Патенты автора Гращенков Денис Вячеславович (RU)

Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива. Предложен керамический композиционный материал, содержащий, мас.%: 5-7 нитрида алюминия AlN, 5-15 карбидокремниевых нитевидных кристаллов SiCw, 3-5 оксида иттрия Y2O3, и SiC в качестве основы. Керамический материал получен методом искрового плазменного спекания с применением индукционного нагрева. Технический результат - снижение температуры спекания керамического композиционного материала до 1800-1900°С, повышение рабочей температуры до 1500°С и жаростойкости (изменение массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°С в течение 500 ч не более 3%) при сохранении прочностных характеристик при комнатной температуре, а также обеспечение теплопроводности материала на уровне 65-100 Вт/м⋅К. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния, и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до 1500°C на воздухе и в продуктах сгорания топлива. Керамический композиционный материал имеет следующий химический состав, мас.%: SiC 25-55; В4С 15-25; нитевидные кристаллы SiCw 20-40; AlN - остальное. Керамический композиционный материал обладает рабочей температурой 1500°C, трещиностойкостью 7,1-8,0 МПа⋅м1/2, прочностью при изгибе 490-520 МПа, твердостью 27-29 ГПа, термостойкостью по режиму 1500↔20°C не менее 100 циклов, жаростойкостью (изменением массы) при температуре 1500°C в течение 500 ч не более 0,5% и низкой плотностью 3,04 г/см3. Способ получения керамического композиционного материала включает приготовление шихты путем перемешивания указанных исходных компонентов в среде изопропилового спирта в пропорции шихта : изопропиловый спирт 1:5 на магнитной мешалке со скоростью 900-1000 об/мин и при воздействии ультразвука частотой не менее 22 кГц в течение 4,5-5 ч, сушку шихты в сушильном шкафу при температуре 100°C в течение 4-6 ч, обработку методом искрового плазменного спекания в режиме совмещенного нагрева с индуктором при температуре 1700-1800°C в течение 15-20 мин и давлении прессования 40-50 МПа. 2 н. и 2 з.п. ф-лы, 3 пр., 2 табл.

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе Ni3Al содержит, масс.%: Al 8,2-8,8, Cr 4,5÷5,5, W 4,4÷4,8, Мо 3,2÷3,8, Ti 1,0÷1,6, Hf 0,4÷0,8, Al2O3-Y2O3 или Al2O3-Y2O3-HfO2 2,0-5,0, Ni - остальное. Предложен также способ получения указанного материала, включающий вакуумную индукционную выплавку интерметаллидного матричного сплава, распыление его на порошок, перемешивание в высокоэнергетической установке интерметаллидного порошка и частиц оксидов, сфероидизацию, компактирование. После чего проводят горячее изостатическое прессование с последующей горячей экструзией или гибридное искровое плазменное спекание с дальнейшим горячим изостатическим прессованием. Изобретение обеспечивает металлокерамический композиционный материал с повышенной прочностью при изгибе, по длительности во времени до разрушения при 1200°С, а также с повышенной ударной вязкостью и кратковременной прочностью при растяжении при комнатной температуре и при 1200°С при плотности менее 8,0 г/см3. 2 н. и 4 з.п. ф-лы, 2 табл., 6 пр.

Изобретение относится к высокотемпературным композитам, стойким к окислению и термическим ударам при контакте с расплавленным металлом, и может быть использовано при изготовлении сопел для распыления металлов и сплавов. Керамический композиционный материал на основе нитрида бора содержит следующие компоненты, об. %: нитрид бора 71-73, диоксид циркония 17-19, карбид кремния 8-9, диборид циркония 1-2. При заявленном содержании и соотношении компонентов нитрида бора и диоксида циркония в предлагаемом керамическом композиционном материале образуется мелкозернистая структура с содержанием тетрагонального диоксида циркония, имеющего свойство трансформационного упрочнения, что обеспечивает повышение коррозионной стойкости и механических свойств. Карбид кремния и диборид циркония способствуют окислительной стойкости и уменьшают негативное влияние теплового расширения. 2 табл.

Изобретение относится к строительной отрасли. Способ изготовления полого конструктивного элемента из композиционного материала включает заполнение газом удлиненной надувной формы, нанесение на нее антиадгезионного воздухонепроницаемого слоя и слоя армирующего наполнителя с получением заготовки, придание заготовке дугообразной формы, нанесение на нее гибкого воздухонепроницаемого слоя, пропитку слоя армирующего наполнителя связующим методом вакуумной инфузии, отверждение связующего и удаление из заготовки удлиненной надувной формы. Удлиненную надувную форму заполняют газом до давления 1,175-1,225 атм. Поверх антиадгезионного воздухонепроницаемого слоя наносят слой распределительной сетки. Поверх армирующего наполнителя наносят слой жертвенной ткани и слой распределительной сетки. На концах заготовки зажимают нанесенные на удлиненную надувную форму слои, кроме антиадгезионного воздухонепроницаемого слоя, растягивают их, придают заготовке дугообразную форму посредством изгиба на изогнутой поверхности. Повторно растягивают зажатые слои, нанесенные на удлиненную надувную форму, размещают вдоль армирующего наполнителя перфорированный шланг. После нанесения на заготовку гибкого воздухонепроницаемого слоя создают вакуум под указанным слоем и проводят пропитку армирующего наполнителя связующим через перфорированный шланг. Технический результат - повышение надежности способа изготовления полого конструктивного элемента из композиционного материала, а также уменьшение количества дефектов на его поверхности. 3 з.п. ф-лы, 1 ил., 3 табл., 6 пр.

Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием. Описан способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью, характеризующейся соотношением r>1, где r - фактор шероховатости, определяемый отношением площадей реальной поверхности и ее геометрической проекцией на плоскость, осаждают гидрофобный материал из раствора в сверхкритическом CO2, при этом подложку вместе с гидрофобным материалом помещают в реактор, реактор герметизируют и создают в нем раствор в сверхкритическом CO2 с концентрацией 0,001-100 г/л, а осаждение проводят при давлении от 7 до 100 МПа и температуре от 35 до 200°С в течение времени от 15 мин до 24 ч, после чего проводят декомпрессию, отличающийся тем, что в качестве гидрофобного материала осаждения используют фторпарафин, при этом фторпарафин осаждают в объеме высокотемпературного пористого керамического материала, скорость декомпрессии составляет 1-60 мл/ч. Также описан гидрофобный пористый керамический материал. Технический результат: получен пористый материал с водоотталкивающей способностью. 2 н. и 1 з.п. ф-лы, 1 табл., 1 ил., 16 пр.

Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными и дискретными волокнами оксида алюминия, предназначенным для использования в качестве конструкционного материала для изготовления изделий, таких как корпуса вентилятора газотурбинных двигателей, и может быть использовано в авиационной технике. Волокнистый композиционный материал на основе алюминия состоит из металлической матрицы из сплава на основе алюминия, содержащего магний, и непрерывных волокон из оксида алюминия α-Al2O3 с покрытием, содержащим дискретные волокна муллита 3Al2O3⋅2SiO2, при этом покрытие дополнительно содержит дискретные волокна α-Al2O3 размером 150-200 мкм при следующем содержании компонентов в композиционном материале, об.%: дискретные волокна муллита 3Al2O3⋅2SiO2 - 2-7, дискретные волокна α-Al2O3 - 10-15, непрерывные волокна α-Al2O3 - 30-40, матрица из сплава на основе алюминия - остальное. Техническим результатом изобретения является повышение прочностных свойств композиционного материала, в особенности прочность при изгибе и прочность при сжатии за счет изотропности материала. 3 з.п. ф-лы, 4 пр., 1 табл.

Изобретение относится к области металлургии, в частности к способу получения полуфабриката, состоящего из волокон тугоплавких соединений и напыленного на них матричного материала из титана и его сплавов, предназначенного для изготовления волокнистого композиционного материала, применяемого в качестве конструкционного материала при изготовлении тяг привода реверса, лопаток КНД и КВД, вала вентилятора, и может быть использовано в авиационной технике, а также транспорте, робототехнике, судостроении. Способ включает покрытие непрерывных волокон, выбранных из группы, содержащей бор, карбид кремния и оксид алюминия, титан или титановый сплав, методом физического осаждения из газовой фазы, при этом перед осаждением проводят плазменную очистку волокон с подачей инертного газа, осаждение осуществляют при мощности от 3 до 7 кВт в течение 2-8 часов без реакционноспособной атмосферы, после чего осуществляют термическую обработку напыленных волокон при температуре 600-850°C. Способ позволяет получить на волокнах равномерное однородное по составу покрытие, что повышает их прочность на растяжение. 4 пр., 1 табл.

