Патенты автора Иванов Вячеслав Элизбарович (RU)

Изобретение относится к радиолокации с активным ответом и может быть использовано в аэрологических радиозондах (АРЗ) систем радиозондирования атмосферы для измерения наклонной дальности до радиозонда импульсным методом, пеленгации по угловым координатам и передачи телеметрической информации на одной несущей частоте. Техническим результатом изобретения является расширение рабочего диапазона дальности в область малых расстояний (от десятков до порядка сотен метров) системы радиозондирования атмосферы; сужение рабочей полосы частот, занимаемой системой радиозондирования; расширение динамического диапазона по уровню сигнала запроса. Способ синхронного приема и обработки запросного сигнала в автодинном приемопередатчике системы радиозондирования атмосферы заключается в том, что посредством антенны принимают электромагнитное излучение в виде СВЧ радиоимпульса с внутриимпульсной периодической частотной модуляцией, воздействуют им на СВЧ-генератор, вызывая автодинные изменения с частотой внутриимпульсной частотной модуляции запросного сигнала амплитуды колебаний, средних значений тока и напряжения в цепи смещения активного элемента, и выделяют автодинные изменения СВЧ-генератора в виде радиоимпульса на частоте внутриимпульсной частотной модуляции запросного сигнала. Среднюю частоту модулированных колебаний СВЧ-генератора предварительно совмещают со средней частотой излучения СВЧ радиоимпульсов с внутриимпульсной периодической частотной модуляцией запросного сигнала. Девиацию частоты запросного сигнала ограничивают условием ее нахождения внутри полосы синхронизации СВЧ-генератора. 2 ил.

Изобретение относится к радиотехнике, точнее к радиолокации, и может быть использовано в разработках новых систем радиозондирования (CP) атмосферы с повышенной помехоустойчивостью передачи телеметрической информации с борта аэрологического зонда (АРЗ) на наземную базовую радиолокационную станцию (РЛС) сопровождения. Техническим результатом изобретения является повышение качества передачи телеметрического сигнала с борта АРЗ, повышение отношения сигнал/шум в канале телеметрии приемного устройства РЛС, достоверности приема телеметрической информации с АРЗ в условиях естественных и искусственных помех. Радиолокационная система зондирования атмосферы с фазомодулированным каналом телеметрии содержит аэрологический радиозонд и наземную радиолокационную станцию сопровождения. Полученная аэрологическим радиозондом метеоинформация атмосферы через блок первичных преобразователей и через блок сопряжения аналоговой и цифровой информации поступает на фазовый модулятор суперирующей частоты телеметрическим сигналом в микроконтроллере, к которому также подсоединен формирователь суперирующей частоты. Выход фазового модулятора в составе микроконтроллера соединен с цепью автосмещения СВЧ-автогенератора и далее с СВЧ-автогенератором сверхрегенеративного приемопередатчика, вход/выход которого нагружен на приемо-передающую антенну аэрологического радиозонда. Наземная радиолокационная станция сопровождения аэрологического радиозонда содержит приемопередатчик, усилитель и цифровой приемник, блок вторичной обработки телеметрической информации и выдачи метеопараметров и микроконтроллер, в состав которого входят блок управления и вычисления координат аэрологического радиозонда, цифровой демодулятор и программное обеспечение для декодирования телеметрического сигнала. Выход приемопередатчика шиной данных через усилитель и цифровой приемник соединен с демодулятором микроконтроллера. Блок управления и вычисления координат аэрологического радиозонда соединен с программным обеспечением для декодирования телеметрического сигнала и с цифровым демодулятором микроконтроллера, с которого данные поступают на блок вторичной обработки телеметрической информации и выдачи метеопараметров потребителям. Приемо-передающая антенна радиолокационной станции по радиоканалу соединена с приемо-передающей антенной аэрологического радиозонда. 5 ил.

Изобретение относится к радиолокации. Технический результат заключается в расширении рабочего диапазона расстояний системы радиозондирования атмосферы; сужении рабочей полосы частот; расширении динамического диапазона по уровню сигнала запроса; повышении помехозащищенности приемопередатчика к воздействию активных помех; предотвращении несанкционированного доступа к получению метеоданных. Технический результат достигается за счет использования свойств радиосигналов, передаваемых от РЛС системы радиозондирования атмосферы к АРЗ (аэрологическому радиозонду), режимов работы автодинных приемопередатчиков и методов повышения помехозащищенности радиосистем при использовании в качестве несущей запросного радиоимпульса колебания с периодической внутриимпульсной частотной модуляцией, применении этой модуляции в качестве поднесущей для передачи запросного кода, в переводе СВЧ-генератора из режима асинхронного автодинного преобразователя частоты в режим синхронного детектора (преобразователя) частотной модуляции и применении методов кодирования и декодирования сигнала запроса. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к радиолокации с активным ответом и может быть использовано в аэрологических радиозондах (АРЗ) систем радиозондирования атмосферы для измерения наклонной дальности до радиозонда импульсным методом, пеленгации по угловым координатам и передачи телеметрической информации на одной несущей частоте. Техническим результатом изобретения является расширение диапазона рабочих дальностей действия системы радиозондирования в область малых расстояний, расширение динамического диапазона асинхронного приемопередатчика (АПП) по уровню сигнала запроса и повышение устойчивости АПП к воздействию активных помех в виде хаотической последовательности радиоимпульсов. Автодинный асинхронный приемопередатчик системы радиозондирования атмосферы содержит антенну, управляемый аттенюатор, устройство управления и последовательно соединенные управляемый аттенюатор, СВЧ-генератор с возможностью электрического управления частотой и его включением, устройство регистрации автодинного сигнала, полосовой усилитель, детектор радиоимпульсов, компаратор с гистерезисом, временной селектор импульсов и формирователь импульсов ответной паузы. Управляемый аттенюатор высокочастотными портами включен между антенной и СВЧ-генератором. Выход формирователя ответной паузы подключен к первому выводу устройства управления. Второй вывод формирователя ответной паузы подключен к управляющему входу управляемого аттенюатора, а к третьему выводу подключен выход детектора радиоимпульсов. 5 з.п. ф-лы, 2 ил.

Изобретение относится к радиотехнике, точнее к радиолокации, и может быть использовано при разработке навигационных аэрологических радиозондов (АРЗ), работающих на основе сигналов глобальных навигационных спутниковых систем (ГНСС) ГЛОНАСС/GPS для определения пространственных координат АРЗ, передачи координатной и телеметрической информации на наземную базовую станцию (БС). Техническим результатом является повышение помехоустойчивости и надежности передачи координатно-телеметрической информации от АРЗ на базовую станцию, а также возможность работы в нескольких диапазонах несущей частоты передатчика АРЗ. Результат достигается за счет применения передатчика, построенного на основе ПАВ-резонатора, и оптимального построения электронной схемы собственно АРЗ. 1 ил.

Изобретение относится к радиотехнике, а именно к радиолокации, и может быть использовано для регулировки чувствительности и взаимного положения частоты приема и передачи сверхрегенеративных приемопередающих устройств аэрологических радиозондов (АРЗ). Технический результат - повышение точности передачи полученной метеорологической информации с АРЗ на наземную РЛС сопровождения при различных условиях эксплуатации от плюс 50 °С в нижних слоях атмосферы до минус 90 °С в верхних слоях. Он достигается за счет точности настройки частот приема и передачи, повышения чувствительности СПП, упрощения технологии регулировки в условиях производства и стабильности параметров в условиях эксплуатации за счет введения высокодобротного СВЧ-резонатора путем: создания схемотехнического и конструктивного решения, позволяющего устранить влияние регулировки чувствительности на взаимное смещение частоты приема и несущей частоты СПП при настройке в условиях серийного производства, тем самым повысить чувствительность СПП, уменьшить мощность излучения РЛС и повысить стабильность режима работы СПП при повышении технологичности настройки СПП и надежности его работы во время всего полета АРЗ. 2 з.п. ф-лы, 9 ил.

Изобретение относится к навигационному приборостроению, а именно к магнитным судовым компасам, и может быть использовано для коррекции показаний магнитного компаса при прохождении заданных маршрутов с дистанционной передачей изображения шкалы курса компаса, например, в пост рулевого и другим потребителям. Цифровая магнитная компасная система содержит цифровой магнитный компас (ЦМК), приемник спутниковых навигационных сигналов GPS/ГЛОНАСС, буферный усилитель, ЖК-индикатор, репитер, источник питания, конвертер и ПК. При этом приемник сигналов GPS/ГЛОНАСС соединен выходом с первым информационным входом ЦМК, выход ЦМК первой сигнальной шиной соединен с входом буферного усилителя и входом конвертера, выход которого соединен с входом ПК. Выход буферного усилителя второй сигнальной шиной соединен с репитером, третьей сигнальной шиной с ЖКИ, а четвертой шиной – с другими потребителями курсовой информации компаса в ходовой рубке. При этом ЦМК содержит микроконтроллер (МК), модуль позиционирования и магнитный модуль, выполненный с возможностью измерения магнитного поля Земли, причем первый информационный вход ЦМК через МК двунаправленной шиной соединен с первым входом модуля позиционирования, со вторым входом которого соединен выход магнитного модуля, а вход которого соединен со вторым информационным входом ЦМК. Технический результат – повышение точности выдерживания заданных курсов на всем пути следования. 1 ил.

Изобретение относится к области метеорологии и может быть использовано для измерения скорости и направления ветра на высотах 60-120 км. Сущность: на станции слежения принимают навигационные сигналы от микроспутников на конечном этапе снижения и непрерывно фиксируют их навигационные координаты: широту, высоту и долготу. Полученные координаты сравнивают с расчетными. По отклонениям полученных координат от расчетных определяют скорость и направление ветра в горизонтально-вертикальном профиле ионосферы. Технический результат: измерение скорости и направления ветра на высотах 60-120 км. 2 з.п. ф-лы, 1 ил.

Изобретение относится к радиотехнике, точнее к радиолокации, и может быть использовано при разработке систем радиозондирования атмосферы (CP), построенных на основе применения радиолокационного метода и использования сигналов спутниковых навигационных радиоэлектронных систем (СНРС) ГЛОНАСС/GPS для определения пространственных координат аэрологических радиозондов (АРЗ), передачи координатной и телеметрической информации на наземную базовую станцию (БС), а также определения направления и скорости ветра радиолокационным методом без запуска АРЗ. Технический результат состоит в расширении функциональных возможностей CP атмосферы. Для этого применяют РЛС для определения вертикального профиля скорости и направления ветра без применения АРЗ, а также вводят режим непосредственного радиолокационного зондирования метеорологических параметров атмосферы для получения оперативной информации о параметрах вертикального профиля ветра - направлении и скорости без запуска АРЗ в атмосферу, обеспечения работы CP в стандартных радиолокационном, радиопеленгационном и радионавигационном режимах определения текущих координат АРЗ. 3 ил.

Изобретение относится к области метеорологии и может быть использовано для получения информации о параметрах атмосферы на разных высотах. Сущность: комплекс содержит машину аппаратную, выполненную на колесном шасси (1) с кабиной (2) и кузовом-фургоном (3), радиозонды, антенну (8) приема сигналов радиозонда, антенну (24) радиостанции. Аппаратура комплекса и антенна (8) приема сигналов радиозонда выполнены радионавигационными. Антенна (8) приема сигналов радиозонда имеет круговую диаграмму направленности, оснащена механизмом (9) подъема и установлена на задней части крыши кузова-фургона (3). Между кузовом-фургоном (3) и кабиной (2) образован открытый отсек (15) для оборудования, в котором установлены метеостанция (16) на подъемной мачте, электроагрегат (17) и баллоны (22) с газом. Технический результат: уменьшение трудоемкости и сокращение времени подготовки комплекса к проведению работ с радиозондом. 3 з.п. ф-лы, 3 ил.

Изобретение относится к радиотехнике и может быть использовано при разработке систем радиозондирования атмосферы (CP) построенных на основе применения радиолокационного метода измерения пространственных координат аэрологического радиозонда (АРЗ) и использования сигналов спутниковых навигационных радиоэлектронных систем (СНРС) ГЛОНАСС/GPS для определения текущих координат аэрологического радиозонда (РЗ), направления и скорости ветра, а также передачи координатной и телеметрической информации на наземную базовую станцию (БС). Достигаемый технической результат изобретения - повышение надежности и точности получения метеорологической информации о вертикальном профиле состояния атмосферы в оперативном радиусе действия CP при возможном воздействии преднамеренных и непреднамеренных помех. Указанный технический результат достигается за счет развития структуры построения CP, а именно за счет обеспечения возможности оперативной работы CP в двух разрешенных диапазонах частот и различных режимах определения текущих координат АРЗ: радиолокационном, радиопеленгационном, радионавигационном. 1 ил.

Изобретение относится к радиотехнике, в частности к радиолокации с активным ответом, и может быть использовано в аэрологических радиозондах систем радиозондирования атмосферы для измерения наклонной дальности до радиозонда импульсным методом, пеленгации по угловым координатам и передачи телеметрической информации на одной несущей частоте. Задача, на решение которой направлено заявляемое изобретение, состоит в увеличении чувствительности устройства в режиме приема запросного радиоимпульса, уменьшении флуктуаций временного положения, глубины и продолжительности ответной паузы, сужении спектра излучения приемопередатчика, повышении его помехозащищенности от воздействия активных помех и упрощении настойки устройства. Технический результат достигается тем, что в предлагаемом устройстве, содержащем СВЧ генератор и связанную с ним приемопередающую антенну, СВЧ генератор выполнен с возможностью электрического управления частотой и к нему подключены последовательно соединенные блок выделения автодинного сигнала, усилитель, обнаружитель запросного сигнала и формирователь импульса ответной паузы. При этом выход формирователя импульсов ответной паузы связан с СВЧ генератором. Обнаружитель запросного сигнала состоит из последовательно соединенных полосового фильтра, линейного детектора, компаратора и временного селектора запросных импульсов. 3 з.п. ф-лы, 1 ил.

Изобретение относится к радиотехнике и может быть использовано при разработке малогабаритных носимых комплексов радиозондирования атмосферы. Технической результат состоит в снижении массогабаритных характеристик аппаратуры радиозондирования при сохранении точности получения вертикального профиля метеорологической информации. Для этого малогабаритная навигационная система радиозондирования атмосферы содержит навигационный аэрологический радиозонд - АРЗ- и созвездия спутников радионавигационных систем GPS/ГЛОНАСС, ГАЛЛИЛЕО, при этом система выполнена в радионавигационном режиме, для чего наземная часть системы содержит: первую и вторую приемные антенны, первый и второй радиоприемник, блок обработки координатной телеинформации - КТИ-АРЗ-, пульт управления и отображения этой телеинформации - П-КТИ, интерфейс ввода/вывода информации, блок выдачи полетного задания АРЗ и привод автоматического слежения со следующими соединениями: радиосигналы созвездий всех спутниковых радионавигационных систем. 1 ил.

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат аэрологического радиозонда (АРЗ), направления и скорости ветра, повышении помехоустойчивости и электромагнитной совместимости. Указанный результат достигается за счет того, что навигационная система зондирования атмосферы содержит N передатчиков сигналов ГНСС, АРЗ, антенную систему приема сигналов ГНСС, антенную систему приема сигнала АРЗ с круговой диаграммой направленности, антенную систему приема сигнала АРЗ с узкой диаграммой направленности, снабженную угломестно-азимутальным приводом, антенный переключатель, базовую станцию с блоком отображения и ввода-вывода информации, сверхвысокочастотный (СВЧ) коммутатор, при этом антенная система приема сигналов ГНСС подключена к базовой станции, антенная система приема сигналов АРЗ с круговой диаграммой содержит антенну ближнего канала и антенну дальнего канала, выходы которых через переключатель и СВЧ-коммутатор подключены к базовой станции, соответственно выход базовой станции подключен к угломестно-азимутальному приводу антенной системы с узкой диаграммой направленности, выход которой через СВЧ-коммутатор подключен к базовой станции. Антенная система приема сигналов ГНСС обеспечивает точное определение координат базовой станции, антенная система приема сигналов АРЗ с круговой диаграммой направленности обеспечивает прием сигнала АРЗ при его вертикальном подъеме и удалениях до 250 км, антенная система с узкой диаграммой направленности обеспечивает прием сигнала АРЗ при удалениях более 250 км и сложной помеховой обстановке. 1 ил.

Изобретение относится к радиоэлектронике и может быть использовано в авиации для контроля прохождения маршрута полета самолетом без использования наземных средств контроля. Технический результат состоит в повышении качества контроля и управления воздушным движением. Для этого непрерывно определяют собственные координаты полета воздушного судна, передают их на спутники связи с дальнейшей передачей этими спутниками на единый диспетчерским пункт. Система контроля воздушного движения содержит созвездия датчиков навигационных спутниковых радиосигналов GPS/ГЛОНАС/Галилео и их приемник, введены: созвездие спутников связи, микропроцессор (МП), передатчик, блок ввода и блок вывода, а также 1-N наземных базовых станций, причем: выход приемника навигационных радиосигналов первой шиной USB соединен с первым входом микропроцессора, а блок ввода соединен с вторым его входом; первый выход МП через передатчик и вторую антенну соединен вторым радиоканалом с созвездием спутников связи, выход которых третьим радиоканалом соединен с 1-N наземными базовыми станциями, а второй вход МП через блок вывода второй шиной USB соединен с пультом информации экипажа. 1 ил.
Изобретение относится к космической технике и может быть использовано для передачи телеметрической информации со спускаемого космического аппарата (СКА). Устройство передачи телеинформации со СКА содержит камеру телезонда с теплозащитной оболочкой, телезонд, крышку камеры, два вышибных заряда. Число телезондов в капсуле определяется временными промежутками, через которые требуется передавать телеинформацию. Изобретение позволяет передавать текущую телеинформацию важнейших параметров с борта СКА в ЦУП или в поисково-спасательные службы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к радиотехнике и может быть использовано при модернизации и разработке новых систем радиозондирования (CP) с повышенной точностью, надежностью и ускоренной передачей телеметрической информации с борта аэрологического радиозонда (АРЗ) на наземную радиолокационную станцию (РЛС). Достигаемый технический результат - повышение надежности и достоверности передаваемой телеметрической информации о метеорологических параметрах атмосферы ΜΠΑ. Для достижения указанного результата предлагается унифицированная система радиозондирования атмосферы, позволяющая работать в трех режимах: радиолокационном, радиопеленгационном, радионавигационном. 3 ил.

Изобретение относится к радиотехнике и может быть использовано при модернизации и разработке новых систем радиозондирования (CP) с повышенной точностью, надежностью и ускоренной передачей телеметрической информации с борта аэрологического радиозонда (АРЗ) на наземную радиолокационную станцию (РЛС). Достигаемый технический результат - повышение достоверности и надежности передаваемой метеоинформации. Указанный результат достигается тем, что радиолокационная система зондирования атмосферы содержит аэрологический радиозонд - АРЗ и наземную базовую станцию - РЛС, при этом в состав АРЗ введены блок контроля параметров рабочих режимов и блок контроля параметров источника питания со следующими соединениями: выходы этих блоков соединены с блоком сопряжения микроконтроллера АРЗ, выход которого через выходные блоки АРЗ соединен с антенной АРЗ, которая через радиоканал соединена с антенной РЛС. 1 ил.

Изобретение предназначено для систем радиозондирования с ускоренной передачей телеметрической информации с борта аэрологического радиозонда (АРЗ) на наземную радиолокационную станцию (РЛС). Достигаемый технический результат - повышение надежности приема телеметрической информации, передаваемой с борта АРЗ на наземную РЛС, повышение точности измерения информации, передаваемой с борта АРЗ на наземную РЛС, получение дополнительных характеристик измеряемых параметров атмосферы, например турбулентности атмосферы, снижение времени передачи информации. Указанный результат достигается за счет того, что система содержит АРЗ и базовую станцию - РЛС, при этом в состав АРЗ введен блок предполетной подготовки АРЗ, состоящий из пульта предполетной подготовки и блока контроля и записи параметров АРЗ, причем пульт предполетной подготовки АРЗ через блок контроля и записи параметров АРЗ соединен двунаправленной шиной Ml со входами микроконтроллера АРЗ; в состав РЛС введены блок декодирования пакетной телеинформации и блок вторичной обработки телеинформации и выдачи сигналов метеопараметров атмосферы, причем однонаправленная шина М2 приемопередающего устройства РЛС соединена через блок декодирования пакетной телеинформации с блоком вторичной обработки телеинформации и выдачи метеопараметров атмосферы, выход которого является выходом системы. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике и электрохимии и касается катодного материала водоактивируемых резервных батарей, которые преимущественно предназначены для энергопитания метеорологических радиозондов, шаров-пилотов, морских сигнальных устройств, спасательных средств, буев, аварийных радиомаяков. Предлагается катодный материал для резервной батареи, активируемой водой, на основе оксидной ванадиевой бронзы щелочного металла, при этом в качестве оксидной ванадиевой бронзы щелочного металла используют бронзу состава Na1.1V2O5·1.2H2O и дополнительно хлорид меди (II) CuCl2·2Н2O и/или сульфат меди CuSO4·6H2O при следующем соотношении компонентов, масс.%: оксидная ванадиевая бронза щелочного металла 83,3÷52,6, сульфат и/или хлорид меди (II) 47,4÷16,7, при этом смешивание компонентов проводят путем мокрого тонкого помола в присутствии воды и/или спирта, например этанола. Технический результат заключается в разработке состава катодного материала, характеризующегося высоким и стабильным разрядным напряжением, низкой скоростью разряда и высокой температурой саморазогрева. 2 ил., 5 пр.

Изобретение относится к области радиотехники, а именно к радиозондированию, и может быть использовано при разработке систем радиозондирования атмосферы (СР) на основе использования сигналов спутниковых навигационных радиоэлектронных систем (СНРС) GPS/ГЛОНАСС

Изобретение относится к радиотехнике и может быть использовано в аэрологических радиозондах (АРЗ) систем радиозондирования атмосферы для измерения дальности до радиозонда импульсным методом, пеленгации по угловым координатам и передачи телеметрической информации на одной несущей частоте, также может быть использовано для построения высокостабильных и экономичных сверхрегенеративных приемо-передающих устройств систем радиолокации и связи

Изобретение относится к радиотехнике, а именно к радиолокации, и может быть использовано для определения наклонной дальности радиотехническими методами, например, до аэрологических радиозондов (АРЗ), также может быть использовано для измерения угловых координат АРЗ и сопровождения АРЗ по дальности

Изобретение относится к радиотехнике и может быть использовано в аэрологических радиозондах (АРЗ) систем радиозондирования атмосферы для измерения дальности до (АРЗ) импульсным методом, пеленгации по угловым координатам и передачи телеметрической информации на одной несущей частоте, также может быть использована для построения высокостабильных и экономичных приемопередающих устройств систем связи

Изобретение относится к радиотехнике, в частности к радиолокации, и может быть использовано в аэрологических радиозондах и метеорологических ракетах для измерения дальности

Изобретение относится к механическим передачам и может быть использовано в электроприводах, например в приводах антенных систем РЛС для точного управления антенными колонками

Изобретение относится к радиотехнике, в частности к радиолокации, и может быть использовано для обзора передней полусферы, измерения высоты полета легких маневренных самолетов и вертолетов, имеющих минимум приборного оборудования, а также для предупреждения столкновений с другими летательными аппаратами, высоковольтными линиями электропередач, вышками, трубами и т.д

Изобретение относится к технике приборостроения, а именно к технике конструирования СВЧ-преобразователей

 


Наверх