Патенты автора Рыжкин Анатолий Андреевич (RU)

Изобретение относится к порошковой металлургии, в частности к изготовлению высокопрочных режущих пластин из оксидно-кремниевой карбидной керамики. Может использоваться для оснащения режущего инструмента для обработки труднообрабатываемых сталей и материалов на металлообрабатывающих станках. Диоксид кремния прокаливают при температуре 1650−1750°С, подвергают тонкому виброизмельчению на виброустановке в течение 2,5–3,0 ч и сушат. После сушки смешивают 60% диоксида кремния, 3% карбида циркония, 30% карбида титана, 5% карбида вольфрама и 2% азота в жидком до равномерного распределения по объему и образования суспензии, которую после введения в нее связующих веществ подвергают распылительной сушке с получением смеси. Из полученной смеси прессуют режущую пластину, проводят спекание при температуре 3900-3950°С и кратковременный отжиг с выдержкой 10,0-15,0 минут при температуре 1600-1650°С, и подвергают спеченную пластину механической обработке с получением шероховатости граней, равной 0,08-0,16 мкм. Обеспечивается повышение межкристаллитной коррозионностойкости, износостойкости, пластичности, ударной вязкости и стойкости режущих пластин при обработке труднообрабатываемых сталей.

Изобретение относится к получению керамических пластин режущего инструмента для обработки резанием труднообрабатываемых материалов. Способ включает прокаливание глинозема, содержащего α-А12О3 и γ-А12О3, его виброизмельчение, обогащение, сушку с получением оксида алюминия модификации α-Al2O3, его смешивание с оксидом кремния, карбидом титана, карбидом вольфрама, карбидом бора, оксидом хрома, никелем, молибденом, ниобием и кобальтом, пластификацию и горячее прессование с получением отпрессованной пластины, спекание, отжиг с выдержкой в течение 5-10 минут в области температурного максимума и ее механическую обработку. Обеспечивается улучшение физико-механических характеристик керамической пластины для режущего инструмента. 1 табл., 3 пр.

Изобретение относится к способу получения керамических пластин режущего инструмента для обработки резанием труднообрабатываемых материалов, таких как жаропрочные и легированные стали. Способ включает прокаливание глинозема, его виброизмельчение, обогащение, сушку с получением оксида алюминия модификации α-Аl2O3. Полученный оксид алюминия смешивают с легирующими компонентами при следующем соотношении компонентов, мас.%: оксид алюминия 58-60, карбид титана 30-32, оксид хрома 5-7, никель 2-3, молибден 1-2. Далее осуществляют пластификацию и горячее прессование с получением отпрессованной пластины, спекание и отжиг с выдержкой 5-10 мин в области температурного максимума полученной пластины и ее механическую обработку. Изобретение обеспечивает повышение стойкости полученных керамических пластин при обработке труднообрабатываемых материалов до 35-40 мин, твердость и прочность при изгибе до 990 МПа. 1 табл., 3 пр.

Изобретение относится к порошковой металлургии, в частности к твердым сплавам на основе карбида вольфрама. Может использоваться при обработке материалов резанием. Твердый сплав содержит, вес.%: вольфрам 78,0-80,2, углерод 5,6-5,8, молибден 5,7-7,0, кобальт 8,0-8,4 или вольфрам 77,0-78,5, углерод 7,0-7,2, молибден 2,9-3,2, кобальт 8,1-8,4, титан 3,5-3,8. Обеспечивается повышение коэффициента стойкости и сохранение механических свойств сплава при его удешевлении. 2 н.п. ф-лы, 3 табл.
Изобретение относится к порошковой металлургии, в частности к твердым сплавам на основе карбида вольфрама. Может использоваться для изготовления режущего инструмента. Твердый сплав содержит, мас.%: кобальт 3,5-5,3; железо 1,4-3,2; медь 0,8-1,0; карбид вольфрама - остальное. Твердый сплав содержит, мас. %: кобальт 5,1-5,6; молибден 1,8-2,5; титан 0,5-0,8; карбид вольфрама - остальное. Сплав обладает высокой твердостью и износостойкостью. 2 н.п. ф-лы, 1 табл., 2 пр.

Способ характеризуется тем, что для пары инструмент-деталь при различных скоростях резания v определяют тангенциальные силы резания Pz, флуктуации тангенциальных сил резания P ˜ z , флуктуации скорости резания υ ˜ и переменную термоЭДС ε ˜ , а в качестве критерия оптимальной скорости резания используют мощность флуктуаций N ˜ = P ˜ z υ ˜ или коэффициент использования мощности флуктуаций K N = N ˜ N ¯ = P ˜ z υ ˜ P z υ , или аналог производства энтропии от тепловых процессов на контакте S ˜ = P ˜ z υ ˜ ε ˜ , при этом значение оптимальной скорости резания, соответствующей минимальной интенсивности изнашивания инструмента, определяют по максимальному значению мощности флуктуаций, полученной на кривой изменения комплекса мощности флуктуаций или по точке перелома коэффициента использования мощности флуктуаций, полученного на кривой изменения комплекса коэффициента использования мощности флуктуаций или по минимальному значению параметра аналога производства энтропии от тепловых процессов на контакте, полученного на кривой изменения комплекса аналога производства энтропии от тепловых процессов на контакте. Техническим результат: повышение точности выбора оптимальной скорости резания при подборе инструментального материала с максимальной износостойкостью. 3 н.п. ф-лы, 3 ил.

Изобретение относится к обработке материалов резанием, в частности к способу выбора твердого сплава для твердосплавного режущего инструмента. Сплав выбирают из группы твердых сплавов. Рассчитывают значение энтропии для каждого из упомянутых сплавов. Путем сравнения рассчитанных энтропии с энтропией сплава, базового для обрабатываемого материала, выбирают в качестве материала для режущего инструмента твердый сплав со значением энтропии, превосходящей энтропию базового сплава Обеспечивается упрощение выбора твердого сплава, при обеспечении максимальной работоспособности режущего инструмента. 2 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к машиностроению, в частности к станкостроению, предназначено для построения систем диагностики разрушения режущего инструмента на станках с ЧПУ и обрабатывающих центрах, и может быть использовано в качестве наглядного пособия для студентов станкостроительных специальностей в лабораторных работах для изучения систем диагностики процесса резания, базирующихся на использовании виброакустической эмиссии (ВАЭ) зоны резания

 


Наверх