Изобретение относится к области соединения керамических материалов с образованием керамического соединительного слоя и может быть использовано при производстве сложнопрофильных керамических конструкций для энергетического машиностроения, двигателестроения, аэрокосмической техники. Композиция для соединения керамических композиционных материалов на основе карбида кремния содержит порошок кристаллического кремния, углеродсодержащий материал - сажу или искусственный графит, порошок аморфного бора и порошок карбида кремния в следующем соотношении, мас. %: Si - 30-33 и 34-38, С - 18-19 и 21-22, В - 5-12 и 13-15, SiC - остальное. Композиция используется для соединения керамических композиционных материалов на основе карбида кремния в условиях образования карбида кремния из углерода и кремния. Соединение устойчиво к резким теплосменам и сохраняет прочность на сдвиг не ниже 21 МПа. 3 пр., 2 табл.

Изобретение относится к области покрытий керамических материалов, в частности к керамическим покрытиям, и может быть использовано для защиты керамических материалов, применяемых в авиакосмической технике. Высокотемпературное антиокислительное покрытие для керамических композиционных материалов на основе карбида кремния включает оксиды циркония, гафния, иттрия, карбид кремния и диборид гафния при следующем соотношении компонентов, мас.%: оксид циркония 24-33, оксид гафния 18-24, оксид иттрия 10-18, диборид гафния 10-20, карбид кремния - остальное. Технический результат изобретения - защита материала на основе карбида кремния от окисления при температуре 1750°C не менее 500 часов. 1 табл.

Изобретение относится к порошковой металлургии, а именно к технологии получения высокотемпературных волокнистых металломатричных композиционных материалов на основе молибдена. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива гранул из частиц порошка, в полученный массив гранул добавляют непрерывные керновые волокна SiC и проводят двустороннее горячее прессование полученной смеси при температуре 1300-1500°C, давлении 24-35 МПа и времени выдержки не менее 5 минут. Обеспечивается получение композиционного материала на основе молибдена с повышенным пределом прочности, практической плотностью, равной не менее 95% от теоретической и не более 9 г/см3, и с пористостью не более 8%. 5 з.п. ф-лы, 3 пр.
Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива гранул из частиц порошка. Механическое легирование проводят в защитной атмосфере в течение 40-60 часов. В полученный массив гранул добавляют монокристаллические волокна α-Al2O3 и проводят двустороннее прессование полученной смеси при температуре 1400-1430°C и давлении 28-35 МПа не менее 3-х минут. Обеспечивается повышение предела прочности композиционного материала на основе ниобия, при этом материал имеет плотность, составляющую не менее 95% от теоретической. 3 з.п. ф-лы, 3 пр.
Изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе никеля включает перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава. Порошки перемешивают с получением смеси, содержащей оксид металла с его объемным содержанием 1-3,5 %, 7,5-8,5 мас. % алюминия, 4-5 мас. % хрома, 2-2,5 мас. % вольфрама, 2,5-3,5 мас. % кобальта, 0,8-1,5 мас. % титана, Ni - остальное. Механическое легирование проводят в высокоэнергетической установке для размола и смешивания в защитной атмосфере в течение 40-60 часов. Компактирование проводят методом горячей экструзии при температуре 1100-1250°C и с коэффициентом вытяжки 11-16. Полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C и коэффициенте деформации 15-20% за один проход. Обеспечивается получение композиционного материала на основе никелевой матрицы, упрочненного оксидом алюминия, с прочностью на растяжение при комнатной температуре не менее 900 МПа и плотностью ≤8,0 г/см3. 3 з.п. ф-лы, 3 пр.

Группа изобретений относится к области керамических композиционных материалов, армированных дисперсными частицами тугоплавких соединений, а также теплонагруженных изделий из данных материалов, и может быть использована в энергетическом машиностроении и аэрокосмической технике, в частности для деталей горячего тракта газотурбинных двигателей (ГТД). Предложенный керамический композиционный материал, содержащий армирующий наполнитель в виде углеродного рубленого волокна, кремний, карбид кремния, диоксид гафния, дополнительно содержит бор, оксид иттрия и диборид гафния, при следующем соотношении компонентов, мас.%: Si 10-15; SiC 30-40; HfB2 10-15; бор 1-5; Y2O3 1-5; углерод (волокно) 5-10; HfO2 - остальное. Предложено также изделие, выполненное из данного керамического композиционного материала. Технический результат изобретения - состав керамического композиционного материала обеспечивает убыль массы не более чем на 3 мас.% в атмосфере воздуха при температуре 1800°С в течение 500 ч, а также стойкость в дозвуковом высокоэнтальпийном потоке диссоциированного воздуха при температуре 2000°С в течение 600 с, т.е. обладает высокой стойкостью к окислению при экстремальных условиях. 2 н. и 1 з.п. ф-лы, 3 табл.
Настоящее изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе железа включает перемешивание порошков для матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава. Порошки перемешивают с получением смеси, содержащей оксида металла при его объемном содержании 1-3%, 18-21 мас.% хрома, 4,5-5,5 мас.% алюминия, 0,4-0,6 мас.% титана и железо - остальное. Механическое легирование проводят в высокоэнергетической установке для размола и смешивания в течение 40-60 часов. Компактирование проводят методом горячей экструзии при температуре 1100-1250°C с коэффициентом вытяжки 11-16. Полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C с коэффициентом деформации 15-20% за один проход. Обеспечивается получение композиционного материала с практической плотностью, равной не менее 96% от теоретической и не более 7,3 г/см3, с пористостью не более 4%, с повышенной прочностью и с направленной структурой, характеризующейся значениями коэффициента неравноосности зерен от 30 до 40. 3 з.п. ф-лы, 3 пр.

Изобретение относится к защитным покрытиям от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей. Технический результат изобретения заключается в понижении значений окисляемости и в повышении термостойкости и сцепления покрытия с поверхностью защищаемых жаропрочных никелевых сплавов при температурах нагрева до 1250°C. Защитное технологическое покрытие включает, мас.%: Al2O3 2-21, BaO 16-18, CaO 7,5-9, MgO 6-8,5, B2O3 3-15, MgO·Cr2O3 1,5-2, TiB2 3-5, Ni3Al 1,5-3,5, BaO·B2O3 5-7,5, SiO2 - остальное. 2 табл., 3 пр.
Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении деталей и узлов неохлаждаемых конструкций нового поколения авиационных газотурбинных двигателей с повышенными характеристиками удельной мощности и топливной экономичности, работающих при температурах до 1750°С в условиях воздействия окислительных сред. Техническим результатом изобретения является повышение жаростойкости изделий. Керамический композиционный материал включает кремний, углерод, карбид кремния и оксидную систему ZrO2-HfO2-Y2O3 при следующем соотношении компонентов, мас. %: Si - 15-30; С - 20-40; оксидная система ZrO2-HfO2-Y2O3 - 3-15; SiC - остальное. Причем оксидная система ZrO2-HfO2-Y2O3 имеет химический состав, мас. %: ZrO2 - 55-80; HfO2 - 15-30; Y2O3 - 3-15. 2 табл.
Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными волокнами оксида алюминия, и может быть использовано в качестве конструкционного материала в авиационной технике. Волокнистый композиционный материал представляет собой металлическую матрицу на основе алюминия, упрочненную непрерывными волокнами оксида алюминия, покрытыми дискретными волокнами на основе муллита 3Al2O3·2SiO2. Техническим результатом изобретения является повышение прочности при изгибе и сжатии и модуля упругости материала. 5 з.п. ф-лы, 5 пр., 1 табл.
Изобретение относится к способам получения композиционных материалов для теплоотводящих оснований полупроводниковых приборов, в частности, композиционного материала Al-SiC, имеющего металлическое покрытие, и изделиям, полученным с использованием этих материалов. Способ включает пропитку порошка SiC расплавом алюминия или алюминиевого сплава и диффузионное соединение пропитанной заготовки с алюминиевой фольгой, размещенной, по крайней мере, с одной ее стороны, в котором порошок SiC используют в виде предварительно скомпактированной в форме теплоотводящего основания пористой заготовки, размещение алюминиевой фольги на пористой заготовке осуществляют перед пропиткой ее расплавом алюминия или алюминиевого сплава, а их диффузионное соединение совмещают с пропиткой пористой заготовки. Пористые заготовки с размещенной по крайней мере на одной стороне алюминиевой фольгой перед пропиткой алюминием или алюминиевым сплавом могут быть собраны в пакет, включающий две и более пористых заготовок. Пористые заготовки в пакете отделяют друг от друга металлическими пластинами, имеющими температуру плавления выше температуры плавления алюминия или алюминиевого сплава. Изобретение позволяет снизить время технологического цикла, повысить производительности процесса и, соответственно, понизить стоимость получаемых изделий для электронной промышленности. 3 н. и 2 з.п. ф-лы, 1 табл., 4 пр.
Изобретение относится к эпоксидным композициям холодного отверждения и может быть использовано для изготовления конструкций, в том числе крупногабаритных, из полимерных композиционных материалов (ПКМ) методом вакуумной инфузии в областях техники

Изобретение относится к области технологии формования конструкций из полимерных композиционных материалов, предназначенных для изготовления быстровозводимых арочных мостов, при сооружении тоннелей, ангаров и других строительных конструкций

Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных установок и двигателей газо-, нефтеперекачивающих, транспортных и энергетических систем, работающих в условиях высоких термоциклических нагрузок при температурах до 1650°С на воздухе и в продуктах сгорания топлива
Изобретение относится к области высокопрочных композиционных материалов на основе волокнистых наполнителей и полимерных связующих, которые могут быть использованы в авиационной промышленности, в машиностроении и других областях техники
Изобретение относится к авиационной технике и машиностроению и может быть использовано в качестве защиты от окисления керамических композиционных материалов для деталей горячего тракта перспективных газотурбинных установок (ГТУ) и газотурбинных двигателей (ГТД) транспортных систем и энергомашиностроения, эксплуатирующихся в условиях воздействия окислительных сред и продуктов сгорания топлива при температурах до 1600°С
Изобретение относится к стеклокерамическим композиционным материалам на основе наноструктурированных стеклокерамических матриц, армированных углеродными наполнителями, для изготовления кольцевых элементов и деталей перспективной авиационно-космической техники с рабочей температурой до 1300°С, эксплуатирующихся в условиях окислительной и других агрессивных сред и испытывающих в процессе работы большие механические нагрузки
Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых в условиях циклических нагревов при температуре 1400°С
Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей горячего тракта перспективных газотурбинных установок и газотурбинных двигателей транспортных систем и энергомашиностроения, работающих при температурах до 1600°С в условиях воздействия окислительных сред
Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей рабочих аппаратов газовых турбин, газоходов энергетических агрегатов и др., работающих при температуре 1350°С
Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стеклокерамических матриц, армированных углеродными наполнителями для изготовления теплонагруженных узлов и деталей перспективной авиационно-космической техники, наземных, энергетических, нефте-, газоперекачивающих, транспортных систем и новых областей общего и специального машиностроения, работающих при температурах до 1300°С
Изобретение относится к области машиностроения, а именно к жаростойким покрытиям для защиты деталей газотурбинных двигателей (камера сгорания, жаровые трубы, газоводы и др.) из жаропрочных сплавов от высокотемпературной газовой коррозии в процессе эксплуатации при температуре 1200°С
Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей авиационно-космической техники, в наземных энергетических, нефтегазоперекачивающих, транспортных системах и новых областях общего и специального машиностроения, работающих при температурах до 1550°С
Изобретение относится к технологии нанесения керамических покрытий на углеродсодержащие материалы - углеродные волокна и нанотрубки с целью защиты изделий на их основе от окисления на воздухе при повышенных температурах эксплуатации
Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стеклокристаллических матриц, армированных углеродными наполнителями для изготовления теплонагруженных деталей с острой кромкой, таких как стойки, проставки переходных устройств, элементы резьбового крепежа и т.д
Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике и машиностроении
Изобретение относится к композиционным материалам на основе стекломатриц, армированных непрерывными углеродными наполнителями, используемым для изготовления кольцевых элементов, применяющихся в авиационной, космической технике и машиностроении

 


Наверх