Патенты автора Кулешов Павел Евгеньевич (RU)

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Сущность способа наведения управляемого боеприпаса заключается в подсвете области подстилающей поверхности направленным оптическим излучением в соответствии с известными координатами цели, обнаружении, захвате и наведении самонаводящегося боеприпаса по отраженному оптическому излучению от области подсвета подстилающей поверхности, при этом выбирают по меньшей мере две области подсвета подстилающей поверхности, симметричные относительно координат цели и находящиеся в поле зрения самонаводящегося боеприпаса, осуществляют подсвет выбранных областей подстилающей поверхности с периодом, меньшим постоянной времени накопления приемного устройства самонаводящегося боеприпаса. Технический результат – снижение вероятности противодействия самонаводящимся на излучение целеуказания боеприпасам. 2 ил.

Изобретение относится к области оптических измерений и касается способа определения угловых координат на источник направленного оптического излучения. Способ включает в себя привязку положения фоточувствительных элементов матричного фотоприемника оптико-электронного координатора к декартовой системе координат, прием излучения, выделение не менее шести фотоэлементов матричного фотоприемника, сигналы на выходе которых равны между собой, определение их координат и вычисление по их значениям угла места и азимута источника излучения. Кроме того, при проведении измерений определяют суммарный сигнал S1 выделенных шести фотоэлементов, осуществляют наклон плоскости матричного фотоприемника по углу места в направлении его увеличения, повторно определяют суммарный сигнал S2 выделенных шести фотоэлементов и сравнивают полученные значения сигналов S1 и S2. Если S1>S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 0° до 90°. Если S1<S2, то устанавливают принадлежность источника оптического излучения верхнему полупространству диапазона углов от 90° до 180°. Технический результат заключается в снятии ограничений на неоднозначность определения угла места. 2 ил.

Изобретение относится к области оптико-электронного приборостроения и касается способа защиты приемника оптического излучения. Способ включает в себя прием входного оптического потока матричным фотоприемным устройством (МФПУ), измерение величины ii выходного сигнала каждого i-го чувствительного элемента (ЧЭ) МФПУ, где - номер ЧЭ МФПУ, N - количество ЧЭ в МФПУ, и сравнение их значения с пороговым значением iП. При превышении величины ij выходного сигнала j-ого ЧЭ МФПУ порогового значения iП закрывают j-ую часть входного оптического потока. Далее периодически открывают j-ую часть входного оптического потока и измеряют величины ij выходного сигнала j-го ЧЭ МФПУ. При ij≥iП закрывают j-ую часть входного оптического потока, а при ij<iП оставляют j-ую часть входного оптического потока открытой. Технический результат заключается в обеспечении возможности функционирования устройства в условиях засветки фоточувствительной поверхности мощными сигналами. 3 ил.

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Для наведения управляемого боеприпаса определяют координаты цели, подсвечивают область подстилающей поверхности лазерным излучением, захватывают и наводят самонаводящийся боеприпас класса воздух-поверхность (СБПВП) по отраженному лазерному излучению от области подсвета подстилающей поверхности. При этом область подсвета подстилающей поверхности лазерным излучением перемещают по заданной относительно координат цели траектории, исключающей подсвет лазерным излучением самой цели. Затем определяют параметры наведения СБПВП на цель относительно параметров траектории перемещаемой области подсвета подстилающей поверхности лазерным излучением и их значения передают на СБПВП. Обеспечивается повышение эффективности применения самонаводящихся боеприпасов на излучение целеуказания за счет снижения электромагнитной доступности сигналов подсвета на объекте поражения. 3 ил.

Способ защиты вертолета от управляемых боеприпасов заключается в поиске с борта вертолета оптического излучения управляемого боеприпаса (УБП), включает отстрел аэрозолеобразующего боеприпаса в направлении полета вертолета и формирование на установленной дистанции аэрозольного облака, подсвечивание его лазерным излучением в диапазоне частот инфракрасного спектра, соответствующих вертолету, определение по оптическому излучению функционирования составных элементов УБП параметров его траектории полета, определение по их значениям величины промаха УБП относительно вертолета и сравнение ее значения с заданным. Если определенная величина промаха меньше заданной, включают бортовые средства противодействия УБП. Технический результат заключается в повышении эффективности защиты вертолета от управляемых боеприпасов. 1 ил.

Способ однопозиционного определения угловых координат заключается в применении в качестве фотоприемного устройства матричного фотоприемника, осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина. В результате суперпозиции сигнальной волны и волны гетеродина на поверхности МФП формируется изображение в виде интерференционных полос. По ширине интерференционных полос и угла их наклона определяют угловые координаты источника лазерного излучения. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности определения направления на источник лазерного излучения. 2 ил.

Изобретение относится к вооружению и касается систем огневого поражения воздушных объектов зенитными артиллерийскими комплексами (ЗАК). Поражение малогабаритного летательного аппарата (МГЛА) заключается в поиске, обнаружении и сопровождении зенитно-артиллерийским комплексом (ЗАК), наведении ЗАК в направление прицеливания с учетом параметров полета МГЛА и характеристик ЗАК. При этом передают параметры полета МГЛА на неконтактный оптический взрыватель зенитного боеприпаса (ЗБП) ЗАК, подсвечивают МГЛА лазерным излучением, после чего осуществляют ЗАК выстрел ЗБП. Неконтактным оптическим взрывателем ЗБП по принимаемому отраженному лазерному излучению измеряют угол места и азимут МГЛА и определяют угломестную составляющую скорости сближения ЗБП и МГЛА. Затем вычисляют значение оптимального угла места МГЛА подрыва ЗБП, при достижении которого осуществляют направленный подрыв ЗБП в направлении текущего азимута МГЛА. Достигается повышение эффективности поражения малогабаритных летательных аппаратов. 2 ил.

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат изобретения - повышение эффективности определения координат ИРИ, размещенных в труднодоступной местности. Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения ИРИ минимум трех самораскрывающихся дистанционно управляемых летательных аппаратов (СДУБЛА), на борту которых установлена требуемая для радиомониторинга радиоэлектронная аппаратура. При этом доставка осуществляется пуском минимум трех носителей. Бортовая радиоэлектронная аппаратура включает устройства определения координат СДУБЛА, поиска и определения параметров сигналов ИРИ и приемопередачи необходимых данных. После доставки СДУБЛА в район размещения ИРИ бортовая радиоэлектронная аппаратура одновременно по сигналу «пуска» или автоматически приводится в работоспособное состояние, при этом определяют координаты местоположения СДУБЛА, передают их значения на пункт радиоконтроля. При необходимости изменяют местоположение СДУБЛА путем передачи соответствующих сигналов управления полетом. Осуществляют поиск, обнаружение и определение параметров сигналов ИРИ, значения которых также передают на пункт радиоконтроля. На пункте радиоконтроля по поступившим данным осуществляется определение местонахождения ИРИ относительно координат СДУБЛА. 1 ил.

Изобретение относится к пассивным системам радиоконтроля и может быть использовано в системах местоопределения радиоизлучающих средств. Достигаемый технический результат - снятие ограничения по взаимному пространственному расположению приемных каналов пеленгационных пунктов. Указанный результат достигается за счет того, что используют многопозиционную систему, содержащую минимум два разнесенных в пространстве пункта приема и обработки сигналов (ППОС) и информационно связанный с ними пункт определения пространственных параметров источника радиоизлучения (ПОПП). ППОС содержат по три произвольно расположенных относительно друг друга приемных канала (точки), в каждом из них производится оценка фазы принимаемой волны. При этом ППОС имеют координатную привязку каждого приемного канала (точки) в декартовой системе координат. Значения координат точек приема (каналов) и значения оценки фазы прихода волны в каждом канале поступают на ПОПП, в котором с использованием измеренных значений фаз ИРИ строят фазовые плоскости принимаемого поля каждым ППОС, а координаты ИРИ определяют по координатам середины минимального отрезка, соединяющего прямые нормалей к этим фазовым плоскостям. 2 ил.

Изобретение относится к области защиты летательного аппарата в процессе противодействия управляемому оружию на основе системы самонаведения на источник оптического излучения. Сущность способа использования тепловой ловушки заключается в снижении уровня непреднамеренных помех бортовым оптико-электронным средствам путем экранирования излучения тепловой ловушки в направлении защищаемого летательного аппарата. Снижает уровень непреднамеренных помех бортовым оптоэлектронным системам, создаваемых ложными тепловыми целями. 3 ил.

Изобретение относится к вооружению, в частности к системам огневого поражения радиоэлектронных объектов. Для поражения РЭС, функционирующих в СЧ, ВЧ и ОВЧ, на одном управляемом боеприпасе (УБП) используется два метода самонаведения: на начальных участках полета для поиска и грубого наведения на РЭС - радиосистема самонаведения; на конечном участке, после отключения наведения по РЭС, для более точного наведения - оптико-электронная система. Это позволяет существенно повысить устойчивость наведения на РЭС, увеличить дальность поражения и сократить время подготовительного периода пуска УБП. Технический результат - повышение эффективности поражения РЭС, функционирующих СЧ, ВЧ и ОВЧ диапазонах. 2 ил.

Изобретение относится к области борьбы с радиоэлектронными средствами (РЭС) и предназначено для функционального поражения радиоэлектронных устройств, входящих в состав средств поражения. Способ защиты объектов от поражения огневыми комплексами заключается в определении сектора атаки огневого комплекса (ОК), состава его РЭС, координат их местоположения, определении N числа многоразовых взрывных импульсных генераторов (МВИГ), необходимых для функционального поражения РЭС ОК, установлении N числа МВИГ на безопасном удалении для РЭС защищаемого объекта, ориентации диаграмм направленности передающих антенн МВИГ в направлении сектора атаки ОК, подрыве МВИГ циклически через промежутки времени при нахождении РЭС ОК в зоне функционального поражения и поражении РЭС ОК электромагнитным излучением. Достигается повышение эффективности защиты объектов различного назначения от поражения ОК, включающих РЭС. 2 ил.

Изобретение относится к области проведения испытаний огневых комплексов, в частности для оценки точности попадания в цель различных боеприпасов. Способ заключается в дополнительном измерении оптико-электронным пеленгатором (ОЭП) спектрально-пространственных параметров изображений излучений, возникающих при падении боеприпасов. ОЭП размещают по периметру испытательного полигона на некотором удалении относительно друг друга и определяют пеленги на источники оптических сигналов, возникновение которых обусловлено подрывом боеприпасов. Различение боеприпасов осуществляется измерением спектрально-пространственных характеристик изображений этих сигналов, которые сравнивают между собой, и по совпадению их значений устанавливают принадлежность пеленгов типу боеприпаса. Координаты точек падения боеприпасов соответствуют координатам точек пересечения своих линий пеленгов. Технический результат - обеспечение определения координат эпицентров взрывов и их принадлежность определенному типу боеприпасов при их одновременном подрыве. 2 ил.

Способ противодействия управляемым боеприпасам (УБП) базируется на поэтапном воздействии оптического сигнала на оптико-электронный (ОЭК) УБП в зависимости от координат его местоположения, их разброса и временных промежутков энергетической доступности фоточувствительной площадки его приемника. Предварительно осуществляют по сопровождающему оптическому излучению составных элементов (корпуса ракеты, двигателя) обнаружение и пеленгацию УБП. Далее производят локацию ОЭК УБП оптическим сигналом в интересах формирования базы данных о структуре и характеристиках функционирования ОЭК УБП и его пространственном местоположении и ориентации относительно оптико-электронного средства поражения (ОЭСП). Согласование полей зрения ОЭК УБП и приемопередающего канала ОЭСП в зависимости от их взаимного местоположения и скорости сближения с учетом ошибок пеленгации и целеуказания осуществляют управлением углом расходимости лазерного излучения. Также формируют относительно ОЭСП три зоны воздействия оптического сигнала на фотоприемник ОЭК УБП: дальняя, средняя и ближняя. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности радиоэлектронного поражения оптико-электронных средств, входящих в состав высокоточного оружия. 3 ил.

Изобретение относится к способам определения местоположения источника оптического излучения по рассеянной в атмосфере составляющей. Согласно способу применяют два оптико-электронных координатора с перпендикулярными приемными плоскостями. Осуществляют координатную привязку фотоэлементов матричных фотоприемников и принимают рассеянное атмосферным каналом оптическое излучение. Определяют координаты крайних фотоэлементов противоположных по периметру линеек фотоэлементов оптико-электронных координаторов с матричными фотоприемниками, сигнал на выходе которых превысил пороговое значение, и вычисляют по их значениям координаты местоположения источника оптического излучения. Технический результат - одновременное определение пространственного положения оптического луча и координат источника оптического излучения. 2 ил.

Изобретение относится к области противодействия радиоэлектронным средствам (РЭС) и может быть использовано при осуществлении помехового воздействия на радиосредства различного назначения. Достигаемый технический результат - повышение точности доставки постановщика радиопомех (ПРП) в район местонахождения РЭС. Указанный результат достигается за счет того, что предварительно на пункте запуска носителей (ПЗН) производится выбор координат точки доставки передатчика радиопомех в зависимости от рельефа местности, характеристик ИРП и других условий в интересах создания эффективных помех РЭС. С ПЗН осуществляют пуск носителя, который доставляет в район нахождения РЭС передатчик оптического излучения (ПОИ), навигационный приемник и устройство передачи данных, выполненных в едином кассетном исполнении и автоматически приводящихся в рабочее состояние после фиксации в грунте. Навигационный приемник определяет свои координаты и передает их значения на ПЗН. На ПЗН для доставки ИРП в требуемую точку рассчитывают значения корректирующих сигналов отклонения полета самонаводящегося (СНН) носителя относительно ПОИ, которые вносят в систему управления траекторией полета СНН. С ПЗН осуществляют пуск СНН ИРП, который при подлете к ПОИ принимает его излучение. При этом с момента приема сигнала ПОИ СНН ИРП также осуществляет съемку подстилающего ландшафта в зоне точки доставки ИРП. При достижении определенного рубежа ПОИ выходит из поля зрения СНН, который теряет его сигнал и переходит в режим самонаведения по полученному изображению элементов постилающего ландшафта. 2 ил.
Изобретение относится к пассивным системам радиомониторинга радиоэлектронных средств, в частности может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Сущность способа определения координат местоположения ИРИ заключается в доставке в предполагаемый район нахождения ИРИ элементов пеленгации с учетом их взаимного расположения на местности и формирования угломерной системы определения местоположения. При этом угломерная система определения местоположения ИРИ формируется путем доставки пеленгационных постов (ПП) с учетом пространственных требований базы угломерной системы, состоящих минимум из двух измерительных элементов, осуществляющих оценку фазы принимаемого сигнала. На борту каждого носителя размещены средства поиска, обнаружения и определения параметров сигналов ИРИ, радионавигационного определения координат и приемопередачи данных. Для формирования одного ПП производится запуск по заданным координатам доставки в район размещения ИРИ минимум двух носителей. После фиксации в грунте и приведения в работоспособное состояние с помощью средств радионавигационного определения координат определяют координаты местоположения средств поиска, обнаружения и определения параметров сигналов ИРИ, значения которых передают на опорный пункт радиоконтроля (ПРК). Средства поиска, обнаружения и определения параметров сигналов каждого ПП осуществляют частотный поиск сигналов ИРИ и в случае их обнаружения измеряют значение фазы. Значения фазы и частоты принятого сигнала средства поиска, обнаружения и определения параметров сигналов ИРИ передают на опорный пункт радиоконтроля (ПРК), в котором на основе принятых данных определяют координаты местоположения ИРИ относительно координат точек доставки элементов ПП. Техническим результатом является повышение точности определения координат ИРИ, размещенных в труднодоступной местности. 1 ил.

Изобретение относится к области противодействия оптико-электронным системам (ОЭС) различного назначения. Способ основан на согласовании ориентации каждого передающего канала помехового сигнала с ориентацией соответствующего пеленгационного канала. В случае функционирования в поле зрения пеленгационного канала ОЭС, осуществляется пеленгация их сигналов. Информация об угловых координатах ОЭС предается на матрицу передающих каналов. При этом включаются передающие каналы, согласованные по направлению с пеленгационными каналами, осуществившими определение направления на ОЭС, и осуществляется одновременная постановка помех на ОЭС. Технический результат - повышение эффективности противодействия ОЭС. 1 ил.

Изобретение относится к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольной завесой, заключается в доставке средств генерации электроаэрозоля в район местонахождения аэрозольного образования (АО), прикрывающего объекты от поражения огневыми комплексами. Распыленный электроаэрозоль, взаимодействуя с частицами АО, интенсивно изменяет коэффициент пропускания оптического излучения объектов АО и восстанавливает эффективность ведения стрельбы огневыми комплексами. Техническим результатом является повышение эффективности поражения объектов в условиях их прикрытия аэрозольным образованием. 3 ил.

Изобретение относится к области защиты средств радиосвязи от управляемого оружия на основе самонаведения на источник радиоизлучения. Достигаемый технический результат - повышение эффективности защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения. Указанный технический результат достигается за счет того, что исключение поражения защиты средства спутниковой радиосвязи самонаводящимся на радиоизлучение элементом поражения обеспечивается блокированием передачи его сигналов. Выработка сигналов блокирования (тревоги) осуществляется по параметрам отраженного сигнала от самонаводящегося на радиоизлучение элемента поражения, содержащего характерные доплеровские частотные надбавки. 2 ил.

Изобретение касается способа тягового заземления передвижных радиоэлектронных средств, основанного на выдвижении радиоэлектронного средства к месту развертывания, в соответствии с которым заземлитель, выполненный в форме ножа, шарнирно закрепленный через тягу к штоку гидроцилиндра и корпусу базовой машины, внедряют в грунт при движении базовой машины, которую останавливают при проникновении заземлителя в грунт на требуемую глубину. Технический результат - сокращение времени, затрачиваемого на развертывание и свертывание системы заземления.1 ил.

Изобретение относится к вооружению, а именно к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольным образованием, заключается в доставке средств генерации ультразвуковых колебаний в район местонахождения аэрозольного образования (АО), прикрывающего объекты от поражения огневыми комплексами. Генерируемые ультразвуковые колебания воздействуют на частицы АО, интенсивно изменяют коэффициент пропускания оптического излучения объектов АО и восстанавливают эффективность ведения стрельбы огневыми комплексами. Техническим результатом является повышение эффективности поражения объектов в условиях их прикрытия аэрозольным образованием. 3 ил.

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат - сокращение времени определения принадлежности местоположения ИРИ к ограниченной области пространства. Сущность способа заключается в реализации синхронного по пространству и времени пеленгования ИРИ с последующей корреляционной обработкой потока сигналов от каждого из пеленгаторов для выявления сигналов тех ИРИ, координаты которых принадлежат априорно заданной «просматриваемой» области пространства. Пространственно-временная синхронизация реализуется путем одновременного формирования диаграмм направленности пеленгаторов, направление максимума которых ориентированоы на геометрический центр просматриваемого элемента области пространственного мониторинга ИРИ. 2 ил.

Изобретение относится к способам контроля эффективности защиты речевого сигнала от утечки по техническим каналам. Технический результат заключается в повышении достоверности оценки защищенности речевой информации. Измеряют октавные уровни сигнала и шума в выбранной контрольной точке. Определяют радиус оптимальной зоны размещения датчиков виброакустического сигнала (ДВАС). Рассчитывают оптимальное количество ДВАС, способных осуществлять перехват речи по техническим каналам утечки информации (ТКУИ). Рассчитывают максимальную формантную разборчивость речи по оцениваемому ТКУИ. На основе значений максимальных формантных разборчивостей речи, полученных по отдельным ТКУИ, с использованием разработанной зависимости, учитывающей взаимный «вес» ТКУИ, определяют координаты оптимальной точки размещения ИАС в помещении. Определяют формантные разборчивости речи для контролируемых ТКУИ при оптимальных размещении и ориентации ИАС в помещении. Рассчитывают максимальную формантную разборчивость речи по совокупности оцениваемых ТКУИ, которая пересчитывается в выходной показатель - интегральное значение словесной разборчивости речи, перехватываемой из помещения. Полученный выходной показатель сравнивают с нормативным значением, на основании чего делается вывод о соответствии результатов оценки требованиям норм защиты речевой информации.

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности обнаружения и наблюдения подстилающей поверхности. Сущность изобретения заключается в быстрой доставке дополнительного средства оптико-электронного наблюдения. При этом обеспечивается минимальное время подготовки средства доставки к запуску, а скорость его полета к месту доставки в заданное число раз превышает максимальную скорость полета вертолета. Величина скоростного превышения носителя задается требованием по сохранению скоростных и маневренных возможностей вертолета для решения других задач. Изображение, снимаемое дополнительным средством оптико-электронного наблюдения, передается на борт вертолета. 2 ил.

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является увеличение дальности наблюдения подстилающей поверхности и обнаружения различных объектов, расположенных на маршруте полета вертолета. Сущность изобретения заключается в адаптивном управлении траекторией полета предварительно забрасываемого носителя дополнительного средства оптико-электронного наблюдения относительно траектории полета вертолета. Управление полетом носителя дополнительного средства оптико-электронного наблюдения осуществляется с вертолета. При этом обеспечивается автоматическая привязка траектории полета носителя дополнительного средства оптико-электронного наблюдения к текущей траектории полета вертолета. Изображение, получаемое дополнительным средством оптико-электронного наблюдения, передается на борт вертолета. 2 ил.

Изобретение относится к области оптической локации объектов и касается измерений изменений параметров поляризации оптического излучения при прохождении оптически активного вещества. Сущность изобретения заключается в делении монохроматического линейно-поляризованного излучения на два равных потока, один из которых пропускают в прямом и обратном направлениях через измерительную кювету при наличии и отсутствии оптически активного вещества, гомодинном детектировании двух потоков и определении отклонения угла наклона плоскости поляризации оптически активным веществом по отношению амплитуд переменных составляющих фототоков в отсутствие и при наличии оптически активного вещества в измерительной кювете. Изобретение обеспечивает возможность определения влияния оптически активного вещества на поляризационные характеристики отраженного от объекта сигнала. 1 ил.

Изобретение относится к области противодействия управляемому оружию, в частности, к способу противодействия ложной тепловой ловушкой. Способ применения ложной тепловой ловушки основан на обнаружении управляемого элемента поражения с тепловой головкой самонаведения. Способ заключается в определении текущей скорости полета летательного аппарата, в соответствии с которой регулируют силу тяги и время включения реактивного двигателя тепловой ловушки, в поджигании вышибного заряда и термического вещества тепловой ловушки, в выбросе тепловой ловушки и стабилизации ее полета в требуемом направлении, во включении в заданное время реактивного двигателя тепловой ловушки и осуществлении ее полета под действием силы тяги реактивного двигателя с требуемой скоростью. Достигается увеличение дальности полета тепловой ловушки. 2 ил.

Изобретение относится к области противодействия управляемому оружию, в частности, к способу противодействия ложной тепловой ловушкой. Способ применения ложной тепловой ловушки основан на обнаружении управляемого элемента поражения с тепловой головкой самонаведения. Способ заключается в определении текущей скорости полета летательного аппарата, в соответствии с которой регулируют силу тяги и время включения реактивного двигателя тепловой ловушки, в поджигании вышибного заряда и термического вещества тепловой ловушки, в выбросе тепловой ловушки и стабилизации ее полета в требуемом направлении, во включении в заданное время реактивного двигателя тепловой ловушки и осуществлении ее полета под действием силы тяги реактивного двигателя с требуемой скоростью. Достигается увеличение дальности полета тепловой ловушки. 2 ил.

Способ относится к области проведения испытаний огневых комплексов для оценки точности попадания в цель различных боеприпасов. Способ определения координат точки падения боеприпаса основан на одновременной регистрации сейсмических и оптических волн, возникающих при ударе о грунт и взрыве боевой части боеприпаса. При этом осуществляется пеленгация оптико-электронными пеленгаторами рассеянного на частицах атмосферного аэрозоля оптического излучения, возникающего при взрыве боевой части боеприпаса. Определение в дополнение к координатам, полученным на основе анализа сейсмических волн, координат точки падения боеприпаса производится по координатам точки пересечения линий пеленгов источника оптического излучения - факела взрыва боеприпаса. Технический результат заключается в повышении точности определения координат точки падения боеприпаса. 3 ил.

Изобретение относится к области оптической электроники и может быть использовано в прецизионных системах обеспечения вхождения в связь, в системах точного нацеливания узких оптических лучей, системах траекторных измерений, а также в системах обеспечения устойчивости оптического канала передачи информации, размещенных на подвижных средствах. Достигаемый технический результат - получение возможности определения угловых координат источника оптического излучения подвижными пеленгационными средствами. Сущность способа определения направления на источник оптического излучения подвижными средствами заключается в следующем. Два оптико-электронных координатора (ОЭК) устанавливают на подвижные носители (автомобили, бронемашины и др.). При этом положение ОЭК стабилизируют в вертикальной и горизонтальной плоскостях с целью удержания ортогональной ориентации приемных полей ОЭК в системе координат. С помощью навигационной системы определяют текущие координаты местоположения ОЭК и относительно них координаты фотоэлементов матричных приемников. Принимают рассеянное аэрозольным образованием оптическое излучение источника и вычисляют его угловые координаты по текущим координатам фотоэлементов, имеющих максимальное значение выходных сигналов. 2 ил.

Изобретение относится к способу постановки протяженного аэрозольного образования для прикрытия группы объектов

Изобретение относится к области систем противодействия активным оптико-электронным средствам (ОЭС) дальнометрирования или целеуказания на основе постановки аэрозольной завесы (AЗ) и может быть использовано для защиты автомобильной или бронетанковой техники

Изобретение относится к лазерным системам связи

Изобретение относится к области радиотехнических систем и может быть использовано в системах связи

Изобретение относится к области оптико-электронных измерений и может быть использовано в лазерных локационных системах, системах точного нацеливания узких лазерных лучей, в частности системах точного определения направления на источники лазерного излучения или оптико-электронный прибор

Изобретение относится к области оптической электроники и может быть использовано в прецизионных системах обеспечения вхождения в связь, системах точного нацеливания узких оптических лучей и др

Изобретение относится к лазерным измерениям и может быть использовано в системах, измерения поляризационных параметров оптического излучения

Изобретение относится к области адаптивной пространственно-временной компенсации искажений когерентного оптического сигнала, вносимых трактом распространения, и может быть использовано в системах точной фокусировки лазерных лучей, системах обращения или компенсации фазового фронта

Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано в системах местоопределения радиоизлучающих средств УКВ-диапазонов

Изобретение относится к области противодействия радиоэлектронным объектам и может быть использовано при планировании и организации помехового воздействия на радиосредства различного назначения

Изобретение относится к области квантовой электроники и может быть использовано в прецизионных системах обеспечения вхождения в связь, в системах точного нацеливания узких оптических пучков, а также в системах определения направления на источники оптического излучения техники воздушного базирования

Изобретение относится к лазерным измерениям и может быть использовано в системах измерения поляризационных параметров оптического излучения

Изобретение относится к лазерным измерениям

Изобретение относится к области технической физики и может быть использовано для измерения азимута плоскости поляризации оптического излучения

Изобретение относится к вооружению, в частности к системам комплексного применения средств разведки, автоматизированного управления и огневого поражения

Изобретение относится к области оптико-электронных систем и может быть использовано в лазерных оптических системах связи

Изобретение относится к области квантовой электроники и может быть использовано в системах траекторных измерений, а также в системах точного определения направления на источники оптического излучения техники воздушного базирования

Изобретение относится к области измерений характеристик светорассеяния объектов

Изобретение относится к лазерным измерениям
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх