Патенты автора Уфаев Владимир Анатольевич (RU)

Изобретение относится к области радионавигации и может быть использовано для определения местоположения воздушных, наземных, надводных подвижных объектов. Технический результат - повышение точности определения местоположения подвижного объекта. Способ многопозиционной ближней радионавигации включает формирование радионавигационного поля путем синхронного излучения широкополосных периодических радиосигналов с заданным дальномерным кодом из пространственно разнесенных на земной поверхности радионавигационных пунктов с известными координатами, прием радиосигналов с помощью бортового навигационного приемника подвижного объекта, по заданному дальномерному коду разделение принятых сигналов, измерение моментов их прихода и соответствующих псевдодальностей до радионавигационных пунктов, измерение высоты с помощью бортового измерителя, определение по измеренным псевдодальностям и высоте местоположения подвижного объекта. При этом излучение и прием радиосигналов осуществляют с помощью всенаправленных в горизонтальной плоскости антенн при постоянной мощности излучения, дополнительно измеряют амплитуду принятых радиосигналов, а местоположение подвижного объекта определяют с учетом измеренных амплитуд и их зависимости от расстояния до места излучения. 4 з.п. ф-лы, 3 ил.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения объектов по их радиоизлучениям, в том числе источников непрерывных сигналов неизвестной формы. Техническим результатом является сокращение необходимого частотного ресурса при повышении точности определения координат. Заявленный способ включает прием сигнала объекта не менее чем в трех пространственно-разнесенных пунктах, ретрансляцию принятого сигнала со сдвигом частоты, измерение задержки между принятыми сигналами, расчет координат объекта по измеренным задержкам с учетом известного местоположения пунктов, при этом прием сигналов выполняют с преобразованием на единую промежуточную частоту. Во всех пунктах измеряют мощность принятого радиосигнала объекта, ретрансляцию осуществляют из одного пункта приема-ретрансляции, принимают ретранслированный радиосигнал и измеряют задержку между принятыми радиосигналами во всех других пунктах приема, результаты измерений задержки и мощности передают в один из пунктов приема. Координаты объекта рассчитывают с учетом измеренных мощностей и коррелированности измеренных задержек. 1 з.п. ф-лы, 5 ил.

Изобретение относится к способу авиационной ближней радионавигации. Для навигации летательного аппарата формируют радионавигационное поле по меньшей мере тремя радионавигационными пунктами, расположенными на земной поверхности в окрестности аэродрома определенным образом. По излучению радиосигнала запросчика и приему ретранслированного сигнала наземным ретранслятором измеряют совместно запаздывание и частотный сдвиг ретранслированного сигнала. По этим измерениям определяют наклонную дальность и радиальную скорость полета на ретранслятор. При этом радиосигнал запросчика кодируют дальномерным кодом, а координаты и вектор скорости определяют с учетом полученной наклонной дальности и радиальной скорости. Полученные данные используют для управления летательным аппаратом. Обеспечивается повышение точности наведения летательного аппарата и безопасности маневров захода и посадки. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области измерения параметров радиосигналов и может быть использовано в системах радиоконтроля за использованием радиочастотного спектра. Техническим результатом является обеспечение возможности определения частоты модуляции по спектру радиосигналов. Способ измерения частоты модуляции частотно-модулированного колебания включает приём частотно-модулированного радиосигнала и преобразование его в спектр мощности, спектр мощности фильтруют, исключая дискретные составляющие по уровню менее заданного порога, определяют, по мере увеличения, частоту каждого локального максимума отфильтрованного спектра и уточняют её путём усреднения частот локального максимума и соседних с ним дискретных составляющих с весом, равным значениям спектра мощности этих составляющих, затем по соседним уточнённым частотам определяют попарные разности и их среднее медианное значение. 3 ил.

Изобретение относится к области измерения параметров радиосигналов и может быть использовано в системах радиоконтроля за использованием радиочастотного спектра. Спектральный способ измерения девиации частоты основан на преобразовании частотно-модулированного сигнала в спектр мощности. Спектр мощности фильтруют, исключая спектральные составляющие по уровню менее заданного порога, затем оценивают средневзвешенное пропорционально составляющим отфильтрованного спектра значение их частоты и квадрата частоты, а девиацию частоты определяют как корень квадратный из удвоенной разности средневзвешенного значения квадрата частоты и квадрата средневзвешенного значения частоты. Техническим результатом при реализации заявленного способа является измерение произвольных значений девиации частоты, повышение скорости и снижение трудоёмкости измерений. 3 ил.

Изобретение относится к радиотехнике и может быть использовано в системах наземной радиосвязи по принципу «каждый с каждым». Технический результат - сокращение потребного частотного ресурса и повышение надежности связи. В способе радиосвязи с пространственным разделением каналов передача сообщений от абонентов одной станции к абонентам других станций осуществляется путем формирования пространственно разнесенных передающих парциальных каналов, причем направления передачи задаются изначально и неизменны. Прием сообщений происходит в обратном порядке. Предварительно первоначально определяют весовые коэффициенты передачи парциального канала станции-отправителя по принципу взаимности приема-передачи исходя из обеспечения совместного приема в местах размещения антенн передающей решетки станции-отправителя радиосигнала точечного изотропного излучателя из центра приемной решетки станции-получателя на фоне независимых радиосигналов таких же излучателей из центров прочих приемных решеток, затем, с учетом весовых коэффициентов передачи, определяют весовые коэффициенты приема парциального канала станции-получателя исходя из обеспечения совместного приема радиосигнала станции-отправителя на фоне всех прочих радиосигналов, образующихся при передаче в направлении станции-получателя от станций-отправителей. Передачу и прием радиосигналов выполняют одновременно на одной частоте с помощью передающей и приемной антенных решеток каждой станции связи, разнесенных в дальнюю волновую зону. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области управления летательными аппаратами и может быть использовано для наведения на наземную цель по ее радиоизлучению. Способ самонаведения на наземную цель включает двухмерное пеленгование цели, определение рассогласования между направлением на нее и направлением полета и траекторное управление полетом путем компенсации рассогласования, при этом измерительные системы согласуют между собой и с плоскостями управления. Дополнительно и синхронно с пеленгованием измеряют координаты и углы ориентации летательного аппарата, по совокупности этих измерений за время наведения и двухмерных пеленгов определяют координаты цели, по которым уточняют текущее направление на нее, а последующее траекторное управление полетом осуществляют по уточненному направлению на цель. Согласование измерительных систем между собой и с плоскостями управления выполняют путем преобразования измерительных систем координат с учетом углов ориентации летательного аппарата и с предварительным определением результатов измерений в виде составляющих векторов измерений. Технический результат – повышение точности наведения на цель. 1 з.п. ф-лы, 3 ил.

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано для определения местоположения надземных излучающих объектов с борта летательного аппарата или позиционирования летательного аппарата по радиомаяку с известными координатами. Достигаемый технический результат - повышение точности определения высоты подъема и дальности до излучателя в 5-10 раз и определение высоты подъема пеленгаторных антенн при известной высоте подъема излучателя. Способ местоопределения над земной поверхностью излучателя или пеленгаторных антенн включает прием сигналов излучателя с помощью пеленгаторных антенн, образующих кольцевую антенную решетку, располагаемую параллельно земной поверхности, и дополнительных антенн, установленных на нормали к плоскости решетки из ее центра, определение по принятым антеннами решетки сигналам азимута излучателя, измерение комплексных амплитуд принятых сигналов и преобразование измерений в направлении полученного азимута в трехмерный пространственный спектр по азимуту, дальности до излучателя и высоте подъема, при этом пространственный спектр получают путем умножения каждого измерения на комплексно сопряженную диаграмму направленности соответствующей антенны, суммирования результатов умножения, определения квадрата модуля суммы и нормировки ее на сумму квадратов модулей диаграмм направленности антенн, которые определяют по совокупности прямой и отраженной от земной поверхности волны с учетом их амплитуд и фаз, исходя из взаимного положения излучателя и пеленгаторных антенн, коэффициента отражения от земной поверхности и частоты, на которой измеряют комплексные амплитуды, измерение комплексных амплитуд и преобразование измерений в пространственный спектр выполняют одновременно на совокупности частот в полосе излучения, полученные пространственные спектры суммируют, а дальность до излучателя и высоту подъема его при известной высоте подъема пеленгаторных антенн или высоту подъема пеленгаторных антенн при известной высоте подъема излучателя определяют по положению максимума суммарного пространственного спектра, который получают соответственно по высоте подъема излучателя или пеленгаторных антенн. 3 ил.

Изобретение относится к радиотехнике и может быть использовано для двухмерного пеленгования наземных и воздушных объектов по их радиоизлучениям. Достигаемый технический результат - повышение точности определения угла места излучателя в 2-6 раз. Способ двухмерного пеленгования включает прием сигналов излучателя с помощью вертикальных вибраторов антенной решетки, параллельной земной поверхности, измерение комплексных амплитуд принятых сигналов и оценивание по результатам измерений азимута излучателя. При этом дополнительно принимают сигналы с помощью горизонтальных вибраторов, суммируют эти сигналы и измеряют комплексную амплитуду суммарного сигнала, результаты всех измерений преобразуют в направлении полученного азимута с учетом амплитудных и фазовых диаграмм направленности антенн в угловой спектр, по положению максимума которого определяют угол места излучателя, при этом горизонтальные вибраторы располагают в плоскости решетки, фазовые центры совмещают с ее центром, а оси равномерно поворачивают друг относительно друга. Положение максимума углового спектра по углу места предварительно оценивают как арктангенс отношения амплитуды суммарного сигнала, нормированной на сумму значений диаграмм направленности горизонтальных вибраторов в направлении зенита и оценочного азимута, к средней амплитуде сигналов вертикальных вибраторов. Угловой спектр определяют в точке предварительной оценки и в точках, удаленных от нее на константу дифференцирования, и уточняют положение максимума по интерполяционной формуле. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области управления летательными аппаратами и может быть использовано для их гарантированного наведения на наземный источник излучения по известному лишь только пеленгу без определения координат источника. Технический результат – повышение эффективности наведения за счет исключение вывода летательного аппарата за источник излучения. По способу пеленгуют источник излучения. Идентифицируют его как цели. Определяют курсовой угол на источник излучения. Строят прямую линию заданного пути, проходящую через точку пеленгования в направлении источника излучения. Выводят летательный аппарат с разворотом на линию заданного пути с нулевым курсовым углом на источник излучения. При этом для расчета используют местную декартову систему координат с центром, совпадающим с местом расположения летательного аппарата в момент пеленгования источника излучения. Обеспечивают выход летательного аппарата на линию заданного пути до точки пеленгования источника излучения при любых скоростях и курсовых углах. Определяют скорость летательного аппарата и минимально допустимый для этой скорости радиус разворота. Рассчитывают точку начала и радиус разворота летательного аппарата. Выполняют прямолинейный полет до расчетной точки начала разворота. Вывод летательный аппарат на линию заданного пути осуществляют по окружности с расчетным радиусом с разворотом в противоположную сторону от источника излучения. 1 ил.

Изобретение относится к области радиоизмерений и может быть использовано для определения коэффициента отражения от земной поверхности, в том числе с применением лётно-подъёмных средств. Способ определения коэффициента отражения от земной поверхности, включает излучение и приём узкополосного радиосигнала в пунктах с известным местоположением. Приём радиосигнала осуществляют с помощью не менее двух вертикально разнесённых приёмных антенн, измеряют комплексные огибающие принятых антеннами сигналов, с учётом взаимного и относительно земной поверхности положения излучателя и приёмных антенн, по совокупности прямой и отражённой волны, как функции возможных значений коэффициента отражения, формируют опорные сигналы, определяют функцию корреляции их с измеренными комплексными огибающими, по положению максимума которой определяют коэффициент отражения. Функцию корреляции получают путём умножения комплексной огибающей на комплексно сопряжённые опорные сигналы соответствующей антенны, суммирования результатов умножения по совокупности антенн, квадратичного детектирования суммарного сигнала, его нормировки на сумму по совокупности антенн квадратично детектированных опорных сигналов и усреднения результатов нормировки за время приёма. Способ позволяет сократить временные затраты и обеспечить измерения в реальном масштабе времени в том числе в движении, может быть использован для оперативного обследования отражательных свойств земной поверхности с применением лётно-подъёмных средств. 4 ил.

Изобретение относится к области радиотехники и может быть использовано для определения местоположения наземного источника излучения по результатам его двухмерного пеленгования с борта летательного аппарата. Достигаемый технический результат – определение высоты места излучения и повышение точности определения координат источника излучения в холмистой местности в 1,6-2,2 раза. Указанный результат достигается за счет того, что способ определения местоположения наземного источника радиоизлучения включает двухмерное пеленгование источника с помощью пеленгатора, расположенного на летательном аппарате, синхронно с этим измерение собственных пространственных координат летательного аппарата и определение по ним и результатам пеленгования за всё время полёта координат источника в горизонтальной координатной плоскости исходя из обеспечения минимальной погрешности, при этом до начала пеленгования определяют высоту местности в местах возможного положения источника, координаты источника определяют дополнительно с учётом этой высоты, дополнительно определяют высоту места излучения как высоту местности в точке полученных координат источника. Координаты источника определяют методом наименьших квадратов взвешенных расстояний от источника на заданной высоте до линий двухмерных пеленгов, а также методом максимального правдоподобия как положение минимума суммы квадратов разностей между измеренными и расчётными до мест возможного положения источника составляющими векторов двухмерных пеленгов. 2 з.п. ф-лы, 6 ил.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения объектов по внешним радиоизлучениям, в том числе радиомаяков, радио- и телецентров. Достигаемый технический результат - расширение рабочей зоны системы, по крайней мере, в секторе 30° на излучатель и уменьшение на четыре порядка времени локации. Указанный результат достигается за счет того, что способ радиолокации включает излучение зондирующего радиосигнала передатчиком, прием сигналов в удаленном пункте, определение направления на цель, пространственную фильтрацию прямого и отраженного сигналов и определение по ним и направлению на цель дальности до нее, при этом прием сигналов осуществляют с помощью антенн, образующих антенную решетку, принятые сигналы преобразуют в угловой спектр с нулем на передатчик, направление на цель определяют по положению максимума этого спектра, затем по принятым сигналам выполняют пространственную фильтрацию отраженного и прямого сигналов с управляемым нулем приема соответственно в направлении передатчика и цели. 3 ил.

Изобретение относится к радиотехнике и может быть использовано в наземных и авиационных радиотехнических системах для всеракурсного определения направления на источники радиоизлучений. Достигаемый технический результат – расширение области применимости на системы из четырёх антенн и сокращение объёма операций при определении и максимизации углового спектра вследствие уменьшения области максимизации в 54-90 раз. Указанный результат достигается за счет того, что способ амплитудного двухмерного пеленгования включает приём излучаемого сигнала с помощью идентичных антенн с симметричными диаграммами направленности и равномерным перекрытием сектора сферического обзора, измерение амплитуды принятых сигналов, по ним определение горизонтального и вертикального сечений углового спектра, по максимуму которых определяют соответственно азимут и угол места, при этом, дополнительно, как среднее взвешенное, пропорционально измеренным амплитудам значение векторов ориентации антенн, определяют вектор двухмерного пеленга, по которому выполняют первичную оценку совместно азимута и угла места. Первоначально определяют вертикальное сечение в точке первичной оценки азимута, затем горизонтальное сечение в точке полученного угла места, при этом области определения сечений ограничивают пределами изменений погрешностей соответствующих первичных оценок, которые рассчитывают до начала процесса пеленгования. В четырёхэлементной системе антенны ориентируют из центра тетраэдра перпендикулярно его граням. 1 ил., 2 табл.

Изобретение относится к измерительной технике и может быть использовано в системах радиосвязи, радиолокации, радиоконтроля для измерения частотного сдвига радиосигналов, принимаемых от одного источника и различающихся одновременно по частоте и временной задержке. Радиосигналы преобразуют в спектры плотности мощности, определяют взаимную корреляционную функцию спектров плотности мощности, по положению максимума которой судят о частотном сдвиге между радиосигналами. Способ позволяет повысить точность измерения разности частот между радиосигналами. 2 з.п. ф-лы, 4 ил.

Изобретение относится к способу вывода самолета в точку начала посадки. Для вывода самолета в точку начала посадки измеряют текущие координаты самолета, предварительно строят участок маршрута в виде прямой линии заданного пути, являющейся касательной к дуге предпосадочного разворота самолета для выхода на ось взлетно-посадочной полосы в точке начала посадки с курсом в направлении ее центра, доопределяют маршрут из пункта возврата дугой предварительного разворота заданного радиуса для выхода по касательной к ней прямой линией заданного пути, строят четыре возможных маршрута комбинаций право- и левостороннего предварительного и предпосадочного разворота, рассчитывают длину их пути, осуществляют полет по маршруту с минимальной длиной пути до точки начала посадки. Обеспечивается сокращение времени вывода самолета в точку начала посадки. 2 ил.

Изобретение относится к измерительной технике и может быть использовано в системах радиолокации, навигации, связи для определения местоположения излучателей и синхронизации. Достигаемый технический результат - расширение области применения способа на класс непрерывных радиосигналов. Указанный результат достигается за счет того, что способ включает прием анализируемого радиосигнала на заданном интервале времени и прием опорного радиосигнала, формирование их корреляционного отклика и определение положения его максимума, при этом прием опорного радиосигнала начинают с запаздыванием на абсолютное значение минимально измеряемой задержки, а завершают с опережением на величину максимально измеряемой задержки соответственно относительно начала и окончания приема анализируемого радиосигнала. 2 ил.

Изобретение относится к радиотехнике и может быть использовано в наземных и авиационных радиотехнических системах для всеракурсного определения направления на источники радиоизлучений. Достигаемый технический результат – обеспечение двухмерного всеракурсного пеленгования одновременно в двух ортогональных плоскостях, по азимуту и углу места. Указанный результат достигается за счет того, что способ амплитудного двухмерного пеленгования включает прием излучаемого сигнала с помощью идентичных разнонаправленных антенн, измерение амплитуды принятых сигналов, преобразование измерений в угловой спектр и определение направления на излучатель по его максимуму, при этом прием сигнала осуществляют не менее чем пятью антеннами с симметричными диаграммами направленности, углы ориентации фокальных осей антенн сдвинуты один относительно другого с равномерным перекрытием сектора сферического обзора. Операции, следующие за измерением амплитуд, выполняют как двухмерные, причем диаграммы направленности антенн определяют как функции их главного сечения от угла между фокальными осями и вектором двухмерного пеленга. 2 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике и может быть использовано для определения местоположения воздушных судов (объектов) по их радиоизлучениям. Достигаемый технический результат - повышение точности измерения угла места примерно на порядок с расширением области надежного определения дальности с 30 км до 70-80 км, что упрощает, делает более надежным и безопасным привод воздушного судна на необорудованные аэродромы, буровые площадки. Указанный результат достигается за счет того, что способ включает прием сигналов бортового передатчика с помощью антенн, образующих кольцевую решетку, располагаемую вблизи и параллельно земной поверхности, определение по принятым антеннами решетки сигналам азимута объекта, измерение комплексных амплитуд принятых сигналов и преобразование измерений в угловой спектр путем умножения на комплексно-сопряженные диаграммы направленности антенн, суммирования результатов умножения по совокупности антенн и определения квадрата модуля суммы. Одновременно сигналы принимают с помощью дополнительных антенн, располагаемых на нормали к плоскости решетки из ее центра, угловой спектр нормируют на сумму квадратов модулей диаграмм направленности антенн (ДНА) и определяют угол места объекта, как положение его максимума. При этом ДНА определяют в направлении полученного азимута и с учетом коэффициента отражения радиоволн от земной поверхности. 6 ил.

Изобретение относится к радиотехнике и может быть использовано при радиоконтроле для определения пространственно-энергетических характеристик наземных объектов по их радиоизлучениям в диапазоне коротких волн. Достигаемый технический результат - определение мощности излучения, увеличение достоверности идентификации со снижением вероятности ложной тревоги с 0.36 до 2·10-4 и расширение рабочей зоны в 3.1 раз. Указанный результат достигается за счет того, что способ включает прием сигнала излучателя, измерение пеленгов и их дисперсии в пунктах пеленгования с известным местоположением, передачу результатов измерений на центральный пункт, где рассчитывают пеленги из пунктов пеленгования на места возможного положения источника и определяют функцию пространственной неопределенности по пеленгу. Дополнительно в пунктах пеленгования измеряют напряженность поля излучателя и поля помех. Результаты измерений с учетом расчетных значений преобразуют в функцию пространственной неопределенности по напряженности и определяют суммарную функцию неопределенности. По минимуму последней идентифицируют наличие поверхностной волны, определяют местоположение излучателя и мощность излучения. 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах пассивной радиолокации для определения местоположения и скорости движения радиоизлучающих объектов. Достигаемый технический результат - обеспечение измерения скорости движения объекта при одновременном увеличении точности определения координат в моноимпульсном режиме. Указанный результат достигается за счет того, что способ включает прием радиосигналов объекта в пространственно-разнесенных пунктах приема и передачу их с периферийных на центральный пункт приема, где измеряют и компенсируют разности доплеровских частот радиосигналов периферийных и центрального пункта приема. Затем, с учетом времени распространения электромагнитных волн в пункты приема, выполняют пространственно-временную обработку преобразованных радиосигналов и определяют координаты объекта, а по измеренным разностям частот и координатам объекта вычисляют вектор его скорости. 5 ил.

Изобретение относится к области радиотехники. Достигаемый технический результат - повышение точности измерения угла места объекта и сокращение времени пеленгования. Указанный технический результат достигается тем, что принимают сигналы передатчика объекта с помощью антенн, образующих кольцевую решетку, расположенную параллельно земной поверхности, измеряют по принятым сигналам азимут объекта, принимают сигналы, по меньшей мере, двумя дополнительными антеннами, расположенными на центральной оси кольцевой решетки ортогонально ее плоскости, преобразуют принятые сигналы в угловой спектр по углам места прямого и отраженного от земной поверхности сигнала в направлении измеренного азимута объекта, при этом угловой спектр преобразуют в угловой спектр второго порядка, а угол места объекта определяют путем однопараметрической максимизации углового спектра второго порядка. 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиопеленгации и может быть использовано в комплексах радиоконтроля для определения местоположения источников излучения коротковолнового диапазона с ионосферным распространением радиоволн. Достигаемый технический результат - расширение функциональных возможностей. Указанный результат достигается тем, что включает определение высоты ионосферных слоев и критических частот, прием радиосигналов с помощью пространственно разнесенных пеленгаторных антенн и приемников, определение пеленга и дальности до источника излучения при этом, предварительно для точек возможного положения источника по дальности рассчитывают число и углы места прихода лучей, удовлетворяющих условиям отражения от ионосферных слоев с учетом их высоты, критических частот и длины волны излучения. Затем для каждого из лучей, их расчетных углов места, возможных значений пеленга рассчитывают набеги фаз сигналов в антеннах, после чего в принятых радиосигналах компенсируют радиосигналы источника с учетом расчетных набегов фаз. Скомпенсированные сигналы квадратично детектируют и усредняют по совокупности антенн, а пеленг и дальность до источника излучения определяют по минимуму результатов усреднения, взвешенных пропорционально числу лучей. 8 ил.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах с подвижными пунктами приема, устанавливаемыми, например, на летательных аппаратах. Способ включает периодический прием радиосигналов источника одновременно не менее чем в двух пространственно разнесенных подвижных пунктах приема, синхронно с этим измерение собственных координат и параметров вектора скорости движения, с последующей передачей их и принятых радиосигналов на центральный пункт и определением местоположения источника радиоизлучения. На центральном пункте в каждом из периодов приема рассчитывают доплеровские сдвиги частот и взаимные запаздывания моментов прихода электромагнитных волн из мест возможного положения источника в пункты приема с учетом их измеренных собственных координат и параметров вектора скорости, измеряют энергию принятых радиосигналов, для различных пар радиосигналов определяют среднее геометрическое энергии, измеряют значения модуля комплексных взаимных корреляционных функций в точках расчетных запаздываний и доплеровских сдвигов частот, которые вычитают из среднего геометрического энергии, затем по совокупности различных пар радиосигналов и периодов приема полученные разности усредняют и по минимуму этих усредненных значений определяют местоположение источника радиоизлучения. Достигаемый технический результат - расширение области применения при произвольном числе пунктов приема и интервалов времени движения с увеличением точности определения координат до потенциального предела. 7 ил.

Изобретение относится к радиотехнике и может быть использовано для подавления линий связи и радиоуправления, в частности минно-взрывными устройствами. Способ создания ответных помех включает когерентный прием радиосигналов на заданной частоте с помощью антенн, образующих антенную решетку, и многоканального приемника, обнаружение сигнала, формирование и излучение помехи из дальней волновой зоны антенной решетки в моменты обнаружения сигнала, при этом принимаемые радиосигналы в моменты излучения помехи фазируют с компенсацией набега фаз от места ее излучения до антенн, фазированные радиосигналы усредняют по совокупности антенн, усредненный радиосигнал фазируют, восстанавливая скомпенсированные набеги фаз антенн, и вычитают из соответствующего принимаемого радиосигнала в моменты излучения помехи, образованные разностные радиосигналы, а в моменты отсутствия излучения помехи - принимаемые радиосигналы, детектируют и усредняют по совокупности антенн, и обнаружение сигнала выполняют сравнением с порогом обнаружения усредненных результатов детектирования. Технический результат - повышение эффективности подавления радиолиний с кратковременными излучениями, совокупности радиолиний с различающимися длительностями передач при одновременном снижении затрат помехового ресурса. 3 ил.

Изобретение может быть использовано в системах радиоконтроля. Способ включает предварительное определение рабочей зоны, в ней области объекта, прием радиосигналов в пунктах приема с помощью пеленгаторных антенн и многоканального приемного устройства. Для каждого пункта приема оценивают распределение уровня помех в рабочей зоне, для чего измеряют энергию принятых радиосигналов, преобразуют их в пространственный спектр, который вычитают из измеренной энергии. Затем определяют среднее геометрическое распределений уровня помех, его минимумы в области объекта и вне объекта, значения минимумов сравнивают, по результатам чего идентифицируют радиосигналы и определяют местоположение источника как положение минимума в области объекта. Преобразование в пространственный спектр выполняют путем компенсации расчетных, с учетом расстояний от пеленгаторных антенн до источников, набегов фаз, последующего суммирования преобразованных радиосигналов, квадратичного детектирования суммарного радиосигнала и деления на число пеленгаторных антенн. Рабочую зону определяют в виде круга с центром в геометрическом центре объекта и квантуют исходя из заданной точности определения местоположения источника контролируемого объекта по закону спирали Архимеда. Достигаемый технический результат - повышение достоверности идентификации, увеличение точности определения местоположения излучателя. 7 ил.

Изобретение относится к радиотехнике и может быть использовано для радиоконтроля систем сотовой связи

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано в средствах радиомониторинга и пеленгования

Изобретение относится к способу определения местоположения передатчика переносным пеленгатором

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля для выявления корреспондентов симплексных радиосетей коротковолнового и ультракоротковолнового диапазона, в частности в условиях города

Изобретение относится к радиотехнике и может быть использовано в системах радиоподавления линий связи и радиоуправления

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля для определения местоположения наземных источников радиоизлучения коротковолнового и ультракоротковолнового диапазона, в частности, в условиях города

Изобретение относится к радиотехнике и может быть использовано в радиопеленгаторах, системах радиоконтроля, радиолокации, радиоастрономии

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля для определения местоположения наземных источников радиоизлучения коротковолнового и ультракоротковолнового диапазона

Изобретение относится к радиотехнике, в частности к радиопеленгации

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано в системах определения местоположения источников радиоизлучения

Изобретение относится к пассивной радиолокации

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано в системах определения местоположения источников радиоизлучения

 


Наверх