Патенты автора Касаткин Борис Анатольевич (RU)

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на основе комбинированного приемника, в которой формируется множество информативных параметров. Способ обнаружения включает прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и трехкомпонентный приемник вектора колебательной скорости, частотно-временную обработку принятого сигнала, вычисление в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, для суммарного процесса сигнал плюс помеха и для помехи отдельно, формирование в каждом частотном канале усредненных за время T1 значений семи информативных параметров, трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления, центрирование и нормирование на помеху сигналов для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления, вторичный спектральный анализ потоков мощности для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления в заданном диапазоне частот вторичного спектра для суммарного процесса сигнал плюс помеха и для помехи отдельно, центрирование, нормирование на помеху и выбор спектральной составляющей вторичного спектра с максимальным отношением сигнал-помеха, формирование в каждом частотном канале по результатам первичного и вторичного спектрального анализа 14 нормированных на помеху информативных параметров, вычисление максимального отношения сигнал/помеха для одного из 14 информативных параметров и принятие решения об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного в одном из 14 информативных параметров. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого моря путем использования приемной системы, которая обладает направленностью в условиях мелкого моря на любых сколь угодно низких частотах. Способ обнаружения включает прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и трехкомпонентный приемник вектора колебательной скорости, частотно-временную обработку принятого сигнала, вычисление в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, трех компонент вещественной составляющей вектора интенсивности и вертикальной компоненты мнимой составляющей вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса сигнал плюс помеха и для помехи отдельно, формирование в каждом частотном канале 8-канального статического веера характеристик направленности в горизонтальной плоскости, обладающих односторонней направленностью, формирование в каждом частотном канале 4-канального статического веера характеристик направленности в вертикальной плоскости, обладающих односторонней направленностью, вычисление компонент односторонне направленного вектора интенсивности во всех 12-пространственных каналах для суммарного процесса сигнал плюс помеха и для помехи отдельно, нормирование во всех 12-пространственных каналах компонент односторонне направленного вектора интенсивности, вычисленных для суммарного процесса сигнал плюс помеха, на соответствующие компоненты односторонне направленного вектора интенсивности, вычисленные для помехи, после чего вычисляют максимальное отношение сигнал/помеха в одном из 13 каналов, 12 пространственных каналов и канала звукового давления, и принятие решения об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного в одном из 13 каналов, 12 пространственных каналов и канале звукового давления. 1 ил.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными. Технический результат - дополнительное увеличение помехоустойчивости элементарного комбинированного приемника и всего комплекса в целом, а также увеличение дальности действия. Для достижения указанной цели в гидроакустический комплекс, содержащий N акустических комбинированных приемников, образующих донную вертикально ориентированную эквидистантную антенну, в которой расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников N=H/ Δz (где Н - глубина моря), каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных, N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутального угла, блок вычисления усредненного азимутального угла, сумматор, анализатора спектра комплексной огибающей, вычислитель максимума спектра комплексной огибающей, дополнительно введена N-канальная подсистема обнаружения источника звука по горизонтальному потоку мощности. Это позволяет увеличить помехоустойчивость измерительного комплекса в режиме обнаружения на 3-4 дБ в сравнении с прототипом. Дополнительное увеличение помехоустойчивости до 10 дБ в сравнении с прототипом дает реализация процедуры усреднения изотропной помехи в каналах измерения горизонтальных потоков мощности. С увеличением помехоустойчивости измерительного комплекса увеличивается и его дальность обнаружения. 3 ил.

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого моря путем использования приемной системы, которая обладает направленностью в условиях мелкого моря на любых сколь угодно низких частотах. Способ обнаружения включает прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и трехкомпонентный приемник вектора колебательной скорости, частотно-временную обработку принятого сигнала, вычисление в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, трех компонент вещественной составляющей вектора интенсивности и вертикальной компоненты мнимой составляющей вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса сигнал плюс помеха и для помехи отдельно, формирование в каждом частотном канале 8-канального статического веера характеристик направленности в горизонтальной плоскости, обладающих односторонней направленностью, формирование в каждом частотном канале 4-канального статического веера характеристик направленности в вертикальной плоскости, обладающих односторонней направленностью, вычисление компонент односторонне направленного вектора интенсивности во всех 12-пространственных каналах для суммарного процесса сигнал плюс помеха и для помехи отдельно, нормирование во всех 12-пространственных каналах компонент односторонне направленного вектора интенсивности, вычисленных для суммарного процесса сигнал плюс помеха, на соответствующие компоненты односторонне направленного вектора интенсивности, вычисленные для помехи, после чего вычисляют максимальное отношение сигнал/помеха в одном из 13 каналов, 12 пространственных каналов и канала звукового давления, и принятие решения об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного в одном из 13 каналов, 12 пространственных каналов и канале звукового давления. 1 ил.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными. Технический результат - дополнительное увеличение помехоустойчивости элементарного комбинированного приемника и всего комплекса в целом, а также увеличение дальности действия. Для достижения указанной цели в гидроакустический комплекс, содержащий N акустических комбинированных приемников, образующих донную вертикально ориентированную эквидистантную антенну, в которой расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников N=H/ Δz (где Н - глубина моря), каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных, N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутального угла, блок вычисления усредненного азимутального угла, сумматор, анализатора спектра комплексной огибающей, вычислитель максимума спектра комплексной огибающей, дополнительно введена N-канальная подсистема обнаружения источника звука по горизонтальному потоку мощности. Это позволяет увеличить помехоустойчивость измерительного комплекса в режиме обнаружения на 3-4 дБ в сравнении с прототипом. Дополнительное увеличение помехоустойчивости до 10 дБ в сравнении с прототипом дает реализация процедуры усреднения изотропной помехи в каналах измерения горизонтальных потоков мощности. С увеличением помехоустойчивости измерительного комплекса увеличивается и его дальность обнаружения. 3 ил.

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на основе комбинированного приемника, в которой формируется множество информативных параметров. Способ обнаружения включает прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и трехкомпонентный приемник вектора колебательной скорости, частотно-временную обработку принятого сигнала, вычисление в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, для суммарного процесса сигнал плюс помеха и для помехи отдельно, формирование в каждом частотном канале усредненных за время T1 значений семи информативных параметров, трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления, центрирование и нормирование на помеху сигналов для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления, вторичный спектральный анализ потоков мощности для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления в заданном диапазоне частот вторичного спектра для суммарного процесса сигнал плюс помеха и для помехи отдельно, центрирование, нормирование на помеху и выбор спектральной составляющей вторичного спектра с максимальным отношением сигнал-помеха, формирование в каждом частотном канале по результатам первичного и вторичного спектрального анализа 14 нормированных на помеху информативных параметров, вычисление максимального отношения сигнал/помеха для одного из 14 информативных параметров и принятие решения об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного в одном из 14 информативных параметров. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на основе комбинированного приемника, в которой формируется множество информативных параметров. Способ обнаружения включает прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и трехкомпонентный приемник вектора колебательной скорости, частотно-временную обработку принятого сигнала, вычисление в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, трех компонент вещественной составляющей вектора интенсивности и трех компонент мнимой составляющей вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса сигнал плюс помеха и для помехи отдельно, формирование в каждом частотном канале усредненных за время Т1 значений трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления, формирование в каждом частотном канале усредненных за время Т2=10 T1 комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления, нормирование всех 21 информативных параметров, вычисленных для суммарного процесса сигнал плюс помеха, на соответствующие значения информативных параметров, вычисленные для помехи, вычисление максимального отношения сигнал/помеха для одного из 21 информативных параметров и принятие решения об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного в одном из 21 информативных параметров. 1 ил.

Изобретение относится к области гидроакустики и может быть использовано при разработке средств поиска объектов, находящихся на дне под слоем грунта и невидимых для таких гидролокационных средств, как гидролокатор бокового обзора. Техническим результатом является увеличение глубины проникновения звуковой волны в грунт и дальности действия при сохранении высокой разрешающей способности по дальности и угловому положению объекта. С носителя гидролокационной аппаратуры излучают гидроакустическим излучателем в водную среду импульсный акустический сигнал, принимают приемной системой отраженный от находящегося в толще донного грунта объекта акустический сигнал, измеряют время распространения акустического сигнала от излучателя до приемной системы, вычисляют расстояние от приемной системы до объекта, перемещают носитель гидролокационной аппаратуры с гидроакустическим излучателем над дном относительно предполагаемого местоположения объекта на расстоянии от дна Z1, связанном с глубиной Z2 предполагаемого местонахождения объекта в толще грунта, соотношением Z1ρ1=Z2ρ2 (ρ1, ρ2 - плотность водной среды и грунта соответственно) и отображают пространственно-временное положение объекта, при этом используют в качестве приемной системы донный акустический комбинированный приемник, для увеличения дальности действия и глубины проникновения звуковой волны в грунт в качестве импульсного акустического сигнала используют низкочастотный (λ≥Z2, λ - длина волны) фазоманипулированный сигнал, а носитель гидролокационной аппаратуры с излучателем перемещают по круговой траектории, в центре которой находится приемная система. Использование низкочастотного фазоманипулированного сигнала в режиме излучения и корреляционных алгоритмов обработки принятого сигнала позволяет сохранить высокую разрешающую способность по дальности, а для увеличения помехоустойчивости приемной системы, дальности действия и высокой разрешающей способности по угловой координате формируют в режиме приема статический веер характеристик направленности, содержащий 8 горизонтальных односторонне направленных пространственных каналов, сдвинутых друг относительно друга на 45°, измеряют в n-м пространственном канале, ориентированном на носитель гидролокационной аппаратуры с излучателем, время распространения акустического сигнала от излучателя до приемной системы, измеряют в пространственном канале, ориентированном на находящийся в толще донного грунта объект, время распространения акустического сигнала от излучателя до находящегося в толще донного грунта объекта и от объекта до приемной системы, используя для повышения точности измерения времени распространения корреляционные алгоритмы обработки принятого фазоманипулированного сигнала, определяют горизонтальное расстояние от находящегося в толще донного грунта объекта до приемной системы, координаты которой считаются известными, вычисляют горизонтальные компоненты вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, вычисляют в локальной системе координат, связанной с комбинированным приемником, пеленг на находящийся в грунте объект, пересчитывают пеленг, измеренный в локальной системе координат, связанной с комбинированным приемником, в географическую систему координат и определяют местоположение объекта, находящегося в толще донного грунта, координатами (r, ϕгео), измеренными относительно приемной системы, координаты которой считаются известными. 1 ил.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными. Технический результат - дополнительное увеличение помехоустойчивости вертикального канала элементарного комбинированного приемника и всего комплекса в целом, а также увеличение дальности действия. Для достижения указанной цели в гидроакустический комплекс, содержащий N акустических комбинированных приемников, образующих донную вертикально ориентированную эквидистантную антенну, в которой расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников N=H/Δz (где H - глубина моря), каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных, N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутального угла, блок вычисления усредненного азимутального угла, сумматор, анализатор спектра комплексной огибающей, вычислитель максимума спектра комплексной огибающей, дополнительно введена N-канальная подсистема формирования односторонне направленного приема по вертикальному потоку мощности, содержащая N-канальный блок квадратичных детекторов вертикальной компоненты вектора колебательной скорости, N-канальный блок формирования направленности по вертикальному потоку мощности, N-канальный блок интеграторов. 2 ил.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными. Технический результат - дополнительное увеличение помехоустойчивости элементарного комбинированного приемника и всего комплекса в целом, а также увеличение точности определения горизонта источника. Гидроакустический комплекс содержит N акустических комбинированных приемников, образующих две идентичные донные вертикально ориентированные эквидистантные антенны по M=N/2 комбинированных приемников в каждой, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных, N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутального угла, блок вычисления усредненного азимутального угла, сумматор, анализатора спектра комплексной огибающей, вычислитель максимума спектра комплексной огибающей. В гидроакустический комплекс дополнительно введена подсистема определения горизонта источника с повышенной помехоустойчивостью. Эта подсистема содержит (М-1)-канальный блок дифференцирования горизонтальных компонент вектора интенсивности по вертикальной координате, (М)-канальный блок дифференцирования вертикальной компоненты вектора интенсивности по горизонтальным координатам, (М-1) канальный блок вычисления горизонтальных компонент ротора вектора интенсивности, (М-1)-канальный блок вычисления горизонтальных компонент ротора вектора интенсивности в повернутой системе координат, блок вычисления максимального значения горизонтальных компонент ротора вектора интенсивности в повернутой системе координат, блок определения горизонта источника, а за горизонт источника принимается среднее значение между оценкой горизонта максимума вертикальной компоненты вектора интенсивности и оценкой горизонта расположения геометрического центра четверки акустических комбинированных приемников, которой соответствует максимум угловой компоненты ротора вектора интенсивности Нφ. 3 ил.

Изобретение относится к гидроакустике. Устройство содержит разъемный маслозаполненный подводный цилиндрический корпус с размещенными в нем электродвигателем и механическим драйвером. Источник питания, блок программного управления, размещены в судовом блоке. Нижняя часть подводного корпуса выполнена звукопрозрачной и снабжена съемными торцевыми крышками, в верхней крышке выполнено цилиндрическое отверстие. Электродвигатель посредством муфты соединен с механическим драйвером. Драйвер содержит вал и два эксцентриковых устройства, представляющих собой пару параллельных дисков со ступицами, закрепленными на валу драйвера, и подшипниками, оси которых жестко закреплены в дисках. Вал драйвера размещен в торцевых подшипниках. Устройство содержит вертикальные и горизонтальные направляющие. Излучающий элемент выполнен в виде четырех вогнутых тонкостенных цилиндрических сегментов с углом раскрыва 90°. Между торцевыми горизонтальными поверхностями тонкостенных цилиндрических сегментов и их горизонтальными направляющими размещены упругие прокладки. Между верхней и нижней частями корпуса установлены уплотнительные прокладки. Технический результат - повышение достоверности имитации излучения звука подводных движущихся объектов. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области гидроакустики и может быть использовано для измерения параметров звукового поля в морской среде с использованием как стационарных, так и подвижных носителей. Достигаемый технический результат - повышение чувствительности пьезоэлектрических элементов гидрофонного и векторных каналов на низких частотах, снижение уровня помех на входах предварительных усилителей, а также уменьшение чувствительности комбинированного гидроакустического приемника к внешним возмущениям при его использовании на подводном носителе. Сущность технического решения заключается в том, что комбинированный гидроакустический приемник содержит герметичный сферический корпус, частично заполненный жидкостью до уровня, соответствующего нулевой плавучести корпуса в рабочей среде, два пьезоэлектрических элемента гидрофонного канала, выполненных на основе герметичных встречно поляризованных пьезополимерных пленочных преобразователей, закрепленных снаружи сферического корпуса напротив друг друга, две пары биморфных пьезоэлектрических элементов, входящих в состав компонент (х,у) векторного канала, и две пары биморфных пьезоэлектрических элементов, входящих в состав компоненты (z) векторного канала, конструктивно выполненных на основе герметичных пьезополимерных пленочных преобразователей, оси чувствительности которых образуют ортогональную систему координат, начало которой совпадает с центром сферического корпуса. Все биморфные пьезоэлектрические элементы, входящие в состав трехкомпонентного векторного канала, расположены снаружи сферического корпуса. Внутренние торцы каждой из четырех пар упругих подложек установлены на внешней поверхности сферического корпуса с возможностью выполнения изгибных колебаний упругой подложки, внешние торцы каждой из четырех пар упругих подложек жестко закреплены на внешнем герметичном кольцевом корпусе с размещенными внутри него усилителями, расположенном вне сферического корпуса; а вход усилителя гидрофонного канала и входы усилителей трех векторных каналов выполнены дифференциальными. 4 ил.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося заглубленного источника звука, измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными. Технический результат - уменьшить погрешность измерения и увеличить дальность действия при работе измерительного комплекса в мелком море. Гидроакустический измерительный комплекс содержит N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных. Посредством акустических комбинированных приемников образуются две донные вертикально ориентированные эквидистантные антенны, в каждой из которых число элементов равно N/2, а локальные координатные системы всех акустических комбинированных приемников совмещены. При этом расстояние между вертикальными антеннами 1>λн, где λн - длина волны на нижней частоте рабочего диапазона шумоизлучения источника звука, расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников в каждой антенне N/2=h12/Δz, h12=z1-z2, z1, z2 нижний и верхний горизонты вероятного нахождения источника звука, образующие коридор обнаружения. Кроме того, в систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутальных углов φ1n, φ2n, блок вычисления усредненных азимутальных углов, блок вычисления горизонтальных координат источника звука. Информация с выхода блока вычисления горизонтальных координат источника звука и блока определения максимума вертикальной компоненты вектора интенсивности поступает на первый и второй входы устройства доступа к цифровым сетям передачи данных. Для увеличения дальности обнаружения движущегося источника звука и поддержания с ним акустического контакта в систему сбора, обработки и отображения информации дополнительно введены N/2-канальный вычислитель взаимного спектра сигналов для пар акустических комбинированных приемников, расположенных на одном горизонте и принадлежащих двум донным вертикально ориентированным эквидистантным антеннам, N/2-канальный вычислитель взаимной корреляционной функции, сумматор, блок измерения максимума взаимной корреляционной функции, блок нормирования взаимной корреляционной функции, блок вычисления ширины основного лепестка нормированной взаимной корреляционной функции, вычислитель отношения предыдущего измерения к последующему на каждом шаге, компаратор, блок задания расчетных значений отношений предыдущего измерения к последующему, блок принятия решения об обнаружении источников звука и их числе. 2 ил.

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря. Сущность: способ профилирования донных отложений включает установку приемоизлучающей антенны профилографа на буксируемый носитель, при этом излучающая и приемная антенны профилографа устанавливаются на носителе раздельно друг от друга, а в качестве приемной антенны используется ориентированная вдоль продольной оси носителя К - элементная приемная антенна. Буксируют носитель над дном, производят излучение импульсного акустического фазоманипулированного сигнала, модулируемого М-последовательностью, прием отраженного сигнала, его корреляционную обработку с копией излученного акустического фазоманипулированного сигнала, при этом усиление и корреляционную обработку принятых сигналов производят К - канальным приемным трактом. После усиления и корреляционной обработки сигналов, принятых каждым элементом К - элементной приемной антенны, формируют Q значений комплексной амплитуды принятого сигнала , из Q элементов - строк формируют матрицу, для каждого момента времени излучения tpn и времени прихода tq вычисляют временные задержки. Повторяют операции временного сдвига и синфазного суммирования для всего массива данных для каждого элемента приемной антенны, для каждого момента времени прихода принятых сигналов tq и времени излучения tp, синфазно суммируют К сигналов, принятых К - элементной приемной антенной. Затем выполняют графическое построение профиля донных отложений по времени задержки отраженного сигнала. Технический результат - увеличение разрешающей способности способа профилирования в продольном направлении при сохранении достаточно большой глубины профилирования и высокой разрешающей способности в вертикальном направлении. 2 ил.

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря. Сущность: способ профилирования донных отложений включает установку приемоизлучающей антенны профилографа на буксируемый носитель, при этом излучающая и приемная антенны профилографа устанавливаются на носителе раздельно друг от друга, а в качестве приемной антенны используется ориентированная вдоль продольной оси носителя К - элементная приемная антенна. Буксируют носитель над дном, производят излучение импульсного акустического фазоманипулированного сигнала, модулируемого М-последовательностью, прием отраженного сигнала, его корреляционную обработку с копией излученного акустического фазоманипулированного сигнала, при этом усиление и корреляционную обработку принятых сигналов производят К- канальным приемным трактом. После усиления и корреляционной обработки сигналов, принятых каждым элементом К -элементной приемной антенны, формируют Q значений комплексной амплитуды принятого сигнала S(к) qp, из Q элементов - строк формируют матрицу, для каждого момента времени излучения tpn и времени прихода tq вычисляют временные задержки. Повторяют операции временного сдвига и синфазного суммирования для всего массива данных для каждого элемента приемной антенны, для каждого момента времени прихода принятых сигналов tq и времени излучения tP, синфазно суммируют К сигналов, принятых К - элементной приемной антенной. Затем выполняют графическое построение профиля донных отложений по времени задержки отраженного сигнала. Технический результат: увеличение разрешающей способности способа профилирования в продольном направлении при сохранении достаточно большой глубины профилирования и высокой разрешающей способности в вертикальном направлении. 3 ил.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными

Изобретение относится к гидроакустике и может быть использовано для измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными

Изобретение относится к гидроакустике и может быть использовано для измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными

Изобретение относится к гидроакустике и может быть использовано для измерения пеленга на источник звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала

Изобретение относится к области гидроакустики и океанотехники и может быть использовано при разработке средств поиска объектов, находящихся на дне под слоем грунта и невидимых для таких гидролокационных средств, как гидролокатор бокового обзора

Изобретение относится к области гидроакустики и может быть использовано для определения местоположения подводных объектов

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря

Изобретение относится к области геофизики и прикладной гидроакустики и может быть использовано в мощных звуковых устройствах обработки продуктивных зон нефтяных и водяных скважин, а также для акустического профилирования верхнего слоя земной коры

Изобретение относится к области гидроакустических навигационных систем и предназначено для навигационного обеспечения подводных аппаратов повышенной дальности действия

Изобретение относится к гидроакустике, а именно к маякам-ответчикам (МО) станций наведения судов, станций звукоподводной связи или другим приемоизлучающим гидроакустическим системам подобного назначения

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в водоемах малой глубины (типа мелкого моря) с большими дисперсионными искажениями акустического сигнала

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в водоемах типа мелкого моря с большими дисперсионными искажениями акустического сигнала

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в водоемах типа мелкого моря с большими дисперсионными искажениями акустического сигнала

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в водоемах малой глубины (типа мелкого моря) с большими дисперсионными искажениями акустического сигнала

Изобретение относится к области гидроакустических навигационных систем и может быть использовано для навигационного обеспечения подводных аппаратов

Изобретение относится к гидроакустике и предназначено для исследования подводной обстановки и определения гидрофизических неоднородностей морской среды в условиях шельфовой зоны

Изобретение относится к области гидроакустических навигационных систем и может быть использовано для навигационного обеспечения подводных аппаратов повышенной дальности действия

Изобретение относится к области гидроакустики и океанотехники и может быть использовано при разработке средств поиска объектов, находящихся на дне под слоем грунта и невидимых для таких гидролокационных средств, как гидролокатор бокового обзора

Изобретение относится к области геофизики и прикладной гидроакустики
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх