Патенты автора Ковальногов Владислав Николаевич (RU)

Изобретение относится к газовой промышленности, в частности к автомобильной газонаполнительной компрессорной станции (АГНКС) для осушки природного газа в устройстве осушки. Устройство осушки компримированного природного газа содержит систему трубопровода с расположенными на нём обратными клапанами, кранами шаровыми, вентилями запорными манометровыми, манометрами, два параллельно подключенных и последовательно регенерируемых адсорбера, после которых расположен клапан поддержания давления и линия регенерации газа с установленными на ней кранами игольчатыми, регулирующим клапаном, дроссельными вентилями, электронагревателем, рекуперативным теплообменником, клапанами предохранительными. Устройство снабжено фильтром тонкой очистки, установленным после регенерируемых адсорберов, устройством газодинамической температурной стратификации, соединённым с клапаном поддержания давления, влагоотделителем, электроприводными шаровыми кранами, устройством разрывным и коллектором продувок. Технический результат - упрощение конструкции блока осушки АГНКС, увеличение надежности его работы, снижение потребных энергетических затрат. 1 ил.

Группа изобретений относится к методам переработки твердых бытовых и промышленных отходов. Способ экологически чистой переработки твердых бытовых отходов на мультитопливном энергетическом комплексе включает переработку органических отходов с получением биогаза и гумуса, переработку расплавленного шлака в теплоизоляционные материалы. Прием твердых бытовых отходов на мультитопливный энергетический комплекс производят раздельно на площадке для приема и подготовки органических и неорганических отходов. Неорганические отходы после измельчения перерабатывают на установке плазменно-химической переработки, а полученное топливо, биогаз и синтез-газ используют на тепловой электрической станции для получения тепловой и электрической энергии. Устройство переработки твердых бытовых отходов включает установку по переработке органики, установку плазменно-химической переработки, установку по переработке расплавленного шлака, блок очистки биогаза, блок переработки СО2, блок получения углекислоты и блок каталитической переработки. Устройство снабжено газгольдером для аккумулирования метано-водородного топлива и газгольдером для аккумулирования низкокалорийного топлива, газораспределительным пунктом электростанции, блоком очистки и разделения синтез газа и блоком подготовки топлива. При этом выходы блока очистки и разделения синтез газа и газораспределительного пункта электростанции связаны с входом блока подготовки топлива, выход которого связан с газгольдером для аккумулирования метано-водородного топлива, а выходы газгольдера для аккумулирования низкокалорийного топлива, газгольдера для аккумулирования метано-водородного топлива и газораспределительного пункта электростанции связаны со входом тепловой электростанции. Технический результат заключается в переводе части энергетического оборудования традиционных тепловых электростанций на комбинированное сжигание топлива, использование возобновляемых источников энергии на тепловой электростанции, снижение вредных выбросов в атмосферу. 2 н.п. ф-лы, 1 ил.

Изобретение относится к теоретической теплотехнике. Способ определения коэффициента диффузии жидкости в капиллярно-пористом теле, включающий погружение в воду капиллярно-пористого тела и определение изменения с течением времени его массы, отличающийся тем, что на тело воздействуют ультразвуком, по результатам эксперимента строят зависимость натурального логарифма избыточной массы от времени, на полученной зависимости выделяют стадию регулярного режима влагопереноса, характеризуемую тем, что опытные точки на графике сгруппированы около прямой линии, а тангенс угла наклона этой прямой к оси абсцисс на графике численно равен значению темпа регулярного режима влагопереноса, затем коэффициент диффузии жидкости в капиллярно-пористом теле определяют по формуле: D=Km, где K - коэффициент формы тела; m - темп регулярного режима влагопереноса. Технический результат заключается в обеспечении возможности определения коэффициента диффузии при воздействии ультразвуком. 1 ил.

Изобретение относится к энергетике и машиностроению и может использоваться в двигателестроении. Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором с подачей электролита в поток забираемого в двигатель воздуха, электролизер-кавитатор, местное сужение канала с центральным телом. Причём, подвод постоянного электрического тока от аккумулятора к элементам кавитатора осуществляют, например, к его местному сужению и к его центральному телу. На выходе из камеры сгорания установлено устройство для разделения потока газа, содержащее сверхзвуковое сопло, внешнюю трубу, внутреннюю трубу, коаксиально расположенные друг относительно друга, канал рециркуляции дозвукового потока обратно в камеру сгорания. При этом в направляющих лопатках компрессора газотурбинного двигателя выполнены демпфирующие полости. Изобретение позволяет увеличить запас газодинамической устойчивости компрессора газотурбинного двигателя, снизить сопротивление направляющих лопаток, повысить КПД газотурбинного двигателя. 3 ил.

Газотурбинный двигатель с паровыми форсунками содержит корпус и герметизирующую вход в корпус крышку, компрессор, камеру сгорания, систему подачи электролита через форсунку с кавитатором, воспламеняющее устройство, турбину и электролизер. Герметизирующая вход в корпус крышка выполнена с возможностью регулируемого забора воздуха в двигатель. Система подачи электролита выполнена с возможностью подачи электролита через форсунку с кавитатором в поток забираемого в двигатель воздуха и с возможностью подачи топлива в камеру сгорания. Электролизер выполнен в виде кавитатора с центральным телом путем подводки постоянного электрического тока от источника питания к элементам кавитатора и установлен в обособленном корпусе. Корпус герметично соединен с камерой сгорания, с возможностью подачи газовой смеси под давлением за компрессором через этот электролизер-кавитатор с центральным телом в камеру сгорания, трубу Леонтьева для разделения потока газа из камеры сгорания на дозвуковую и сверхзвуковую составляющие, канал рециркуляции дозвукового потока. Перед трубой Леонтьева установлена паровая форсунка, впрыскивающая пар в дозвуковой и сверхзвуковой потоки газа. Изобретение приводит к большему повышению температуры газа перед турбиной и, следовательно, к повышению КПД. 2 ил.

Газотурбинный двигатель с внешним теплообменником содержит корпус и герметизирующую вход в корпус крышку, компрессор, камеру сгорания, систему подачи электролита через форсунку с кавитатором, воспламеняющее устройство, турбину и электролизер. Герметизирующая вход в корпус крышка выполнена с возможностью регулируемого забора воздуха в двигатель. Система подачи электролита выполнена с возможностью подачи электролита через форсунку с кавитатором в поток забираемого в двигатель воздуха и с возможностью подачи топлива в камеру сгорания. Электролизер выполнен в виде кавитатора с центральным телом путем подводки постоянного электрического тока от источника питания к элементам кавитатора и установлен в обособленном корпусе, герметично соединенном с камерой сгорания, с возможностью подачи газовой смеси под давлением за компрессором через этот электролизер-кавитатор с центральным телом в камеру сгорания, трубу Леонтьева для разделения потока газа из камеры сгорания на дозвуковую и сверхзвуковую составляющие, канал рециркуляции дозвукового потока. Канал рециркуляции дозвукового потока соединен с теплообменником. Изобретение направлено на сокращение расхода топлива и повышение экономичности двигателя. 2 ил.

Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором, размещенный в корпусе вал компрессора и турбины, электролизер-кавитатор, местное сужение канала с центральным телом. Электролизер-кавитатор установлен в обособленном корпусе герметично, соединенном с камерой сгорания и с возможностью подачи газовой смеси под давлением за компрессором, через электролизер-кавитатор с центральным телом в камеру сгорания с воспламеняющим устройством. На выходе из камеры сгорания установлено устройство для разделения газового потока, содержащее сверхзвуковое сопло, внешнюю трубу, внутреннюю трубу, коаксиально расположенные друг относительно друга, канал рециркуляции дозвукового потока обратно в камеру сгорания. Изобретение направлено на увеличение КПД газотурбинного двигателя. 2 ил.

Изобретение относится к вентиляции и может быть использовано в гражданских зданиях. Система обеспечения микроклимата содержит ветрогенератор 1 с трансмиссией 2, тормозной системой 3 и лопастями 4, сопряженный с ресивером 5, соединенным с одной стороны с пневматическим пусковым двигателем 6, подключенным к ветрогенератору 1, а с другой стороны через сверхзвуковую трубу 7 температурной стратификации, устройство 8 для забора наружного воздуха, воздушный фильтр 9 для очистки воздуха к вентилятору 10, сопряженному с электродвигателем 11, сетью воздуховодов 12, дроссель-клапаном 13, воздухораспределительными устройствами 14. 2 ил.

Изобретение относится к вентиляции и может быть использовано в гражданских зданиях. Система обеспечения микроклимата содержит устройство для забора наружного воздуха, воздушный фильтр 2 для очистки воздуха, элемент Пельтье, вентилятор, электродвигатель, сеть воздуховодов, дроссель-клапан, воздухораспределительные устройства, ветрогенератор с электрогенератором, подключенным к элементу Пельтье, соединенным с одной стороны с воздухораспределительными устройствами, а с другой стороны - с устройством для забора наружного воздуха через воздушный фильтр. Ветрогенератор также содержит трансмиссию, тормозную систему и лопасти. Технический результат заявленного изобретения заключается в снижении затрат энергии на вентиляцию помещения путем использования возобновляемого источника энергии - энергии ветра. 2 ил.

Изобретение относится к технологическим процессам сушки керамических изделий. Техническим результатом предлагаемого способа является повышение энергетической эффективности процесса сушки. Способ сушки включает регенерацию сушильного агента, заключающуюся в том, что сушильный агент подают в сушильную камеру навстречу объекту сушки; затем осушают и вновь подают в сушильную камеру, при этом осушение сушильного агента осуществляют в трубе газодинамической температурной стратификации. 2 ил.

Изобретение относится к теоретической теплотехнике и может быть использовано для определения коэффициента диффузии жидкости в материалах, имеющих капиллярно-пористую структуру

Изобретение относится к области машиностроения, а именно к способам поверхностного пластического деформирования

Изобретение относится к области машиностроения, сверлению отверстий в деталях из различных материалов

Изобретение относится к машиностроению, а именно к обработке металлов лезвийным инструментом с применением смазочно-охлаждающих жидкостей (СОЖ) на операциях изготовления отверстий малого диаметра из различных материалов осевым режущим инструментом
Изобретение относится к области машиностроения и может быть использовано на операциях шлифования заготовок из металлов и сплавов

 


Наверх