энергии, выходы которых объединены и подключены к выходу устройства. Изобретение направлено на упрощение и повышение эффективности производства электрической энергии для маломощных автономных устройств, установленных на движущихся объектах. 1 ил.

Изобретение относится к электротехнике, к производству электрической энергии и может быть использовано в устройствах с автономным питанием, размещаемых на движущихся объектах. Технический результат состоит в упрощении и повышении эффективности производства электрической энергии. Устройство состоит из внешней сферы 1, внутренней сферы 2, постоянных магнитов 3i, где i=1,…,6, индукционных катушек 4i, где i=1,…,3, элементов 5, минимизирующих трение между внутренней и внешней сферами. 1 ил.

Изобретение относится к области производства электрической энергии и может быть использовано в устройствах с автономным питанием, размещаемых на движущихся объектах. Заявленное изобретение направлено на решение задачи упрощения и повышения эффективности производства электрической энергии для маломощных автономных устройств, установленных на движущихся объектах. Поставленная задача возникает при разработке и создании автономных приемо-передающих устройств, спутниковых трекеров и пр. Устройство состоит из сообщающихся сосудов с жидкостью 1, поплавков 2i, i=1, …, 2, соединителей 3i, i=1, …, 2, преобразователей механической энергии в электрическую 4i, i=1, …, 2. 1 ил.

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств. Технический результат заключается в обеспечении построения программируемой логической матрицы в наноразмерном исполнении с быстродействием, потенциально достижимым для чисто оптических устройств обработки информации. Технический результат достигается за счет оптической программируемой логической матрицы, которая состоит из оптических многофункциональных логических наноэлементов 1i,i=i,N, Q-выходных оптических наноусилителей 2i, i=1,2,N, полей программирования 3i, i=1,2, 2N-входных оптических многофункциональных логических наноэлементов 4i, i=1,Q, М-выходных оптических наноусилителей 5i, i=i,M, Q-входных оптических многофункциональных логических наноэлементов 6i, i=1,M. 1 ил.

Изобретение относится к электротехнике, к производству электрической энергии на основе магнитогидродинамического эффекта и может быть использовано в устройствах обработки информации или приемо-передающих устройствах, размещаемых на объектах, движущихся с ускорением. Технический результат состоит в обеспечении электрической энергией маломощных устройств, установленных на движущихся объектах путем преобразования кинетической энергии рабочего тела в электрическую энергию. Магнитогидродинамический генератор содержит магнит, расположенный таким образом, что магнитное поле пересекает канал для перемещения рабочего тела. Два электрода расположены вдоль канала. Два вертикальных резервуара подключены с двух разных сторон к каналу. Устройство располагается на объектах, движущихся с ускорением. 1 ил.

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств

Изобретение относится к области медицины, в частности стоматологии, и может быть использовано в хирургической стоматологии для протезирования зубов

Изобретение относится к волоконно-оптическим системам связи и обработки информации

Изобретение относится к средствам навигации и может быть использовано в транспортных средствах с электротягой для определения местоположения транспортного средства

Изобретение относится к средствам оптической импульсной техники и может быть использовано в оптических устройствах обработки информации и оптических вычислительных машинах в качестве источника тактовых импульсов

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики

Изобретение относится к средствам оптической импульсной техники и может быть использовано в оптических устройствах обработки информации и оптических вычислительных машинах в качестве источника тактовых импульсов

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств

Изобретение относится к медицинской технике, а именно к хирургическому инструментарию, и может быть использовано в имплантируемых устройствах для обеспечения и поддержания просвета сосуда или полого органа

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для селекции оптических сигналов

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для выбора (селекции) минимального сигнала из совокупности оптических сигналов, подаваемых на его вход

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для выбора (селекции) минимального сигнала из совокупности оптических сигналов, подаваемых на его вход

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для выбора (селекции) максимального сигнала из совокупности оптических сигналов, подаваемых на его вход

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации для решения оптимизационных задач математического программирования

Изобретение относится к вычислительной технике

Изобретение относится к оптическим устройствам переключения и может быть использовано в волоконно-оптических системах передачи информации для коммутации каналов передачи информации
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх