Патенты автора Винокуров Владимир Арнольдович (RU)

Изобретение относится к способу получения сорбирующих материалов и может быть использовано для ликвидации гидрофобных загрязнений. Представлен способ получения сорбента, включающий кислотную и окислительную обработку целлюлозосодержащего сырья, проводимую в присутствии водных растворов кислотного агента и окислительного агента с получением обработанного целлюлозосодержащего сырья, фильтрование обработанного целлюлозосодержащего сырья с получением целлюлозосодержащего осадка, промывку целлюлозосодержащего осадка нейтрализующим раствором с образованием промытого целлюлозосодержащего осадка, диспергирование промытого целлюлозосодержащего осадка в воде с получением водной суспензии целлюлозы, измельчение полученной водной суспензии целлюлозы с образованием водной суспензии микрочастиц целлюлозы, диспергирование в полученной водной суспензии акрилатного мономера с добавлением инициатора полимеризации акрилатного мономера с получением эмульсии акрилатного мономера, стабилизированной микрочастицами целлюлозы, нагрев указанной эмульсии при 50-90°С в течение 1-12 часов при перемешивании с образованием водной дисперсии продукта полимеризации, охлаждение полученной дисперсии, отделение продукта полимеризации фильтрованием и затем сушку образованного осадка при температуре 40-90°С с получением целевого сорбента в виде порошка или волокнистой массы. Изобретение обеспечивает распределение акрилатного полимера по поверхности волокон целлюлозы непосредственно в водной дисперсии, что приводит к исключению необходимости проведения стадий промывки продукта за счет образования Пикеринг-эмульсии мономера перед стадией полимеризации, а также повышение сорбционных характеристик целевого сорбента. 1 ил., 3 пр.

Изобретение относится к способу получения теплоаккумулирующих материалов, способных обратимо поглощать и выделять тепловую энергию за счет протекания фазовых переходов первого рода (плавление и кристаллизация) и может быть использовано в системах пассивной терморегуляции, а также в качестве наполнителя для различных материалов и покрытий для повышения их удельной теплоемкости и теплоаккумулирующей способности. Предложен способ получения теплоаккумулирующего материала, включающий смешение фазово-переходного компонента, который представляет собой насыщенные углеводороды нормального строения (парафины), жирные спирты или жирные кислоты, алкоксиалкилсилана и тетраалкоксисилана при температуре выше температуры конца плавления фазово-переходного компонента, диспергирование образованной смеси в предварительно нагретой до температуры выше температуры конца плавления фазово-переходного компонента воде при воздействии ультразвуком с частотой от 20 до 40 кГц и мощностью от 100 до 1000 Вт с получением продукта диспергирования, представляющего собой эмульсию типа «масло - в воде» с размером капель 100 нм - 100 мкм, в которой дисперсной фазой является раствор алкоксиалкилсилана и тетраалкоксисилана в фазово-переходном компоненте, смешение продукта диспергирования с щелочным агентом и выдерживание образованной смеси при температуре 20,0 - 90,0°С, в течение 5,0 - 600,0 минут при перемешивании, приводящее к гидролизу тетраалкоксисилана на поверхности капель эмульсии с образованием частиц размером 100 нм - 100 мкм, содержащих фазово-переходный компонент, покрытых оболочкой из диоксида кремния, последующее добавление к указанной смеси агента нейтрализации до достижения водородного показателя 5,0 - 8,0, отделение вышеоговоренных частиц и их сушку с получением целевого теплоаккумулирующего материала в виде порошка. Технический результат – предложенный способ позволяет обеспечить локализацию гидролиза тетраалкоксисилана на поверхности капель эмульсии расплавленного фазово-переходного компонента в воде. 1 ил., 4 пр.

Изобретение относится к нефтяной промышленности. Технический результат - совместимость состава для кислотной обработки с пластовыми нефтями различного химического состава и реологии, возможность регулирования скорости реакции с породой, предотвращение образования нефтекислотных эмульсий, в том числе и в присутствии трехвалентного железа в количестве от 2000 до 5000 ppm, повышение температурной устойчивости состава при сохранении железостабилизирующих и деэмульгирующих свойств состава. Состав для кислотной обработки карбонатных коллекторов содержит, мас.%: смесь спиртов 6,0-10,0; ледяная уксусная кислота 1,5-2,5; смесь поверхностно-активных веществ ПАВ 1,5-2,5; оксиэтилидендифисфоновая кислота или нитрилотриметилфосфоновая кислота 0,1-0,3; ингибитор кислотной коррозии «Солинг» 0,15-0,4; соляная кислота с концентрацией HCl 22,8 мас.% - остальное. В качестве смеси спиртов используют смесь двух одноатомных спиртов, выбранных из группы изопропанол, метанол, пропанол, бутанол, в массовом соотношении 1:1. В качестве смеси ПАВ используют смесь анионного поверхностно-активного вещества АПАВ и неионогенного поверхностно-активного вещества НПАВ в массовом соотношении АПАВ:НПАВ 1:2 соответственно. 1 табл., 3 пр.

Изобретение относится к газодобывающей промышленности, в частности к способам обработки призабойных зон скважин для повышения дебита низкотемпературных, низкопроницаемых и глинистых (заглинизированных) пластов. Способ заключается в том, что в скважину последовательно закачивают гидрофильный агент - 3-10 вес. % раствор хлорида магния или его кристаллогидрата в метаноле и гидрофобный агент - раствор гидрофобизатора АБР в легколетучем углеводородном растворителе. При этом закачивание агентов осуществляют в виде жидкости или газожидкостной смеси, образующейся при одновременной закачке с устья скважины агентов и газа, выбранного из группы: азот, метан, природный газ, дымовые газы, а после окончания закачивания агенты продавливают в пласт. Техническим результатом является повышение эффективности обработки скважины за счет разрушения и предотвращения образования газовых гидратов, уменьшения набухания глинистых компонентов породы и облегчения выноса конденсационной воды из прискважинной зоны. 6 пр., 7 табл.

Изобретение относится к области газового анализа, в частности, к способам ввода проб в хроматограф. Способ ввода пробы сжиженных углеводородных газов в хроматограф включает транспортировку отфильтрованных от механических примесей сжиженных углеводородных газов из пробоотборника в петлю автоматического крана-дозатора с охлаждающим элементом, температуру которого предварительно задают из условия охлаждения модельного образца пробы сжиженных углеводородных газов, обеспечивающую сохранение ее в сжиженном состоянии, затем в процессе заполнения полости крана-дозатора анализируемыми сжиженными углеводородными газами непрерывно измеряют степень их разгазирования и производят плавное изменение температуры охлаждения в петле крана-дозатора до достижения значения температуры, обеспечивающей стабилизацию пробы в жидком состоянии, после охлаждения и стабилизации пробы ее направляют в камеру инжектора и затем газом-носителем подают в аналитическую колонку хроматографа, при этом измерение степени разгазирования сжиженных углеводородных газов в полости крана-дозатора производят посредством индикатора разгазирования, установленного максимально близко к выходу крана-дозатора для сохранения термобарических условий. Техническим результатом является обеспечение стабилизации пробы в сжиженном состоянии и предотвращение ее разгазирования при вводе в хроматограф. 1 ил., 3 табл.

Использование: изобретение относится к способам защиты изделий от подделки и предназначено для определения подлинности изделий с использованием технических средств. Сущность: формируют на изделии защитное средство путем нанесения на него не менее одной контрольной метки, содержащей наноразмерные частицы целлюлозы, наночастицы металлов с размером частиц от 15 до 100 нм, выбранные из группы: наночастицы золота, наночастицы серебра, наночастицы сплава золота и серебра, наночастицы, состоящие из золотого ядра и серебряной оболочки, наночастицы, состоящие из серебряного ядра и золотой оболочки, смеси любых указанных наночастиц, и проявляющие свойства поверхностного плазмонного резонанса на длине волны, выбранной из диапазона от 400 до 2000 нм, не менее двух предварительно адсорбированных на наночастицах металлов кодирующих органических веществ, относящихся к основаниям Льюиса, обладающих высокой поляризуемостью и характеризующихся различными спектрами комбинационного рассеяния, и защитную добавку, обладающую свойством фотолюминесценции или упругого рассеяния света при облучении на длине волны в диапазоне от 400 до 2000 нм, отличающейся от длины волны поверхностного плазмонного резонанса используемых наночастиц металлов. Каждую контрольную метку с определенным количественным составом присваивают определенному конкретному символу и формируют комбинацию символов с заданной последовательностью, соответствующую обозначению проверяемого изделия. Затем после эксплуатации изделия осуществляют считывание контрольных меток путем их облучения монохроматическим электромагнитным излучением на длине волны поверхностного плазмонного резонанса используемых наночастиц металлов с одновременной регистрацией спектров гигантского комбинационного рассеяния каждой из нанесенных контрольных меток, по которым определяют их количественные составы. Последние сопоставляют их с количественными составами нанесенных контрольных меток, соответствующих конкретным символам. Затем проверяют соответствие полученной последовательности символов с обозначением проверяемого изделия и в случае совпадения полученной последовательности символов с обозначением проверяемого изделия делают вывод о подлинности проверяемого изделия. Достигаемый технический результат заключается в обеспечении стабильности защиты во времени, защиты контрольных меток от износа и загрязнения при эксплуатации изделий, увеличении количества оценочных признаков за счет оптимизации состава защитного средства, наносимого на изделие, с одновременным снижением возможности его подделки, копирования и изменения. 1 ил.

Изобретение относится к фотокаталитическим процессам выделения водорода, разложения органических соединений для очистки воздуха и другим фотохимическим процессам, а именно изобретение относится к композитному мезопористому фотокатализатору, состоящему из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния МСМ-41 30,0-75,0, алюмосиликатные нанотрубки 25,0-70,0, и нанесенного на носитель сульфида кадмия в виде квантовых точек, содержащих переходный металл, выбранный из ряда Ni, Со, Cu, Pt, Ru, Ag, Au в виде нанокластеров, при этом количество сульфида кадмия составляет 5,0-20,0% от массы фотокатализатора, количество переходного металла, выбранного из ряда Ni, Со, Cu, составляет 1,0-5,0% от массы фотокатализатора, количество переходного металла, выбранного из ряда Pt, Ru, Ag, Au, составляет 0,01-1,0% от массы фотокатализатора, а упорядоченный мезопористый оксид кремния МСМ-41 и алюмосиликатные нанотрубки представляют собой иерархический мезопористый композит. Технический результат заключается в повышении фотокаталитической активности катализатора за счет наличия в последнем системы пор и каналов иерархического мезопористого композита, обеспечивающего повышение диффузии реагентов к активным центрам катализатора, а также наличия структуры активных центров фотокатализатора, представляющих собой квантовые точки сульфида кадмия с нанесенными на их поверхность нанокластерами переходного металла (сокатализатора). 1 табл., 8 пр.

Изобретение относится к наноструктурированному катализатору селективного гидрирования ацетилена, состоящему из наноструктурированного носителя, содержащего, % масс.: алюмосиликатные нанотрубки 40-80, оксид алюминия 20-60, палладий в количестве 0,01-2,0% от массы носителя и металл группы I-б Периодической системы химических элементов в количестве 0,01-8,0% от массы носителя, нанесенных на поверхность носителя и интеркалированных во внутреннюю полость алюмосиликатных нанотрубок. Технический результат заключается в повышении селективности катализатора за счет интеркалирования наночастиц палладия и металла группы I-б Периодической системы химических элементов во внутреннюю полость алюмосиликатных нанотрубок и образования высокодисперсной активной фазы, что обеспечивает увеличение площади контакта молекул углеводородного сырья с каталитическими центрами. 7 пр.

Многослойный защитный материал содержит по меньшей мере два слоя, один из которых, являющийся внешним по отношению к защищаемой поверхности, выполнен из гидрофильного пористого материала, содержащего серебросодержащий компонент и кислотный агент, инкапсулированный в поры материала и обеспечивающий увеличение концентрации ионов серебра в воде при смачивании ею материала. Пористость гидрофильного материала выбирают в диапазоне микропор или мезопор с обеспечением пролонгированного высвобождения кислотного агента, инкапсулированного в порах. Внутренний слой выполнен из волокнистого гидрофобного материала. Технический результат заключается в обеспечении отвода жидкости от защищаемой поверхности и предотвращении роста микроорганизмов при многократном увлажнении и высыхании защитного материала за счет низкой скорости высвобождения кислотного агента. 2 ил.

Использование: изобретение относится к составам многофункциональных наноструктурированных добавок к покрытиям, таким как лаки, краски, эмали, с целью предотвращения процессов коррозии и биообрастания подводных частей судов и морских сооружений. Сущность: многофункциональная добавка к покрытиям содержит, % масс.: ингибитор коррозии и органический биоцид в мольном соотношении 0,5-2,0/5,0-10,0, проводящий полимер 10,0-40,0, наночастицы меди или цинка 2,0-10,0, алюмосиликатные нанотрубки - остальное до 100. При этом алюмосиликатные нанотрубки интеркалированы ингибитором коррозии и органическим биоцидом и покрыты слоем проводящего полимера с наночастицами меди или цинка по поверхности полимерного слоя. Достигаемый технический результат заключается в обеспечении интеркалирования ингибитором коррозии и органическим биоциодом алюмосиликатных нанотрубок и покрытия указанных нанотрубок слоем проводящего полимера с наночастицами меди или цинка по поверхности. 2 табл., 6 пр.

Изобретение описывает способ получения жидкого углеводородного топлива из биомассы растительного происхождения, включающий использование вольфрамовой гетерополикислоты 2-18 ряда, имеющей химическую формулу H6[P2W18O62], и жидкого углеводородного растворителя, отличающийся тем, что в гальваническую ванну заливают 10-40% водный раствор гетерополикислоты в окисленной форме, имеющей химическую формулу H6[P2W18O62], после чего в ванну опускают графитовые электроды, которые подключают к источнику напряжения постоянного тока, и при разности потенциалов между катодом и анодом 2-4,5 В под действием постоянного электрического тока производят процесс восстановления гетерополианионного комплекса [P2W18O62]6- до [P2W18O62]24-, полученный водный раствор гетерополикислоты в восстановленной форме формулы H24[P2W18O62] порционно направляют в реактор, в который затем загружают биомассу растительного происхождения и углеводородный растворитель при массовом соотношении «углеводородный растворитель : биомасса растительного происхождения» в пересчете на сухое вещество с содержанием воды не более 10% масс. составляет «1:2-4», далее нагревают реактор до температуры 60-95°С и проводят процесс переработки биомассы растительного происхождения до прекращения выделения газовой фазы, содержащей смесь водорода и монооксида углерода, и прекращения осветления раствора при добавлении порции гетерополикислоты восстановленной формы, после чего образованную при этом смесь охлаждают до температуры 30-40°С и подвергают фильтрации и декантации с получением жидкой углеводородной фазы водного раствора гетерополикислоты восстановленной формы, имеющей химическую формулу H24[P2W18O62], и твердой фазы, затем твердую фазу подвергают утилизации, а водный раствор гетерополикислоты в восстановленной форме, имеющей химическую формулу H24[P2W18O62], направляют на окисление кислородом воздуха с образованием водного раствора гетерополикислоты в окисленной форме, имеющей химическую формулу H6[P2W18O62], который возвращают в гальваническую ванну, а жидкую углеводородную фазу подвергают фракционной разгонке с отделением углеводородного растворителя, который возвращают в реактор, и целевого жидкого углеводородного топлива, причем процесс переработки биомассы растительного происхождения в углеводородную эмульсию контролируют по изменению цвета эмульсии, свидетельствующего о превалировании водного раствора гетерополикислоты в восстановленной форме, имеющей химическую формулу Н24[Р2W18О62], синего цвета или водного раствора гетерополикислоты в окисленной форме, имеющей химическую формулу H6[P2W18O62], светло-зеленого цвета, и в случае превалирования последней в реактор из гальванической ванны вводят дополнительную порцию водного раствора гетерополикислоты в восстановленной форме, имеющей химическую формулу H6[P2W18O62], и процесс продолжают до достижения стабильного синего цвета, свидетельствующего об окончании процесса переработки. Технический результат заключается в обеспечении проведения в единой технологической цепи одновременно процессов разрушения и преобразования гемицеллюлозы, лигнинов и целлюлозы с текущим контролем динамики протекания процесса переработки биомассы растительного происхождения. 1 ил., 1 пр.
Изобретение относится к нефтедобывающей промышленности и, в частности, к разработке запасов трудноизвлекаемой нефти нефтегазовых месторождений подошвенного типа с большой площадью газонефтяного контакта. Технический результат - повышение степени вытеснения нефти за счет повышения приемистости скважин и стабилизации фронта вытеснения нефти при их совместном воздействии. По способу осуществляют бурение нагнетательных и добывающих скважин. Затем производят перфорацию скважин в интервале локализации нефтяной оторочки. После этого осуществляют закачку в толщу нефтяного пласта через нагнетательные скважины оторочки углеводородного растворителя в объеме 0,02-0,05 порового объема и с вязкостью не более 5 мПа⋅с. Затем осуществляют закачку стабилизирующей оторочки на основе водорастворимого полимера, обеспечивающей фактор сопротивления не менее 10 и не более 100, в количестве, равном половине объема оторочки растворителя. После этого при стабилизированном давлении осуществляют закачку вытесняющего агента в виде предварительно подготовленной водогазовой смеси с объемным соотношением воды и газа, обеспечивающим значение плотности водогазовой смеси в интервале 80-120% от плотности нефти в пластовых условиях. Одновременно осуществляют добычу нефти до момента прорыва газа в добывающую скважину.

Изобретение относится к способу получения покровной композиции для мелованной бумаги. Способ заключается в смешивании модифицированного продукта и модифицированного связующего. Модифицированный продукт получен смешиванием водной дисперсии нанофибриллярной целлюлозы с пигментом, представляющим собой смесь карбоната кальция и каолина с содержанием карбоната кальция 30-50 мас.%, с диспергатором и антивспенивателем. Модифицированное связующее получено смешиванием связующего с водной суспензией нанофибриллярной целлюлозы. Покрывную композицию получают смешиванием модифицированного продукта с модифицированным связующим, имеющую следующий состав в расчете на сухой вес, мас.%: пигмент 69,0-76,7; связующее вещество 7,0-14,0; диспергатор; 0,5-1,5; антивспениватель 0,3-0,9; нанофибриллярная целлюлоза - остальное, до 100. При этом при получении модифицированного продукта и модифицированного связующего используют нанофибриллярную целлюлозу с дзета-потенциалом от минус 36 мВ до минус 200 мВ в количестве 9,0-12,5% и 3,0-6,5% от общей массы покровной композиции в расчете на сухой вес. Изобретение позволяет повысить седиментационную устойчивость покровной композиции, повысить адгезию покровной композиции к бумаге, регулировать водоудержание покровной композиции. Бумага полученная с использованием покровной композиции обладает повышенными механическими и печатно-техническими свойствами. 1 табл.

Изобретение относится к области получения синтез-газа путем переработки биомассы растительного происхождения и может быть использовано в нефтепереработке, нефтехимии, энергетике. Способ осуществляют путем измельчения исходной биомассы, смешивания ее с мелкодисперсным горючим сланцем с содержанием серы 4,1-16,0 мас.%, имеющим размер частиц 10-100 мкм, и водой, взятых в количестве, мас.%: сланец 3,0-5,0, вода 10,0-30,0, биомасса - остальное, до 100. Затем образованную смесь подвергают диспергированию с получением суспензии, последующей газификацией полученной суспензии при температуре 800-1000°С и направления образовавшегося газового потока на очистку с получением синтез-газа. Технический результат заключается в повышении эффективности способа переработки биомассы с целью получения синтез - газа, а именно в упрощении его технологии, предотвращении явления отложения соединений щелочных металлов на поверхностях оборудования и эффективного предотвращения щелочной коррозии оборудования. 2 табл., 4 пр.
Изобретение относится к области переработки биомассы с получением синтез-газа и золы - биочара. Способ осуществляют путем измельчения исходной биомассы до размера частиц 100-200 мкм, смешивания с водной эмульсией тяжелого углеводородного сырья с содержанием воды 18,0-25,0 мас.%, имеющей размер частиц воды 10-30 мкм. Затем полученную смесь подвергают диспергированию, образованную суспензию смеси измельченной биомассы и водной эмульсии тяжелого углеводородного сырья подвергают газификации при температуре 800-1200°С, коэффициенте недостатка кислорода от 0,2 до 0,5 с последующим направлением продуктов газификации на разделение и очистку с получением синтез-газа и золы. При этом для получения синтез-газа с соотношением Н2:СО не менее 1,5 газификации подвергают суспензию с соотношением биомасса:водная эмульсия тяжелого углеводородного сырья, равным 1,5-2,5:1, а для получения золы с содержанием углерода от 25 до 60 мас.% газификации подвергают суспензию с соотношением биомасса:водная эмульсия тяжелого углеводородного сырья, равным 5,0-7,5:1. Технический результат заключается в обеспечении получения целевых продуктов с заданными характеристиками путем регулирования выхода и качества продуктов газификации. 6 пр.

Использование: целлюлозно-бумажная промышленность. Сущность: проводят подготовку макулатурного сырья, измельчение подготовленного сырья до степени помола 36-40 ШР с получением волокнистой массы, смешивают упрочняющий агент, представляющий собой водный раствор катионного полимера, с водной дисперсией нанофибриллярной целлюлозы, имеющей дзета-потенциал от минус 36 мВ до минус 200 мВ, взятой в количестве 2,0-4,5 кг/т в расчете на сухой вес целлюлозы и макулатурного сырья. Выдерживают указанную смесь при температуре 50-60°С в течение 5-10 мин с получением флокулированного упрочняющего агента. Смешивают проклеивающий агент с водной дисперсией нанофибриллярной целлюлозы, имеющей дзета-потенциал от минус 36 мВ до минус 200 мВ, взятой в количестве 1,5-3,5 кг/т в расчете на сухой вес целлюлозы и макулатурного сырья, с получением модифицированного проклеивающего агента. Затем смешивают волокнистую массу с флокулированным упрочняющим агентом и модифицированным проклеивающим агентом с получением бумажной массы. Последнюю подвергают обезвоживанию, прессованию, сушке и каландрованию с получением целевого продукта. Достигаемый технический результат заключается в образовании комплексных флокул в бумажной массе, обеспечивающих связывание растворенного крахмала и агрегацию мелкого волокна в составе бумажной массы, а также повышающих седиментационную устойчивость упрочняющего агента, что приводит к более равномерному распределению упрочняющего агента в волокнистой массе и, как следствие, повышению однородности и механических свойств получаемой бумаги. 1 табл.
Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор для гидротермального сжижения биомассы растительного происхождения содержит оксид циркония, оксид титана, оксид олова, оксид ванадия, фосфат алюминия, мелкодисперсный оксид алюминия при следующем соотношении компонентов, мас.%: оксид циркония 1,0-40,0; оксид титана 0,5-5,0; оксид олова 0,5-5,0; оксид ванадия 0,1-10,0; фосфат алюминия 1,0-5,0; мелкодисперсный оксид алюминия - остальное, до 100 в сульфатированной форме. Технический результат - обеспечение повышения активности катализатора по отношению к сероорганическим соединениям исходного сырья за счет перевода указанных соединений в водорастворимую форму. 4 пр.

Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал. Использование: нефтеперерабатывающая и нефтехимическая отрасли промышленности. Достигаемый технический результат заключается в повышении селективности по целевой терефталевой кислоте за счет сформированной системы пор и каналов наноструктурированного композитного носителя, обеспечивающего при окислении молекулярно-ситовой эффект благодаря бимодальному распределению пор по размерам. Высокая удельная площадь поверхности описываемого катализатора и, как следствие, увеличение площади контакта молекул сырья с каталитически-активными центрами, позволяет увеличить конверсию пара-ксилола и выход целевой терефталевой кислоты. 1 табл., 11 пр.

Изобретение относится к нефтяной и газовой промышленности, в частности к области очистки газа от примесей, а именно к очистке газа от взвешенных капель и парообразной жидкости. Устройство включает корпус с патрубками входа неочищенного газа, выхода очищенного газа и выхода отделенной жидкости. Внутри корпуса между патрубком входа неочищенного газа и патрубком выхода очищенного газа установлен по меньшей мере один сепарационный элемент. Сепарационный элемент включает по меньшей мере один слой сетки, выполненной из проволоки с несмачиваемой поверхностью, и по меньшей мере один слой сетки, выполненной из проволоки со смачиваемой поверхностью. В другом варианте сепарационный элемент может включать сетку, выполненную по меньшей мере из одной проволоки с несмачиваемой поверхностью и по меньшей мере из одной проволоки со смачиваемой поверхностью. В третьем варианте сепарационный элемент включает каркас с натянутыми в нем струнами, выполненными из проволок с несмачиваемой поверхностью и проволок со смачиваемой поверхностью. При этом рядом со струной, выполненной из проволоки со смачиваемой поверхностью, расположена по меньшей мере одна соседняя струна, выполненная из проволоки с несмачиваемой поверхностью. Технический результат: повышение эффективности отделения парообразной и капельной жидкости из потока газа и уменьшение газодинамического сопротивления сепарационных элементов. 7 н. и 27 з.п. ф-лы, 7 ил., 3 пр.
Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор содержит оксид циркония, оксид церия, оксид ванадия, фосфат алюминия, мелкодисперсный оксид алюминия при следующем соотношении компонентов, % мас.: оксид циркония 1,0-50,0; оксид церия 0,5-2,0; оксид ванадия 0,1-10,0; фосфат алюминия 1,0-5,0; мелкодисперсный оксид алюминия - остальное, до 100 в сульфатированной форме. Технический результат - обеспечение повышения активности катализатора по отношению к сероорганическим соединениям исходного сырья за счет перевода указанных соединений в водорастворимую форму. 3 пр.
Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор для гидротермального сжижения биомассы растительного происхождения содержит оксид циркония, оксид ванадия, фосфат алюминия, мелкодисперсный оксид алюминия при следующем соотношении компонентов, мас.%: оксид циркония 1,0-50,0; оксид ванадия 0,1-10,0; фосфат алюминия 1,0-5,0; мелкодисперсный оксид алюминия - остальное, до 100 в сульфатированной форме. Технический результат - обеспечение повышения активности катализатора по отношению к сероорганическим соединениям исходного сырья за счет перевода указанных соединений в водорастворимую форму. 3 пр.

Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов в пищевой, фармацевтической, нефтехимической и других отраслях промышленности, при водоподготовке и создании особо чистых растворов. Способ модификации мембран для ультрафильтрации водных сред заключается в том, что предварительно определяют порог отсечения исходной мембраны и с учетом характеристик отделяемых загрязнителей и материала, из которого выполнена исходная мембрана, задают требуемый порог отсечения, затем в зависимости от характеристик исходной мембраны осуществляют выбор модификатора из анизотропных дисперсных материалов, выбранных из группы: нанофибриллярная целлюлоза, нанотрубки галлуазита, нанокристаллическая целлюлоза с размером частиц, соответствующих достижению заданного порога отсечения, причем выбранный модификатор подвергают химической обработке до получения значения дзета-потенциала, соответствующего заданному порогу отсечения, при этом в случае использования в качестве модификатора нанофибриллярной целлюлозы водную дисперсию нанофибриллярной целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-65 мас.% и пероксидом водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанофибриллярной целлюлозы от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанотрубок галлуазита водную дисперсию галлуазита смешивают с водным раствором полимера с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанотрубок галлуазита от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанокристаллической целлюлозы водную дисперсию нанокристаллической целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-80 мас.% и пероксида водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанокристаллической целлюлозы от минус 36 до минус 200 мВ, после чего исходную мембрану помещают в водную среду и проводят гидрофилизацию исходной мембраны путем подачи на ее рабочую поверхность дисперсии выбранного и обработанного одним из соответствующих вышеуказанных способов модификатора с образованием гидрофильного слоя на рабочей поверхности мембраны в процессе фильтрации дисперсии модификатора сквозь стенку мембраны. Достигаемый технический результат заключается в обеспечении формирования в ходе модификации мембраны гидрофильного разделительного слоя на рабочей поверхности мембраны с регулируемыми удельным зарядом и ориентацией анизотропных дисперсных частиц модификатора, что обеспечивает высокие барьерные свойства образующегося при самосборке заряженных частиц модификатора гидрофильного разделительного слоя. 2 ил., 7 пр.

Изобретение относится к области охраны окружающей среды и может быть использовано для ликвидации нефтеразливов при добыче, транспортировке и хранении углеводородного сырья и продуктов его переработки. Состав для ликвидации нефтеразливов содержит, мас.%: пористый гидрофобизированный порошкообразный носитель - 0,05-90,0, гидротроп - 0,05-95,0, поверхностно-активное вещество, в качестве которого используют неионогенные, цвиттер-ионные ПАВ или их смеси - 0-47,0, порошкообразный газообразователь, в качестве которого используют среднюю или кислую соль угольной кислоты или их смеси - 0,2-70,0, порошкообразный кислотный агент, в качестве которого используют твердую органическую кислоту - остальное до 100. Технический результат заключается в обеспечении снижения межфазного натяжения между водой и нефтью или нефтепродуктами за счет высвобождения гидротропов: низкомолекулярных амфифильных веществ и поверхностно-активных веществ при контакте высокодисперсных частиц композиции с водой, повышении адсорбции частиц пористого носителя и органических амфифильных компонентов: гидротропов и ПАВ в составе композиции на границе раздела фаз вода - нефть или вода - нефтепродукты, интенсивном газовыделении при контакте композиции с водой. 10 пр.

Изобретение относится к области создания пластичных смазок, которые рекомендуются для смазывания тяжело нагруженных механизмов, а именно: основных узлов трения автомобилей, тракторов, вездеходов, работающих в широком диапазоне скоростей и соответствующих механических нагрузок, а также в большом диапазоне температур, включая низкие температуры окружающей среды (от минус 60 до плюс 200°С). Низкотемпературная экологичная пластичная смазка содержит базовое сложноэфирное масло, загуститель на основе олигомочевины, получаемый при взаимодействии ароматического полиизоцианата, жирного амина или его смеси с этилендиамином, и дополнительно второй загуститель - нанофибриллярную целлюлозу НФЦ со средним диаметром фибрилл от 10 до 700 нм и длиной до 1 мкм, диспергированный в сложноэфирном масле при степени его обводненности не более 7 мас.%, при следующем соотношении компонентов, мас.%: полимочевинный загуститель - 8-25, нанофибриллярная целлюлоза - 1-5, базовое сложноэфирное масло - остальное. Смазка дополнительно содержит цетеариловый спирт в количестве 1-5 мас.%. Способ получения низкотемпературной экологичной пластичной смазки включает растворение амина или их смеси в базовом сложноэфирном масле, введение в полученный раствор полиизоцианата, перемешивание и нагрев до 80-100°C с образованием полимочевинного загустителя. Раствор в базовом сложноэфирном масле жирного амина или его смеси с этилендиамином до введения в него раствора полиизоцианата смешивают с дисперсией нанофибриллярной целлюлозы в этом же базовом сложноэфирном масле, полученной путем последовательной замены дисперсионной среды с понижением ее полярности и последующей ультразвуковой обработкой в течение 2-3 минут. Затем в дисперсию вводят раствор полиизоцианата в базовом сложноэфирном масле и осуществляют перемешивание компонентов со скоростью не менее 100 с-1 в течение не менее 10 минут, после чего смесь выдерживают в течение суток при комнатной температуре в тонком слое. При введении раствора полиизоцианата дополнительно вводят цетеариловый спирт. Технический результат - повышение морозостойкости и улучшение противоизносных и трибологических характеристик низкотемпературной экологичной пластичной смазки. 2 н. и 2 з.п. ф-лы, 3 ил., 2 табл., 9 пр.

Изобретение относится к созданию композиции многоцелевой пластичной смазки, применяемой в виде аэрозоля в труднодоступных узлах трения механизмов различного назначения мобильной техники и стационарного оборудования. Сущность: аэрозольная смазка содержит мас. %: базовое масло - 3,75-28,5, загуститель - 0,2-7,5, антиокислитель - 0,01-0,15, ингибитор коррозии - 0,01-0,60, присадку с противоизносными и/или противозадирными свойствами - 0,02-1,5, растворитель - 15,0-60,0, пропеллент - до 100. Технический результат заключается в обрыве цепи окислительных реакций молекулами антиокислителя, формировании пассивирующей пленки в зоне контакта при взаимодействии антикоррозионных присадок с молекулами конструкционных металлов, упрочнении масляной пленки и модификации поверхности трения за счет воздействия активных полярных компонентов, входящих в состав противоизносных и/или противозадирных присадок. 2 табл.

Изобретение относится к композиции многоцелевой пластичной смазки для тяжелонагруженных узлов трения, которая может быть использована в механизмах различного назначения мобильной техники и стационарного оборудования. Многоцелевая пластичная смазка содержит, мас.%: загуститель - 4,0-25,0; наноструктурированную функциональную добавку - наноразмерные частицы бората и/или карбоната кальция - 0,5-5,0; антиокислитель - 0,2-0,5; ингибитор коррозии - 0,0-2,0; присадку с противоизносными и/или противозадирными свойствами - 0,0-3,0; твердый наполнитель - 0,0-20,0; базовое масло - до 100. Достигаемый технический результат заключается в снижении износа и предотвращении задира за счет образования в пограничном слое прочной хемосорбционной пленки, защищающей поверхности трения, и модификации волокон загустителя наноразмерными частицами бората и/или карбоната кальция в процессе формирования структурного каркаса пластичных смазок. 6 табл.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен микро-мезопористый катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, мас.%: цеолит типа ZSM-5 -10,0-75,0, цеолит типа ZSM-12 - 5,0-70,0, гамма-оксид алюминия - остальное до 100 и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора. Технический результат заключается в использовании в качестве активной фазы носителя комбинированного цеолита ZSM-5/ZSM-12, который способствует реализации бимолекулярного механизма изомеризации метаксилола и вовлечению в него продуктов диспропорционирования этилбензола, что приводит к повышению конверсии последнего и выхода целевого пара-ксилола. Использование в структуре активной фазы носителя комбинированного цеолита ZSM-5/ZSM-12 позволяет снизить долю реакций диспропорционирования ксилолов до толуола, протекающих в микропорах цеолита ZSM-5, и, как следствие, сократить потери ксилолов. 1 табл., 6 пр.

Изобретение относится к способам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов. Технический результат - повышение ингибирующей способности способа, обеспечение предотвращения образования гидратов как по кинетическому, так и одновременно по кинетическому и термодинамическому механизмам, расширение температурного диапазона его применимости, возможность предотвращения образования льда в ингибируемой среде в низкотемпературных условиях, упрощение процессов перекачки и дозирования композиции, используемой при проведении данного способа. Способ ингибирования гидратообразования путем ввода в ингибируемую среду композиции, содержащей водорастворимый полимер, поверхностно-активное вещество - ПАВ, пеногаситель, воду и растворитель: метанол, этанол, моно- и олигомерные этиленгликоли, моно- и олигомерные пропиленгликоли, глицерин, моноалкиловые эфиры С1-С4 моно- и олигомерных этиленгликолей, моноалкиловые эфиры С1-С4 моно- и олигомерных пропиленгликолей, этаноламины или их смесь, отходы химических производств, представляющие собой побочные продукты гидратации этиленоксида и пропиленоксида, кубовые остатки производств алкиловых эфиров моноэтиленгликоля, где в качестве ПАВ использовано соединение, выбранное из группы соединений, имеющих указанные формулы, при следующем соотношении компонентов, % мас.: водорастворимый полимер 1,0-25,0, ПАВ 2,0-20,0, пеногаситель 0-10,0, вода 0-15,0, растворитель остальное. 1 табл., 6 пр.

Изобретение относится к составам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья. Ингибитор гидратообразования в углеводородном сырье содержит водорастворимый полимер, поверхностно-активное вещество - ПАВ, пеногаситель, воду и растворитель: метанол, этанол, моно- и олигомерные этиленгликоли, моно- и олигомерные пропиленгликоли, глицерин, моноалкиловые эфиры С1-С4 моно- и олигомерных этиленгликолей, моноалкиловые эфиры С1-С4 моно- и олигомерных пропиленгликолей, этаноламины или их смесь, отходы химических производств, представляющие собой побочные продукты гидратации этиленоксида и пропиленоксида, кубовые остатки производств алкиловых эфиров моноэтиленгликоля, где ПАВ выбраны из приведенной группы, включающей соединения приведенной формулы, при следующем соотношении компонентов, % мас.: водорастворимый полимер 1,0-25,0, ПАВ 2,0-20,0, пеногаситель 0-10,0, вода 0-15,0, растворитель остальное. Технический результат - повышение ингибирующей способности состава, обеспечение предотвращения образования гидратов как по кинетическому, так и одновременно по кинетическому и термодинамическому механизмам, расширение температурного диапазона применимости ингибитора, обеспечение возможности предотвращения образования льда в ингибируемой среде в низкотемпературных условиях, улучшение вязкостных свойств. 6 пр., 1 табл.

Изобретение относится к экологичным (биоразлагаемым) низкотемпературным смазкам и может применяться в узлах трения машин и механизмов в условиях Крайнего Севера, при температурах окружающей среды до минус 50°С. Описанная биоразлагаемая низкотемпературная пластичная смазка содержит, % мас.: полимочевинный загуститель на основе димочевины - 8-20, второй загуститель - нанофибриллярную целлюлозу со средним диаметром фибрилл от 10 до 700 нм и степенью кристалличности не менее 45%, длиной до 1 мкм - 0.05-5, базовое сложноэфирное масло - остальное. Содержание базового масла в составе смазки - не менее 75% мас., а размеры частиц полимочевинного загустителя не превышают 50 мкм. Также предложен способ получения этой смазки, включающий растворение алифатического амина, содержащего от 16 до 19 атомов углерода, в базовом сложноэфирном масле. Раствор амина смешивают с раствором нанофибриллярной целлюлозы в базовом сложноэфирном масле, полученным путем последовательной замены растворителей с понижением их полярности и последующей ультразвуковой обработки в течение 2-3 минут. Затем в полученный раствор вводят раствор 4,4'-дифенилметандиизоцианата в базовом сложноэфирном масле. Смешивают компоненты со скоростью не менее 100 с-1 в течение 20 минут и более и нагревают до 80-100°С с образованием полимочевинного загустителя на основе димочевины. Технический результат - повышение морозостойкости биоразлагаемой пластичной смазки. 2 н.п. ф-лы, 3 табл., 11 пр., 1 ил.

Изобретение относится к области катализаторов для процессов изомеризации ксилолов и сырья, содержащего ароматические углеводороды С-8, и может быть использовано в таких отраслях промышленности, как нефтехимия и нефтепереработка. Микро-мезопористый катализатор изомеризации ксилолов состоит из носителя, содержащего: цеолит типа ZSM-5, упорядоченный мезопористый оксид кремния типа МСМ-41, гамма-оксид алюминия и металла платиновой группы, нанесенного на носитель. Причем активная фаза носителя, состоящая из цеолита типа ZSM-5 и упорядоченного мезопористого оксида кремния типа МСМ-41, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезо-порами упорядоченного оксида кремния типа МСМ-41 и микропорами цеолита типа ZSM-5. Технический результат заключается в повышении эффективности катализатора изомеризации ксилолов, а именно, в росте активности катализатора, приводящей к увеличению конверсии сырья и выхода целевого пара-ксилола. 1 табл., 6 пр.

Изобретение может быть использовано в целлюлозно-бумажной промышленности. Получение карбонизированного алкоголята магния осуществляют путем контактирования металлического магния со спиртом в атмосфере инертного газа при температуре от +20°С до температуры кипения спирта. Начальное содержание магния в реакционной смести от 0,01 % масс. до 5,0% масс. Полученную взвесь концентрируют до содержания алкоголята магния во взвеси от 2% масс. до 40% масс., но не менее чем в 2 раза путем отгонки избыточного спирта, который направляют на рецикл для контактирования с металлическим магнием. Концентрированную взвесь алкоголята магния растворяют путем контактирования с диоксидом углерода при температуре от +20°С до температуры кипения спирта с получением раствора карбонизированного алкоголята магния в спирте. Получение целевого продукта – композиции для обработки целлюлозно-бумажной продукции осуществляют смешением раствора карбонизированного алкоголята магния в спирте с легколетучим растворителем, выбранным из галогензамещенных углеводородов. Содержание карбонизированного алкоголята магния в целевом продукте от 3,0 % масс. до 25 % масс. Способ осуществляют в реакторе проточного типа, состоящего из емкости для получения алкоголята магния 1, разделенной на секции для фракционирования продуктов и реагентов по размерам гранул, емкости для концентрирования алкоголята магния 2, емкости растворения алкоголята магния под действием диоксида углерода 3, соединенных магистралями контролируемого массопереноса продуктов и реагентов. Предложенная группа изобретений позволяет повысить производительность и эффективность процесса получения карбонизированного алкоголята магния и предотвратить загрязнение целевого продукта частицами непрореагировавшего магния. 2 н. и 4 з.п. ф-лы, 5 пр.

Изобретение описывает способ получения биотоплива, заключающийся в том, что предварительно биомассу микроводорослей смешивают с водой в количестве 90,0-97,0 мас. % с поддержанием в процессе перемешивания жизнедеятельности фотосинтезирующих микроорганизмов, входящих в состав биомассы, посредством облучения светом с интенсивностью не менее 5 Вт/м2 в течение 3-10 мин, после чего полученную микробиологическую суспензию подвергают гидротермальному сжижению в присутствии катализатора для гидротермального сжижения, при этом гидротермальное сжижение осуществляют в блоке, состоящем из двух реакторов, работающих поочередно в режиме гидротермального сжижения и в режиме регенерации катализатора, причем микробиологическую суспензию загружают в первый реактор, предварительно нагретый до температуры 455-600°C, и гидротермальное сжижение суспензии ведут при давлении 10-30 МПа в течение 1-9 мин с образованием продукта сжижения, который выводят из реактора, охлаждают и подвергают сепарации с получением биотоплива, водной фазы, твердой фазы и газообразных продуктов, затем первый реактор переводят на режим регенерации катализатора, который ведут при температуре 455-600°C, а исходную микробиологическую суспензию направляют во второй реактор, работающий в режиме поддержания температуры, аналогичном режиму в первом реакторе, описанный цикл смены режимов работы реакторов повторяют, при этом охлаждение полученного продукта сжижения осуществляют путем теплообмена между продуктом сжижения и исходной микробиологической суспензией, полученные газообразные продукты направляют на нагрев реакторов, а в качестве катализатора используют катализатор для гидротермального сжижения биомассы растительного происхождения, содержащий оксид стронция, или оксид титана, или оксид олова, или их смесь, мелкодисперсный алюмосодержащий оксидный носитель, включающий фосфаты или арсенаты алюминия, при следующем соотношении компонентов, мас. %: оксид стронция, или оксид титана, или оксид олова, или их смесь - 1-50 и мелкодисперсный алюмосодержащий оксидный носитель, включающий фосфаты или арсенаты алюминия, - остальное, до 100, во фторированной и/или сульфатированной форме. Технический результат заключается в повышении выхода биотоплива, обеспечении непрерывности процесса производства биотоплива в технологической цепи, исключении использования опасных органических растворителей и утилизации побочных газообразных продуктов. 2 табл., 2 пр.

Изобретение относится к пластичным смазкам, которая может быть использована в механизмах различного назначения, работающих при температуре до 200°С. Сущность: пластичная смазка содержит, мас. %: комплексное кальциевое мыло в виде смеси кальциевого мыла стеариновой кислоты, кальциевого мыла 12-оксистеариновой кислоты и кальциевого мыла уксусной кислоты при их массовом соотношении 1:(0,2÷1,8):(0,1÷1,2) соответственно 6-20, карбонатированный алкилсалицилат кальция с щелочным числом 100-600 мг КОН/г 80, минеральное или синтетическое масло - остальное до 100. Достигаемый технический результат заключается в обеспечении формирования стабильного структурного каркаса смазки на основе многокомпонентного кальциевого комплекса. 2 табл.

Изобретение относится к нефтяной промышленности. Способ изоляции газопритоков в добывающих скважинах включает закачку в скважину изолирующего состава, полученного путем диспергирования гидрофобного глинистого материала в гомогенной смеси отработанного масла и мазута, взятых при следующем соотношении компонентов, масс. %: гидрофобный глинистый материал - 1,0-2,0, отработанное масло - 10,0-50,0, мазут - остальное, до 100. Полученный изолирующий состав продавливают в пласт продавочной жидкостью. Осуществляют технологическую выдержку скважины в состоянии покоя в течение не менее 12 часов. Проводят пуск скважины и вывод ее на проектный режим работы. При этом закачку изолирующего состава и продавочной жидкости проводят при давлении не выше давления гидроразрыва пласта. Технический результат – повышение эффективности и технологичности способа газоизоляции при повышенном коэффициенте извлечения нефти. 3 табл., 1 пр.

Использование: нефтяная промышленность. Проводят закачку в скважину изолирующего состава, полученного путем диспергирования гидрофобного глинистого материала в мазуте при следующем соотношении, мас.%: гидрофобный глинистый материал - 1,0-3,0, мазут - остальное, до 100. Затем продавливают изолирующий состав в пласт продавочной жидкостью, после чего осуществляют технологическую выдержку скважины в состоянии покоя в течение не менее 12 часов. Далее осуществляют пуск скважины и выводят ее на штатный режим. При этом закачку изолирующего состава и продавочной жидкости проводят при давлении не выше давления разрыва пласта. Технический результат заключается в достижении селективного регулирования проницаемости неоднородного пласта для газа при неизменности или повышении проницаемости для нефти. 1 з.п. ф-лы, 1 пр., 2 табл.

Предложен наноструктурированный катализатор гидрирования ароматических углеводородов С6-С8, состоящий из носителя, содержащего, мас.%: алюмосиликатные нанотрубки 81-85, гидрофобизирующий компонент 15-19, и рутения в виде наночастиц, нанесенного на носитель в количестве 0,5-6,0% от массы носителя, где алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью, а рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости указанных нанотрубок. Технический результат – обеспечение катализатором увеличения площади контакта молекул углеводородного сырья с каталитическими центрами, а также предотвращения контакта наночастиц рутения с водой, содержащейся в исходном сырье, за счет интеркалирования наночастиц рутения – высокодисперсной активной фазы во внутреннюю полости алюмосиликатных нанотрубок с гидрофобизированной внешней поверхностью. 9 пр., 1 табл.

Настоящее изобретение относится к низкотемпературной пластичной смазке для узлов трения и может быть использовано в различных отраслях промышленности, например в нефтепереработке и нефтехимии, машиностроении, энергетике, пищевой промышленности. Сущность: низкотемпературная пластичная смазка содержит, масс. %: полипропилен молекулярной массы 50000-250000 16,0-28,0; пластификатор 0,1-10,0; антиокислитель аминного и/или фенольного типа 0,0-1,0; присадку с противоизносными и/или противозадирными свойствами 0,0-3,0; ингибитор коррозии 0,0-2,0; твердый наполнитель 0,0-5,0 и базовое масло с кинематической вязкостью при 100°С не более 8 мм2/с - остальное, до 100. Достигаемый технический результат заключается в улучшении предела прочности и коллоидной стабильности низкотемпературной пластичной смазки на основе полимерного загустителя. 2 табл.
Изобретение относится к способам получения полимерных материалов на основе целлюлозы путем прививки мономеров под действием ионизирующих излучений и может быть использовано при изготовлении упаковочных материалов, окрашенных синтетических и полусинтетических текстильных материалов. Способ получения радиационно-сшитого полимерного материала осуществляют путем растворения целлюлозосодержащего сырья в водном растворе щелочи, замораживания полученной однородной суспензии, последующего ее оттаивания, добавления к полученному раствору осадителя, отделения образовавшегося продукта осаждения, диспергирования последнего в среде растворителя, смешения полученной целлюлозосодержащей суспензии с органическим красителем, нанесенным на пористый носитель с трубчатой или стержнеобразной микроструктурой в результате контактирования раствора органического красителя с суспензией пористого носителя и отделения раствора органического красителя, с получением продукта смешения, воздействия на него гамма-облучением при мощности поглощенной дозы от 0,1 до 10 кГр/ч до достижения поглощенной дозы от 90 до 150 кГр и экстрагирования облученного продукта растворителем с выделением целевого продукта и экстракта с направлением последнего на контактирование с пористым носителем. Технический результат заключается в получении радиационно-сшитого полимерного материала с возможностью регулировать эксплуатационные свойства (равномерность окраски, цветность, наличие флуоресценции), а также обладающего повышенной механической прочностью. 1 з.п. ф-лы, 4 пр.
Изобретение относится к способам получения композиций в виде гелей, содержащих наноразмерную целлюлозу, и может быть использовано в целлюлозно-бумажной, текстильной, химической, пищевой отраслях промышленности. Способ получения целлюлозосодержащего геля, включающий кислотную и окислительную обработку целлюлозосодержащего сырья, проводимую в присутствии водных растворов минеральной кислоты и неорганического окислителя с получением обработанного целлюлозосодержащего сырья, фильтрование обработанного целлюлозосодержащего сырья с получением целлюлозосодержащего осадка и фильтрата, направляемого на кислотную и окислительную обработку, промывку целлюлозосодержащего осадка промывочным раствором, отделение избыточного промывного раствора с образованием промытого целлюлозосодержащего осадка, диспергирование промытого целлюлозосодержащего осадка в воде с получением водной суспензии целлюлозы, механическое измельчение полученной водной суспензии целлюлозы с образованием водной суспензии наноразмерной целлюлозы, смешение водной суспензии наноразмерной целлюлозы с водной суспензией модифицированного алюмосиликатного коагулянта, которую получают путем смешения алюмосиликатного коагулянта с водой и, дополнительно, с водным раствором модификатора, выбранного из группы, включающей катионные поверхностно-активные вещества, вещества, диссоциирующие в водных растворах с образованием полимерных катионов, их смеси, с образованием целлюлозосодержащего геля в избытке воды, и отделение избытка воды с получением целевого целлюлозосодержащего геля. Технический результат заключается в обеспечении формирования структуры целлюлозосодержащего геля с коагулированными волокнами на алюмосиликатных частицах, а также в расширении арсенала технологий получения целлюлозосодержащих гелей из дешевого и доступного сырья. 4 з.п. ф-лы, 3 пр.

Изобретение относится к области охраны окружающей среды и может быть использовано для ликвидации нефтеразливов при добыче, транспортировке и хранении углеводородного сырья и продуктов его переработки. Способ получения композиции для ликвидации нефтеразливов включает контактирование твердого пористого порошкообразного носителя с размером частиц до 100 мкм с водным раствором гидрофобизатора при перемешивании в течение 1-48 часов. Отделение образованного осадка. Нагрев осадка в атмосфере инертного газа до температуры 300°С - 1000°С. Выдерживание при данной температуре в течение 1-12 ч. Охлаждение осадка с получением гидрофобизированного носителя. Смешение последнего с жидким эмульгатором. Обработки образованной смеси ультразвуком с частотой 20-100 кГц в течение 1-500 минут. Отделение от указанной смеси избытка жидкого эмульгатора с получением пропитанного гидрофобизированного носителя с последующим смешением его с предварительно измельченной до размера частиц менее 100 мкм смесью газообразователя и кислотного агента. Изобретение обеспечивает снижение межфазного натяжения между водой и нефтепродуктами за счет высвобождения низкомолекулярных амфифильных веществ при контакте высокодисперсных частиц композиции с водой, повышении адсорбции частиц пористого носителя и жидкого эмульгатора в составе композиции на границе раздела фаз вода-нефть или нефтепродукты, интенсивном газовыделении при контакте композиции с водой. 5 ил., 11 пр.
Изобретение относится к области фильтрующих материалов для использования в пищевой, химической, фармацевтической отраслях промышленности и касается способа получения фильтрующего материала. Проводят диспергирование целлюлозосодержащего сырья в водном растворе щелочи, затем замораживания полученной однородной суспензии и последующее ее оттаивание. Затем к полученному раствору добавляют осадителя, отделяют образовавшийся продукт осаждения, диспергируют последний в среде растворителя. Полученную целлюлозосодержащую суспензию смешивают с раствором полимера с получением продукта смешения. Добавляют к продукту смешения функциональную добавку, состоящую из пористого носителя со стержнеобразной микроструктурой с нанесенным на его поверхность металлическим серебром. Далее воздействуют на полученную смесь гамма-облучением при мощности поглощенной дозы не более 10 кГр/ч до достижения поглощенной дозы от 10 кГр до 1000 кГр и выделяют целевой продукт. Изобретение обеспечивает возможности регулирования эксплуатационных свойств полученного в результате проведения описываемого способа фильтрующего материала, в частности, водопроницаемости и наличия бактериальной активности.
Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов. Способ получения мембран для ультрафильтрации водных сред, заключающийся в том, что формование пористой полимерной мембраны осуществляют посредством использования двухканальной фильеры с концентрическим расположением каналов путем пропускания через центральный канал фильеры осадителя с одновременной подачей через кольцеобразный канал формовочного раствора, содержащего от 10 до 24 мас.% полимера, от 0 до 40 мас.% порообразователя и от 50 до 90 мас.% растворителя с образованием полой полимерной трубки, которую по мере формования подают в емкость с осадителем с образованием полимерного полого волокна, которое подвергают растяжению до достижения заданного значения постфильерной вытяжки, после чего волокно помещают в водную среду и проводят гидрофилизацию полученного полого полимерного волокна путем подачи в полость полимерного волокна дисперсии наноразмерных частиц целлюлозы в виде волокон нанофибриллярной целлюлозы с диаметром волокон менее 100 нм и длиной волокон менее 10 мкм или в виде кристаллов нанокристаллической целлюлозы с диаметром кристаллов менее 10 нм и длиной кристаллов менее 500 нм с образованием гидрофильного слоя в полости мембраны в процессе фильтрации дисперсии наноразмерных частиц целлюлозы сквозь стенку полого волокна. Технический результат - корректировка режима получения мембран за счет регулирования утончения стенки полого волокна в процессе формования мембран, вследствие чего обеспечивается возможность образования селективного гидрофильного слоя на рабочей поверхности мембран с сохранением высокой производительности. 1 з.п. ф-лы.

Изобретение относится к установке получения биотоплива из природных источников сырья. Установка для производства биотоплива характеризуется тем, что она содержит камеру предварительной обработки исходного сырья с установленными в ней мешалкой и источником светового излучения и с линиями ввода воды и биомассы водорослей (сырье), емкость с водой, блок гидротермального сжижения. Блок гидротермального сжижения состоит из двух реакторов, заполненных гетерогенным катализатором и работающих поочередно в режиме гидротермального сжижения и в режиме регенерации катализатора, имеет узел нагрева реакторов, выполненный в виде установленных в полостях реакторов горелок. Установка имеет блок сбора и сепарации биотоплива с размещенным в нем узлом охлаждения в виде змеевика, при этом выходы емкости с водой и камеры предварительной обработки исходного сырья через регулируемые клапаны подсоединены к насосу высокого давления, выход которого подключен посредством байпасной линии с установленным на ней управляемым клапаном к камере предварительной обработки исходного сырья и к одному из концов змеевика, другой конец которого подсоединен через управляемые клапаны к входам реакторов с образованием замкнутого контура циркуляции полученного продукта предварительной обработки исходного сырья, нижние выходы реакторов через регулируемые клапаны подключены к входу блока сбора и сепарации биотоплива и к линии вывода продуктов сгорания, а линия выхода газообразных продуктов из блока сбора и сепарации биотоплива совместно с линиями подачи топлива и воздуха подсоединена к линии питания горелок, на которой установлены регулируемые задвижки горелок, связанные с коммутирующим элементом, осуществляющим поочередное включение и отключение горелок. Технический результат - повышение выхода биотоплива, энергоэффективности, экологичности его производства. 1 ил.
Изобретение относится к области получения синтез-газа путем термохимической переработки растительного сырья и тяжелого углеводородного сырья. Способ включает нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы и полукокса с тяжелым углеводородным сырьем. Затем осуществляют диспергирование данной смеси в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2, времени обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт, времени обработки 1,0-8,0 ч при температуре 50-70°С с образованием обработанной суспензии, которую направляют на газификацию при 800-1400°С с получением второго потока газа, отделение от второго потока газа водной суспензии сажи. Затем смешение первого потока газа и второго потока газа после отделения от него водной суспензии сажи и очистку образованной смеси с получением целевого синтез-газа. Техническим результатом изобретения является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.
Изобретение относится к области получения синтез-газа путем термохимической переработки растительного и тяжелого углеводородного сырья. Способ включает нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2, временем обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт, временем обработки 1,0-8,0 ч при температуре 50-70°С, с образованием обработанной суспензии. Затем суспензию направляют на газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем. Диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии и проведение газификации полученной суспензии с получением третьего потока газа и водной суспензии сажи. Далее смешение первого потока газа со вторым и третьим потоками газа после отделения водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа. Техническим результатом изобретения является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.

Изобретение относится к созданию низкотемпературной пластичной смазки, которая может быть использована в механизмах различного назначения, работающих при температуре от минус 60°С. Сущность: низкотемпературная пластичная смазка содержит, мас.%: загуститель 11,0-15,0, антиокислитель аминного и/или фенольного типа 0,3-0,5, наноструктурированную функциональную добавку - наноразмерные частицы галлуазита или монтмориллонита 0,5-5,0, присадку с противоизносными и/или противозадирными свойствами 0,0-3,0, ингибитор коррозии 0,0-2,0, базовое масло - остальное, до 100. Причем при формировании смазки указанную наноструктурированную функциональную добавку используют в виде предварительно механически диспергированной в базовом масле, а после смешения с остальными компонентами - термомеханически диспергированной в смеси указанных компонентов. Технический результат заключается в обеспечении модификации структурного каркаса смазки, используемой наноструктурированной функциональной добавкой. 2 табл.

Изобретение относится к составам для ингибирования образования газовых гидратов по кинетическому механизму в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в нефтегазовой отрасли для предотвращения образования техногенных газовых гидратов. Состав кинетического ингибитора гидратообразования содержит четвертичное аммониевое соединение, водорастворимый полимер, оксиэтилированный и/или оксипропилированный амин, оксиэтилированный и/или оксипропилированный диол, алифатический спирт с числом атомов углерода от 5 до 6, метанол или этанол, или метанол или этанол с водой, или смесь метанола и этанола с водой при следующем соотношении компонентов, % масс.: четвертичное аммониевое соединение 10,0-50,0, водорастворимый полимер 1,0-10,0, оксиэтилированный и/или оксипропилированный амин 1,0-10,0, оксиэтилированный и/или оксипропилированный диол 0,0-10,0, алифатический спирт с числом атомов углерода от 5 до 6 0,0-20,0, метанол или этанол, или метанол или этанол с водой, или смесь метанола и этанола с водой - остальное. Технический результат - снижение содержания полимерной основы, приводящей к понижению динамической вязкости ингибитора, снижение температуры застывания и достижение аналогичной или более высокой ингибирующей способности. 1 ил., 3 табл.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: цеолит типа ZSM-5 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора. При этом активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок. Технический результат заключается в использовании в составе описываемого катализатора иерархического алюмосиликатного материала, имеющего систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок, способствующую снижению диффузных затруднений, препятствующих достижению необходимой степени активности катализатора изомеризации. 3 пр., 1 табл.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор для изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: упорядоченный алюмосиликат типа Аl-МСМ-41 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора. Активная фаза носителя состоит из упорядоченного алюмосиликата типа Аl-МСМ-41 и алюмосиликатных нанотрубок и представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа Аl-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок. Достигаемый технический результат заключается в формировании системы пор и каналов для обеспечения высокой термической стабильности и активности катализатора, что обусловлено использованием иерархического алюмосиликатного материала. 1 ил., 1 табл., 4 пр.

 


Наверх