Патенты автора Сульман Михаил Геннадьевич (RU)

Настоящее изобретение относится к способу получения N-метилглюкозамина реакцией восстановительной конденсации с аминирующим агентом метиламином в среде водорода с использованием Ni-Ru катализатора на основе сверхсшитого полистирола и может быть использовано в медицинской и фармацевтической практике для повышения солюбилизации и стабилизации биологически активных препаратов. Способ включает получение Ni-Ru катализатора на основе сверхсшитого полистирола взаимодействием 10 г сверхсшитого полистирола с 10 г раствора ацетата никеля Ni(Ас)2 в 200 мл деионизированной воды, упаривание полученной суспензии в выпарной установке до сыпучего состояния с последующей сушкой в термостатированном шкафу при температуре 90°С, восстановление водородом в стеклянной трубке при 300°С в течение шести часов, охлаждение до комнатной температуры и пропитку водным раствором 0.3 г гидроксихлорид рутения в 100 мл деионизированной воды, промывание водой, упаривание в вакуумной выпарной установке, сушку в термостатированном шкафу при температуре 90°С, затем восстановление водородом и проведение восстановительной конденсации с аминирующим агентом метиламином, для чего к полученному катализатору добавляют спиртовой раствор D-глюкозы и метиламин в соотношении от 1:1 до 1:1,2, продувают трижды азотом под давлением 0.2 МПа, подают водород под давлением от 5 МПа до 10 МПа, нагревают до температуры от 60°С до 120°С и выдерживают в течение от 1 часа до 4 часов в среде этанола. Технический результат – повышение выхода N-метилглюкозамина, эффективности и стабильности процесса восстановительной конденсации. 5 ил., 4 табл., 9 пр.

Изобретение относится к тонкому органическому синтезу и может быть использовано в химической и топливной промышленности для разработок и получения топливных добавок и «зеленого» растворителя. Представлен способ получения гамма-валеролактона реакцией гидрирования левулиновой кислоты (ЛК) с применением композита Ru/HZSM-5, включающий взаимодействие цеолита ZSM-5 с 0.1 н. раствором хлорида аммония при перемешивании в течение 24 часов, отделение полученного цеолита центрифугированием, промывание до значения рН 6.5-7.1 с последующей сушкой в термостате при 105°С в течение 3 часов, сушку и прокаливание цеолита в муфельном шкафу в течение 15 часов при температуре 500°С, пропитывание раствором гидроксотрихлорид рутения (Ru(ОН)Cl3) в смешанном растворителе, включающем 1 мл дистиллированной воды, 1 мл метанола и 10 мл тетрагидрофурана, затем сушку и обработку 0.1 н. раствором гидроксида натрия с добавлением перекиси водорода, промывание водой до нейтрального значения рН с последующей сушкой при температуре 70°С до постоянной массы полученного композита 4% Ru/HZSM-5 и проведение гидрирования ЛК в водной среде при температуре от 40°С до 100°С, парциальном давлении водорода от 0.5 МПа до 2 МПа, скорости перемешивания от 200 об/мин до 1000 об/мин, причем масса ЛК составляет от 0.75 г до 1.50 г, а масса композита составляет от 0.01 г до 0.03 г. Изобретение обеспечивает повышение технологичности и эффективности процесса получения ГВЛ. 2 ил., 5 табл., 5 пр.

Изобретение относится к способу получения фурфурилового спирта путем селективного гидрирования фурфурола в присутствии катализатора, в качестве которого применяется магнитоотделяемый катализатор 3% Ru-Fe3O4/СПСMN270. При этом гидрирование проводят в реакторе периодического действия при температуре 120°С, давлении водорода 6,0 МПа, в течение 90 мин, со скоростью перемешивания 1000 об/мин в присутствии изопропилового спирта в качестве растворителя и масса катализатора составляет 0,1 г. Технический результат - получение фурфурилового спирта с выходом свыше 93% при селективном гидрировании фурфурола с конверсией более 96%. 2 ил., 1 табл., 5 пр.

Изобретение относится к химической промышленности, а именно, к области производства гетерогенных катализаторов синтеза Фишера-Тропша, и может быть применено на предприятиях химической промышленности для получения жидких углеводородов. Катализатор синтеза Фишера-Тропша содержит носитель, железо в качестве главного компонента, рутений в качестве активатора гидрогенизации, при этом носителем является сверхсшитый полистирол, общее содержание железа и соединений железа в катализаторе составляет 0,94-2,98 мас.%, общее содержание рутения и соединений рутения в катализаторе составляет 0,44-1,44 мас.%, а содержание сверхсшитого полистирола - 96-98,2 мас.%. Способ получения катализатора синтеза Фишера-Тропша включает приготовление раствора соли железа и нанесение его на носитель, при этом в качестве раствора соли железа используют раствор, содержащий 0,07-0,21 г Fe(NO3)3·9H2O, 0,01-0,03 г RuOHCl3·2H2O и 0,09-0,11 г NaHCO3 в 15 мл дистиллированной воды, обработку носителя раствором соли железа проводят в гидротермальных условиях в течение 14-16 минут при давлении азота 5,9-6,1 МПа, температуре 195-205°С и перемешивании со скоростью 450-550 об/мин, далее смесь охлаждают до температуры 20-30°С, фильтруют, промывают 9,5-10,5 мл дистиллированной воды, сушат на воздухе при температуре 100-110°С в течение 3,5-4,5 часов и подвергают восстановлению в трубчатой печи при температуре 295-305°С в среде водорода с расходом 10-15 мл/мин в течение 3,5-4,5 часов, при этом используют сверхсшитый полистирол с размером гранул 440-460 мкм, степенью сшивки 190-210%, площадью внутренней поверхности 1300-1500 м2/г, узким распределением пор с максимумом 4,5 нм, с удельным объемом пор 0,8-1,0 см3/г, содержанием мезопор диаметром 20-50 - не менее 30%, диаметром 60-80 - не менее 10%, диаметром 200-800 - не менее 20%. Техническим результатом изобретения является повышение активности, стабильности, селективности по углеводородам С5-С14 катализатора в синтезе Фишера-Тропша за счет использования твердого носителя с большой площадью поверхности, формирования высокодисперсных равномерно распределенных частиц активной фазы, отсутствия в составе катализатора соединений серы, хлора, кремния и азота. 2 н.п. ф-лы, 3 табл., 30 пр.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе производных фенолов), и может быть применено на предприятиях различных отраслей промышленности для проведения реакций окисления, а также для каталитической очистки сточных вод от токсичных органических загрязнителей. Гетерогенный катализатор жидкофазного окисления органических соединений содержит носитель, модифицированный 3-аминопропилтриэтоксисиланом, глутаровый диальдегид в качестве сшивающего агента и пероксидазу корня хрена в качестве активного компонента, в котором носителем являются магнитные наночастицы Fe3O4, модифицированные SiO2, при следующем соотношении компонентов, % мас.: Fe3O4 - 34,2÷34,6; SiO2 - 41,0÷41,4; 3-аминопропилтриэтоксисилан - 18,3÷18,8; глутаровый диальдегид - 3,8÷4,0; пероксидаза хрена - 1,9÷2,0. Способ получения гетерогенного катализатора жидкофазного окисления органических соединений включает взаимодействие фермент содержащего раствора с модифицированным для получения альдегидных групп на поверхности носителем, при этом в качестве носителя используют магнитные наночастицы Fe3O4. Модификация носителя включает смешивание его с SiO2, суспендирование полученного порошка в растворе 3-аминопропилтриэтоксисилана, добавление к смеси раствора глутарового диальдегида, раствора пероксидазы хрена, перемешивание, промывку дистиллированной водой и высушивание при комнатной температуре до постоянной массы. Техническим результатом изобретения является повышение активности, селективности, операционной стабильности гетерогенного катализатора в реакции жидкофазного окисления органических соединений перекисью водорода и его способности к отделению от реакционной среды за счет использования твердого носителя с большой площадью поверхности, высокореакционноспособными аминогруппами на поверхности и магнитными свойствами. 2 н.п. ф-лы, 3 табл., 33 пр.

Изобретение относится к способу получения 4-метоксибифенила реакцией Сузуки, включающему взаимодействие 4-броманизола и фенилбороновой кислоты в растворителе в присутствии основания и катализатора Au-Pd/MN100, синтезированного методом последовательной импрегнации предварительно измельченного сверхсшитого полистирола марки MN100 сначала прекурсором золота, в качестве которого используют раствор HAuCl4 в тетрагидрофуране, затем его восстановлением в токе водорода при 300°С в течение 180 мин, а затем процесса импрегнации прекурсором палладия, в качестве которого используют раствор PdCl2(CH3CN)2 в тетрагидрофуране при температуре от 20 до 40°С, восстановлением 0.1 М раствором боргидрида натрия на холоде при температуре от 0 до 5°C с образованием биметаллических наночастиц со структурой ядро-оболочка, в которой в качестве ядра выступает золото, а в качестве оболочки палладий. При этом содержание золота в катализаторе составляет 2.0 мас.%, содержание палладия в катализаторе составляет от 0.4 до 1.2 мас.% с использованием MN100 предварительно измельченного, количество катализатора составляет от 0.16 до 0.545 мол.% по отношению к 4-броманизолу, в качестве растворителя реакции Сузуки применяют смесь этанол/вода в объемном соотношении 5:1, а в качестве основания – NaOH в количестве 1.5 ммоль при температуре 60°С в течение 180 мин в газовой атмосфере азота. Технический результат - повышение технологичности и эффективности процесса получения 4-метоксибифенила. 5 ил., 3 табл., 3 пр.
Изобретение относится к области биотехнологии, химической и пищевой промышленности, а именно к способу комплексной переработки продуктов жизнедеятельности Galleria mellonella, включающему экстракцию меланиновых веществ раствором NaOH, фильтрование, осаждение меланиновых веществ путем добавления раствора соляной кислоты, отделение полученного осадка от раствора центрифугированием, промывку осадка дистиллированной водой, замораживание осадка и сушку образовавшегося осадка, причем способ дополнительно содержит экстракцию продуктов жизнедеятельности Galleria mellonella гексаном, отделение гексана от шрота и перекачивание его в испаритель, упаривание гексана, осветление воска серной кислотой, сливание воска в формы, при этом экстракцию воска гексаном осуществляют при температуре не более 100±5°С в течение 60±5 минут, упаривание гексана производят в течение часа при температуре не более 100±5°С. Технический результат предлагаемого изобретения заключается в расширении сырьевой и технологической базы получения меланина и воска; повышении экологической безопасности перерабатывающих комплексов за счет безотходной технологии переработки продуктов жизнедеятельности большой пчелиной моли, включающей получение воска, меланина и удобрения; снижении себестоимости конечных продуктов. 13 пр.
Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения стимулятора роста растений из растительного сырья, включающий измельчение растительного сырья, смешивание сырья с водой, отделение хвойного экстракта фильтрованием. Согласно изобретению экстракцию водного раствора растительного сырья проводят при комнатной температуре 23±0,5°С в темноте в течение 24±0,25 часов при гидромодуле - 1:(20±2). При этом в качестве растительного сырья используют хвою ели. Изобретение позволяет упростить процесс получения стимуляторов роста растений без применения органических растворителей. 1 з.п. ф-лы, 7 пр.

Изобретение относится к фармацевтической промышленности, а именно к способу получения меланиновых веществ, получаемых из отходов маслоэкстракционного производства - лузги подсолнечника. Способ получения меланиновых веществ из лузги подсолнечника, включающий измельчение лузги подсолнечника, экстракцию меланиновых веществ раствором NaOH, фильтрование, осаждение меланиновых веществ путем добавления раствора соляной кислоты и сушку образовавшегося осадка, при этом из измельченной лузги подсолнечника фракции 1÷3 мм экстракцию меланиновых веществ проводят 0,095÷0,105 н. раствором NaOH при соотношении массы лузги подсолнечника к массе экстрагента 1:35÷1:45 при дополнительном одновременном воздействии ультразвуком с частотой 37±1 кГц и интенсивностью 414±5 Вт/см2, при температуре 60±5°С и постоянном перемешивании в течение 25±5 минут, осаждение меланиновых веществ путем добавления концентрированной соляной кислоты в объемном соотношении к фильтрату 1:65÷1:75, отделение полученного осадка от раствора осуществляют центрифугированием при 6000±10 об/мин в течение 5±0,5 мин, далее осадок промывают дистиллированной водой и замораживают его при температуре -19±1°С, после чего лиофильно сушат. Вышеописанный способ позволяет увеличить эффективность процесса, повысить чистоту и устойчивость получаемых меланиновых веществ за счет снижения содержания в продукте побочных продуктов, снизить себестоимость конечного продукта, а также уменьшить энергозатраты. 1 табл., 29 пр.
Изобретение относится к пищевой промышленности. Способ получения крахмала из растительного сырья включает измельчение растительного сырья, смешивание крахмалосодержащего сырья с водой при перемешивании реакционной среды, отделение белковых фракций раствором 0,5 н. едкого натра при рН 8,5, фракционирование и промывку водой суспензии, отделение крахмала от супернатанта центрифугированием и его сушку. Причем отделение белковых фракций проводят при дополнительном воздействии низкочастотных ультразвуковых волн с интенсивностью 460±5 Вт/см2 в течение 25±1 мин. После отделения крахмала осуществляют его лиофильную сушку. Изобретение позволяет на 5-7% увеличить выход крахмала в сравнении с аналогом и повысить степень чистоты крахмала. 8 пр.
Изобретение относится к способам получения катализаторов и предназначено для получения полимерсодержащего катализатора реакции Сузуки на основе наночастиц палладия, импрегнированных в матрицу сверхсшитого полистирола методом пропитки по влагоемкости (импрегнации). Способ получения полимерсодержащего катализатора реакции Сузуки включает пропитку предварительно измельченного полимерного носителя - сверхсшитого полистирола раствором хлорметилцианистого палладия (CH3CN)2PdCl2 в тетрагидрофуране при температуре от 20°С до 40°C с последующей обработкой водным раствором NaOH. Согласно изобретению до восстановления катализатор сушат путем выпаривания при температуре от 68 до 72°С под вакуумом от 0,8 до 1,2⋅10-3 Па в течение от 4,5 до 5,5 часов, затем дополнительно восстанавливают катализатор водородом путем последовательной продувки катализатора сначала инертным газом, затем водородом и повторно инертным газом со скоростью газового потока от 95 до 105 см3/мин, после чего катализатор нагревают до температуры от 195 до 205°С и продувают водородом со скоростью потока от 95 до 105 см3/мин, затем нагрев прекращают и продувают инертным газом со скоростью потока от 45 до 55 см3/мин. При этом полимерный носитель - сверхсшитый полистирол предварительно промывают дистиллированной водой и ацетоном и сушат до постоянной массы. Техническим результатом является повышение каталитических свойств (активность, селективность, стабильность) катализатора за счет введения дополнительных стадий обработки носителя и активного компонента катализатора (наночастиц палладия). 1 з.п. ф-лы, 6 пр.
Изобретение относится к способу получения 2-метил-1,4-нафтохинона, обладающего антигеморрагическими свойствами. Способ включает введение в реакционную емкость 2-метилнафталина, уксусной кислоты и 1% золотого катализатора на основе сверхсшитого полистирола марки MN270, обработанного прекурсором, нагревание полученной реакционной смеси и введение по каплям 30% пероксида водорода в течение 40-60 минут в отношении 1:2.5 к уксусной кислоте. При этом в качестве прекурсора используют хлорид трифенилфосфин-золота AuClPPh3, после введения пероксида водорода реакцию продолжают в течение 2-2.5 часов в интервале температур от 70 до 85°С при начальной концентрации 2-метилнафталина от 0.02 до 0.035 моль/л. Предлагаемый способ позволяет получить целевой продукт с высоким выходом. 9 пр.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов преобразования метанола в углеводороды, и может быть с успехом реализовано на предприятиях химической промышленности, в том числе для получения топлив. Способ получения гетерогенного катализатора включает нанесение активного компонента в виде оксида металла на носитель - модифицированный цеолит типа пентасил (ZSM-5). Нанесение активного компонента в виде Fe3O4 осуществляют путем обработки носителя раствором Fe(NO3)3·9H2O в этаноле при соотношении Si/Fe от 6 до 22 с последующим восстановлением этиленгликолем при температуре 248÷252°С со скоростью нагрева от 1 до 3°С в минуту в течение 5÷7 часов в атмосфере азота с последующим охлаждением до комнатной температуры, после чего проводят гидротермическую обработку путем введения в Fe3O4·SiO2 смеси NaOH, гидроксида тетрапропиламмония (ТРАОН, 50% масс.), NaAlO2 и деионизированной воды в массовом отношении (0,75÷0,85):(0,015÷0,025):(0,81÷0,83):(0,015÷0,025):(3,75÷3,85) при перемешивании в течение 2÷2,5 часов с последующим нагреванием 178÷182°С и выдерживанием в течение 22÷24 часов. Затем проводят нанесение никеля на поверхность полученного катализатора Fe3O4·ZSM-5: 0,45÷0,55 г Fe3O4·ZSM-5 вносят в лабораторный стакан, содержащий 0,2182÷0,2186 г этилацетоната никеля и 1,98÷2,02 мл ацетона, раствор перемешивают, высушивают под вакуумом и катализатор помещают в трубчатую печь, где нагревают до температуры 298÷302°С в потоке аргона в течение 0,99÷1,01 часа со скоростью нагрева 4,99÷5,01°С/мин и выдерживают при температуре 298÷302°С в течение 1,99÷2,01 часов. Техническим результатом изобретения является повышение эффективности и стабильности процесса получения гетерогенного катализатора с сохранением его высокой активности при многократном использовании в реакции синтеза углеводородов из метанола. 1 з.п. ф-лы, 5 ил., 1 табл., 11 пр.

Изобретение относится к способу получения 4-метоксибифенила реакцией Сузуки-Мияура и может быть использовано в химической и фармацевтической промышленностях для получения биарилов, которые являются важными полупродуктами в синтезе фармацевтических препаратов, лигандов и полимеров. Способ включает взаимодействие 4-броманизола и фенилбороновой кислоты в растворителе в присутствии основания и катализатора Pd/MN100, синтезированного методом импрегнации сверхсшитого полистирола марки MN100 прекурсором, нагревание реакционной смеси в газовой атмосфере при мольном избытке фенилбороновой кислоты по отношению к 4-броманизолу 1.5. При этом для процесса импрегнации в качестве прекурсора используют раствор (CH3CN)2PdCl2 в тетрагидрофуране, импрегнацию проводят при температуре от 20°C до 40°C, при этом содержание палладия в катализаторе составляет от 0.5 до 2 мас.% с использованием MN100 предварительно измельченного, количество катализатора составляет от 0.5 до 1.5 мол.% по отношению к 4-броманизолу, в качестве растворителя реакции применяют смесь этанол/вода в соотношении от 1:0 до 1:2, а в качестве основания - NaOH, K2CO3 и Na2CO3 в количестве от 1 до 2 ммоль при температуре от 50 до 75°C в течение от 10 мин до 1 ч в газовой атмосфере азота или воздуха. Предлагаемый способ позволяет эффективно получить целевой продукт при повышении технологичности процесса. 6 ил., 7 табл., 7 пр.

Изобретение относится к способам регенерации насыщенного раствора поглотителя влаги - диэтиленгликоля, который используют в качестве абсорбента для извлечения водяных паров из газа в установках осушки природных и нефтяных газов. Способ регенерации насыщенного раствора поглотителя влаги, включающий вывод из абсорбера установки осушки природных и нефтяных газов насыщенного абсорбента и его обработку в две стадии, при этом обработку проводят при удельном потоке в надмембранном пространстве 3,7·103-3,9·103 л/(ч·м2), отличающийся тем, что на первой стадии процесс проводится с использованием 2 мембранных установок при 18-25°С, причем в первой мембранной установке происходит отделение ионов Са2+, а во второй - ионов Cl-, а вторую стадию процесса проводят с использованием 2 других мембранных установок при 50-55°С. Технический результат - повышение качества и эффективности регенерации абсорбента. Предлагаемый способ может быть широко использован для утилизации и регенерации отходов химической технологии, применяемой в нефте-, газодобывающей и перерабатывающей промышленности, так как он позволяет безотходно и экономично повторно использовать осушитель природных и нефтяных газов. 1 ил., 2 табл.

Изобретение относится к области получения удобрений на основе отходов переработки растительного сырья. Предложен способ биоконверсии отходов промышленного производства сапонинов из корня Saponaria Officinalis. Способ включает приготовление исходной смеси, загрузку смеси в биореактор и проведение биоконверсионного процесса с аэрацией смеси. Растительные отходы производства сапонинов подвергаются биоконверсии в составе смеси, содержащей торф и птичий помет, с соотношением компонентов торф:птичий помет: растительные отходы - (13%-25%):50%:(25%-50%). Процесс биоконверсии в первые 7 суток производится при температуре 37±2°C и 55±2°C - на 8-е сутки. Изобретение обеспечивает ускорение процесса биоконверсии растительных отходов и повышение его эффективности. 3 з.п. ф-лы, 7 табл., 5 пр.

Изобретение относится к области использования возобновляемых источников сырья - биомассы. Заявлен способ каталитической газификации биомассы с получением газообразных топлив. Способ содержит измельчение биомассы и ее термическую переработку в воздушной среде при 600÷800°С и давлении 1,2-2,0 атм, каталитическую термодеструкцию газообразных продуктов в присутствии оксидов переходных металлов, способ отличается тем, что каталитическую термодеструкцию осуществляют при температуре 500÷550°С, массовом соотношении катализатора и биомассы 0,01÷0,05 и расходе воздуха 1,0÷2,5 м3 на 1 кг биомассы, при этом в качестве катализатора используют смесь оксидов хрома и ванадия, нанесенных на природный алюмосиликат в количестве 1÷20% масс. и 1÷5% масс. соответственно, или в качестве катализатора используют смесь оксидов молибдена и марганца, нанесенных на природный алюмосиликат в количестве 1÷10% масс. и 10÷30% масс. соответственно, или в качестве катализатора используют смесь оксидов кобальта и никеля, нанесенных на природный алюмосиликат в количестве 5÷25% масс. и 1÷40% масс. соответственно. Технический результат - увеличение выхода горючих углеводородов, достижение хорошего к.п.д. газификации. 6 табл., 6 пр.

Изобретение может быть использовано в сельском хозяйстве, медицине, биологии, пищевой и химической промышленности. Способ определения содержания анионов в растворах и влагосодержащих продуктах осуществляется в электрохимической ячейке при прохождении через нее переменного тока. Измерение проводится при частоте переменного тока от 0,1 Гц до 100 кГц. В качестве параметра измерения используется возникновение сдвига фаз между ЭДС и электрическим током при пропускании тока через электрохимическую ячейку. Время определения - не более 0,5 минуты. Способ характеризуется высокой точностью измерения. 3 пр., 1 табл., 3 ил.
Изобретение относится к фармацевтической промышленности, а именно к способу получения сапонинсодержащего экстракта. Способ получения сапонинсодержащего экстракта, включающий предварительное замачивание корней Saponaria officialis L. в дистиллированной воде, экстракцию под воздействием ультразвука, фильтрацию, при определенных условиях. Вышеописанный способ позволяет повысить качество целевого продукта и сократить время получения сапонинсодержащего экстракта из Saponaria officinalis L. 5 пр.

Изобретение относится к способу получения каталитически активных магниторазделяемых наночастиц. Способ включает синтез магнитных наночастиц с использованием соединений переходных металлов. Синтез осуществляют путем термического разложения ацетилацетоната железа в присутствии полифениленпиридильных дендронов или дендримеров второй, третьей или четвертой генерации с группой дикарбоксилата в фокальной точке при нагреве со скоростью 10°C в минуту до температуры 60°C до полного растворения дендрона второй генерации с дикарбоксильной группой и/или дендрона третьего генерации с одной карбоксильной группой и/или дендримеров. Осуществляют дальнейший нагрев до 300°C и выдержку в течение 1-2 часов с последующим охлаждением до комнатной температуры, промывкой и осаждением этанолом, растворением в хлороформе и обработкой продукта реакции раствором соединений переходных металлов и их восстановлением водородом, и/или боргидридом натрия, и/или супер-гидридом. Способ позволяет получать каталитические наночастицы с высокой конверсией, селективностью и стабильностью. 4 з.п. ф-лы, 9 пр.
Изобретение относится к области переработки возобновляемого сырья (в частности, целлюлозы) в сырье для химического синтеза и биотопливо. В способе каталитической конверсии целлюлозы в гекситолы, включающем проведения процесса гидролитического гидрирования целлюлозы в течение 3-7 минут при температуре 240-250°C при парциальном давлении водорода 55-65 атм и при перемешивании реакционной среды в присутствии рутениевого катализатора, согласно изобретению в качестве подложки рутениевого катализатора используют сверхсшитый полистирол марки MN 270, при этом содержание рутения в катализаторе составляет от 1,0 до 1,5 мас.% от массы катализатора. При этом перемешивание реакционной смеси осуществляют при помощи пропеллерной мешалки, число оборотов которой составляет 580-620 об/мин. 1. з.п. ф-лы, 1 табл. 16 пр.

Изобретение относится к медицине, конкретно к получению олигомеров хитозана, обладающих биологической активностью и предназначенных для использования в пищевой промышленности и медицине

Изобретение относится к тонкому органическому синтезу
Изобретение относится к способу селективного окисления D-глюкозы в водном растворе путем барботирования чистым кислородом при атмосферном давлении в присутствии подщелачивающего агента и катализатора, включающего нанодисперсно распределенные частицы металлического рутения на носителе, где в качестве носителя используют сверхсшитый полистирол, предварительно пропитанный солью рутения RuOHCl3 концентрацией 1.100÷111.1 мг/л
Изобретение относится к способу термической переработки полимерных составляющих изношенных автомобильных шин, включающему их загрузку в реактор, пиролиз в среде газа с последующим разделением продуктов пиролиза и выгрузку твердого остатка

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов селективного гидрирования органических соединений
Изобретение относится к производству катализаторов и может быть использовано в химической промышленности и в производстве лекарственных препаратов

Изобретение относится к торфоперерабатывающей промышленности и может быть использовано в малой энергетике и жилищно-коммунальном хозяйстве

Изобретение относится к составам для получения гранулированного топлива для пиролиза на основе торфа с модифицирующими добавками и может быть использовано в малой энергетике и жилищно-коммунальном хозяйстве
Изобретение относится к производству полимерных гетерогенных катализаторов

Изобретение относится к усовершенствованному способу окисления фенольных соединений пероксидом водорода в присутствии гетерогенного катализатора в водной среде, в котором процесс проводят на катализаторе, выполненном на основе оксида алюминия, содержащем пероксидазу хрена и модифицированном полисахаридной матрицей хитозана в среде с эквимолярным количеством окислительного агента при атмосферном давлении, перемешивании с интенсивностью 400-500 об/мин, автоматической подачей окислительного агента, при температуре 20-50°С, при концентрации фенола 0,01-0,3 моль/л

Изобретение относится к области дорожно-строительных материалов, а именно к способам создания битум-полимерных композиций с высокой адгезией к минеральным материалам асфальтобетонных смесей, повышенной морозостойкостью и сдвигоустойчивостью, которые могут быть использованы в дорожном и аэродромном строительстве
Изобретение относится к области дорожно-строительных материалов, а именно к способам создания полимерно-битумных композиций с повышенной адгезией к минеральным материалам асфальтобетонных смесей, которые могут быть использованы в дорожном и аэродромном строительстве

 


Наверх