Патенты автора Капустин Михаил Михайлович (RU)

Изобретение относится к портовому гидротехническому строительству и может быть использовано для сооружения причальных набережных, пирсов и берегозащитных сооружений, возводимых как на открытых, так и на защищенных от воздействия волн акваториях. Данное конструкторское решение при реализации не требует создания сложных и дорогостоящих стендов для изготовления элементов на берегу и применения техники большой (100-200 т) грузоподъемности для их транспортировки, а также сложных и времяемких монтажных операций на воде. Причальная набережная (пирс) вертикального типа включает шпунтовые панели лицевой стенки 1, анкерную систему и грунт-заполнитель 4. Шпунтовые панели 1 имеют тавровое сечение, оснащены по краям и таврам шпунтовыми замками 2. Анкерная система выполнена в виде гибкого прямоугольного полотнища 3, например, из листовой стали, полимерного композитного холста, со шпунтовыми замками 2 по двум противоположным сторонам, прикрепленного к замкам тавров панелей лицевой стенки. Грунт 4, при заполнении пространства между лицевыми панелями 1 и полотнищем 3, образует замкнутую вертикальную цилиндрическую обойму со спрямленной лицевой стороной, обеспечивая тем самым устойчивость шпунтовым панелям лицевой стенки и всему блоку в целом, в том числе и при сооружении пирса на открытой акватории в период между штормами. 3 ил.

Изобретение относится к измерительной технике и может быть применено для крепления различных датчиков (преимущественно датчиков перемещения) на деформирующейся поверхности объекта измерений. Магнитное крепление содержит корпус и соединенный с ним магнит, при этом к корпусу дополнительно прикреплены три опоры с точечным опиранием, из которых по крайней мере одна имеет заостренный наконечник-керн, причем опоры расположены на корпусе таким образом, что их вершины не лежат на одной прямой, а ось магнита пересекает образованный вершинами опор треугольник. Технический результат – упрощение установки и снятия крепления, повышение точности и надежности его позиционирования. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области определения и контроля напряженно-деформированного состояния металлической конструкции (объекта), находящейся под нагрузкой, и может быть использовано для оценки ее прочности и прогнозирования несущей способности. Сущность: в контролируемых точках на конструкции, находящейся в деформированном напряженном состоянии, производят измерения поверхностных деформаций ε, контролируемые точки выбирают таким образом, что они имеют возможность дополнительного нагружения независимо от конструкции. В контролируемых точках создают с помощью известной внешней силы Р дополнительные деформации, ступенчато увеличивают деформацию на Δε, измеряют изменение внешней силы ΔPi до тех пор, пока не увеличится более некоторого контрольного значения. Проводят два цикла измерений, в одном из которых дополнительные деформации совпадают по направлению с измеряемыми, а в другом противоположны им по направлению, причем контрольное значение выбирают одинаковым для обоих циклов измерений, после чего деформацию конструкции определяют как половину разности измеренных дополнительных деформаций. Технический результат: расширение диапазона применения способа и повышении точности измерений. 1 з.п. ф-лы, 4 ил.

Способ измерения линейных перемещений объекта основан на том, что лучи двух лазерных дальномеров направляют параллельно на плоскую поверхность, находящуюся на объекте измерений. Линейное перемещение объекта определяют на основании определенных двумя указанными дальномерами расстояний с учётом угла между линией ожидаемого перемещения объекта и плоской поверхностью, а также с учётом расстояния между линиями визирования дальномеров. Технический результат заявленного решения заключается в повышении точности измерения. 1 з.п. ф-лы, 2 ил.

Способ определения напряжений в конструкции без снятия статических нагрузок может быть использован для оценки прочности конструкции и прогнозирования ее несущей способности. Измерения поверхностных деформаций ε производят в контролируемых точках на конструкции, находящейся в напряженно-деформированном состоянии. Контролируемые точки выбирают таким образом, что они имеют возможность дополнительного нагружения независимо от конструкции. В контролируемых точках создают с помощью известной внешней силы P дополнительные напряжения, совпадающие по направлению с измеряемыми, ступенчато увеличивают деформацию на Δε, измеряют изменение внешней силы ΔPi. Нагружение увеличивают до тех пор, пока K = | Δ P i + 1 Δ P i − 1 | * Δ ε не увеличится до значения, соответствующего нормированному отклонению от закона Гука механической характеристики материала конструкции. Деформацию конструкции определяют, вычитая из известного значения деформации для заранее известной механической характеристики материала конструкции измеренную дополнительную деформацию. Техническим результатом изобретения является упрощение процесса измерения и ненарушение целостности исследуемой конструкции. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения линейной компоненты перемещения объекта при воздействии на него различных силовых факторов. Техническим результатом является расширение диапазона применения и упрощение обработки результатов измерения при несовпадении линии визирования с направлением перемещения объекта. Способ измерения линейных перемещений объекта заключается в том, что лазерным дальномером проводят не менее двух измерений дальности до объекта. Линию визирования дальномера направляют на жестко связанную с объектом плоскую поверхность, которую выбирают или размещают на объекте таким образом, что она пересекает линию визирования дальномера и линию направления перемещения объекта, и тарируют дальномер, определяют разность дальностей до и после перемещения дальномера, вычисляют тарировочный коэффициент по формуле К=А/П, где А - перемещение дальномера; П - разность дальностей до и после перемещения дальномера. Измеряют перемещения объекта, величину которых определяют по формуле B=K(R-R), где R и R соответственно предыдущая и последующая дальности до объекта. 1 з.п. ф-лы, 2 ил.

Изобретение относится к космонавтике и может быть использовано в будущем для перемещения населения Земли в более удаленное от Солнца место. Увеличение среднего радиуса орбиты Земли производят путем организации последовательности гравитационных маневров у Луны крупных объектов из пояса астероидов или пояса Койпера. В результате к Луне, а значит и ко всей системе Земля - Луна прикладываются гравитационные импульсы, изменяющие орбиту Земли вокруг Солнца. Эпоху гравитационного взаимодействия выбирают так, чтобы в это время центр масс Луны находился вблизи направления скорости центра масс системы Земля - Луна. Прочие параметры маневра, в частности прицельное расстояние и скорость входа объекта в сферу действия Луны, выбирают так, чтобы вектор гравитационного импульса, приложенный к Луне, был коллинеарен вектору скорости движения центра масс системы Земля - Луна вокруг Солнца. Проведение гравитационных облетов Луны поочередно спереди и сзади от Земли (по ходу ее движения) позволит сохранить в среднем орбиту Луны вокруг Земли. Техническим результатом изобретения является повышение безопасности для Земли операций по увеличению ее орбиты вокруг Солнца. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технике и технологии добычи углеводородов и предназначено для одновременно-раздельной разработки нескольких эксплуатационных объектов скважинами с электропогружным насосом

Изобретение относится к измерительной технике и может быть использовано для измерения угла наклона объектов относительно горизонтальной плоскости

Изобретение относится к области контрольно-измерительной техники и может быть использовано при измерении взаимного перемещения объектов или их подвижных частей

Изобретение относится к двигателестроению, а именно к газотурбинным ДВС, и может быть использовано в различных областях техники как первичный двигатель

 


Наверх