Патенты автора Беляев Борис Васильевич (RU)

Изобретение относится к области неразрушающих методов контроля подшипников и подшипниковых узлов и может быть использовано для контроля правильности сборки подшипникового узла. Способ заключается в регистрации собственных частот элементов подшипников акустико-эмиссионной системой, измерения осуществляют при отсутствии вращения подшипника. При этом источником акустико-эмиссионных сигналов будут являться колебания шариков подшипника, которые возбуждаются пропусканием ультразвуковой волны через контролируемый подшипник. Источник ультразвуковых колебаний размещают на валу ротора со стороны внутреннего кольца подшипника, датчики акустико-эмиссионной системы размещают со стороны внешнего кольца подшипника на маховике ротора. Качество сборки подшипникового узла оценивают по критериям поджатия подшипника и его перекоса, величину поджатия определяют по значениям частоты собственных колебаний шариков, величину перекоса определяют по разности данных частот. Технический результат заключается в возможности определения правильности сборки подшипникового узла по критериям допустимых значений перекосов при установке подшипника и усилия его поджатия. 3 ил.

Изобретение относится к космической технике и может использоваться как транспортное космическое средство для доставки полезной нагрузки с поверхности Земли на низкие круговые орбиты. Многоразовая двухступенчатая ракета космического назначения состоит из возвращаемого ракетного блока первой ступени и частично возвращаемой второй ступени. Вторая ступень содержит полезную нагрузку, одноразовые сбрасываемые топливные баки второй ступени, расположенные сверху полезной нагрузки, и многоразовую спускаемую капсулу с многоразовым маршевым жидкостным двигателем второй ступени. Достигается снижение массы конструкции и теплозащиты второй возвращаемой ступени и отсутствие головного обтекателя. 2 ил.

Изобретение относится к области испытаний ракетно-космической техники, а более конкретно к контролю герметичности корпуса космического аппарата. Способ контроля герметичности корпуса космического аппарата, при котором создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды. В качестве чувствительной среды применяют индикаторные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи. Измерение скоростей этих частиц производят PIV-методом (Particle Image Velocimetry). Местоположение течи находят по минимальному значению поперечной по отношению к оси симметрии течи составляющей скорости индикаторной частицы. Величину течи определяют автоматически расчетным методом по перепаду поперечной составляющей скорости и асимптотическому значению продольной составляющей скорости индикаторной частицы. Достигается сокращение времени поиска течи. 1 ил.

Изобретение относится к способам исследования устройств на герметичность и может быть использовано для контроля герметичности корпуса космического аппарата в вакууме. Сущность: создают давление воздуха внутри корпуса космического аппарата. Запускают с заданным шагом вдоль поверхности корпуса космического аппарата индикаторные дискретные частицы, меняющие свои траектории под воздействием газового потока из течи. Измеряют траектории и скорости индикаторных дискретных частиц PIV-методом (Particle Image Velocimetry). Местоположение течи находят по точкам пересечения асимптот траекторий индикаторных дискретных частиц и плоскости, проведенной через начальные координаты запуска индикаторных дискретных частиц параллельно исследуемой поверхности космического аппарата. Технический результат: повышение оперативности поиска места течи. 1 ил.

Изобретение относится к средствам защиты элементов конструкции космического аппарата (КА) от воздействия соударяющихся с ним тел (частиц и фрагментов). Предлагаемый экран состоит из двух частей: внешнего фигурного экрана, выполненного с гладкой винтовой поверхностью, и упругой подложки, выполненной из одного или нескольких слоев. При частично упругом столкновении с фигурным экраном некоторая доля энергии тела передаётся экрану (поглощается упругой подложкой), и тело, потеряв свою начальную скорость, отбрасывается в космическое пространство с изменением траектории его движения. Выбором профиля фигурного экрана можно смягчить ударное воздействие на КА, а также в некоторой степени упорядочить разлёт частиц (осколков) после ударов. Техническим результатом является многократная возможность снизить или исключить разрушительное действие на КА соударяющихся с ним тел, без вмешательства человека. 2 ил.

Изобретение относится к области противодействия средствам поражения, в частности к системам защиты групповых объектов от воздействия средств поражения в виде низколетящих летательных аппаратов. Способ защиты группы объектов от воздействия средств поражения заградительным дисперсным образованием, включающий маскировку особо важных элементов группы объектов путем постановки аэрозольной защитной завесы. У группы объектов создают аэрозольную защитную завесу в виде фронта воздушных дисперсных образований, создаваемых выбросными генераторами с перекрытием диаметров оседающих дисперсных образований и препятствующих успешному пролету низколетящего летательного аппарата к цели. Достигается обеспечение защиты группового объекта от средств поражения в виде низколетящего летательного аппарата. 1 ил.

Изобретение относится к области испытаний ракетно-космической техники и может быть использовано для контроля герметичности корпуса космического аппарата и поиска места течи из его отсеков в условиях орбитального полета или в процессе вакуумных испытаний. Сущность: создают давление воздуха внутри корпуса (3) космического аппарата. Судят о наличии локальной негерметичности с использованием чувствительной среды. Для этого из источника (2) с заданным шагом вдоль поверхности корпуса (3) космического аппарата запускают индикаторные дискретные пористые частицы (1), меняющие свои траектории под воздействием газового потока (5) из течи. Измеряют отклонение положения мест ударов индикаторных частиц (1) о чувствительный экран-мишень (4), устанавливаемый под заданным углом для отражения их в ловушку (6). При этом чувствительность измерений регулируют изменением начальных скоростей индикаторных частиц (1) и расстояния между источником (2), запускающим индикаторные частицы (1), и экраном-мишенью (4), а также подбором пористости и истинной плотности индикаторных частиц (1). Технический результат: снижение величины порога чувствительности, повышение точности определения параметров локальной негерметичности в условиях вакуума, сокращение времени поиска места течи, упрощение диагностики. 2 ил.
Изобретение относится к способу территориального размещения мобильных командно-измерительных приёмо-передающих станций (мобильных станций). Для реализации способа определяют текущее положение мобильных станций и космических аппаратов, проводящих дистанционное зондирование заданного района Земли с помощью измерительных средств, прогнозируют траектории и рассчитывают трассы полета космических аппаратов с помощью вычислительных средств, определяют геометрический центр зондируемого района и антиподную точку на поверхности Земли с учетом ее угловой скорости вращения, периодов обращения космических аппаратов и ограничений по размещению мобильных станций, определяют место размещения мобильных станций и в соответствии с ними осуществляют их перемещение. Обеспечивается повышение эффективности сбора информации мобильными станциями одновременно от нескольких космических аппаратов и ее обработка.

Изобретение относится к вероятностным (т.е. без стабилизации структуры) спутниковым системам наблюдения Земли, c охватом её обширных регионов. Спутники системы, находящиеся на круговых орбитах, оснащены сканирующей широкоугольной оптико-электронной системой ИК-диапазона с линейным фотоприемным устройством для обнаружения очага лесного пожара. На спутниках также имеется следящая оптико-электронная ИК-система, перенацеливаемая по целеуказаниям от сканирующей системы. Данная следящая система выполнена широкоугольной (с ИК-объективом типа «рыбий глаз») и с несколькими матричными фотоприемными устройствами для обнаружения и определения параметров очага лесного пожара, а также формирования сигнала предупреждения о нём. Технический результат изобретения направлен на расширение функциональных возможностей системы, снижение массо-габаритных характеристик спутников системы и уменьшения затрат на её создание и эксплуатацию. 3 ил.
Способ идентификации космических объектов искусственного происхождения в космическом пространстве включает в себя использование лазерной локации для сканирования поверхности космических объектов. На поверхность указанных объектов нанесены светоотражающие элементы, спектр отражения которых содержит информацию об объекте. Указанное покрытие выполнено в виде эквидистантно расположенных полос. Облучение космического объекта осуществляют двумя параллельными лазерными лучами. Причем расстояние между лучами меньше ширины полос световозвращающего покрытия и больше расстояния между этими полосами. Технический результат заключается в повышении надёжности идентификации космических объектов искусственного происхождения в космическом пространстве.

Использование: для контроля сварных соединений. Сущность изобретения заключается в том, что устройство для контроля сварных соединений содержит функционально соединенные и объединенные в единую конструкцию пьезоэлектрический преобразователь, установленный на контролируемом сварном соединении, аналитический блок акустико-эмиссионной системы, приспособление для точечного нагрева, при этом оно снабжено последовательно соединенными координатно-передвижным устройством, на котором установлено приспособление для точечного нагрева, и блоком управления, который соединен с приспособлением для точечного нагрева и подключен к выходу аналитического блока акустико-эмиссионной системы. Технический результат: обеспечение возможности оценки размеров зоны термического влияния сварного соединения и контроль структурного состояния металлического материала в данной зоне сварного соединения. 1 ил.

Изобретение относится к области ракетно-космической техники. Способ управления движением ракеты космического назначения при выведении космических объектов на орбиту заключается в том, что в заданные моменты времени определяют текущее положение ракеты космического назначения с помощью навигационной системы, прогнозируют с помощью бортовой цифровой вычислительной машины оставшуюся траекторию полета с прежним управлением и определяют выполнимость условия обеспечения с заданной точностью терминальных условий полета и, при невыполнимости этих условий, выбирают новое управление и реализуют его с помощью исполнительных органов до следующего, заданного момента времени полета, кроме того, выбирают новые терминальные условия, находящиеся в области достижимости ракеты космического назначения, и новое управление движением ракеты космического назначения и реализуют его с помощью исполнительных органов до следующего, заданного момента времени полета. Техническим результатом изобретения является повышение эффективности функционирования выводимого космического объекта. 1 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для контроля герметичности корпуса космического аппарата (КА) и поиска места течи из его отсеков в условиях орбитального полета или в процессе вакуумных испытаний. Сущность: создают давление воздуха внутри корпуса КА. Обдувают части корпуса КА пробным мелкодисперсным веществом с малым временем полной сублимации в условиях испытаний (например, углекислым газом в твердой форме). Обнаруживают локальную негерметичность корпуса КА посредством регистрации изменения линий тока полностью испаряющегося после испытаний пробного мелкодисперсного вещества под воздействием выходящего из корпуса газа. Технический результат: повышение точности и оперативности поиска места течи. 1 ил.

Изобретение относится к области испытаний ракетно-космической техники и может быть использовано для контроля герметичности корпуса космического аппарата и поиска места течи из отсеков космического аппарата на этапах наземной подготовки и в условиях орбитального полета. Изобретение направлено на упрощение диагностики негерметичности корпуса космического аппарата, повышение ее точности и сокращение времени поиска места течи, что обеспечивается за счет того, что поиск локальной негерметичности корпуса космического аппарата осуществляют устройством, содержащим волокнистый чувствительный элемент, а вывод о наличии локальной негерметичности осуществляют с использованием этого элемента. При осуществлении способа используется устройство, которое представляет собой ограниченный с двух сторон неподвижными решетками полый прозрачный цилиндр, внутри которого находится волокнистый чувствительный элемент с электромагнитными свойствами, при этом фиксация чувствительного элемента обеспечивается электромагнитным подвесом, а датчики установлены на внешней цилиндрической части устройства для регистрации перемещений волокнистого чувствительного элемента вдоль оси устройства под воздействием газового потока из течи. 1 ил.

Изобретение относится к области испытаний ракетно-космической техники, может быть использовано для контроля герметичности корпуса космического аппарата и поиска места течи из отсеков космического аппарата в условиях орбитального полета или в процессе вакуумных испытаний и направлено на упрощение диагностики негерметичности корпуса космического аппарата, повышение ее точности и сокращение времени поиска места течи, что обеспечивается за счет того, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве чувствительной среды применяют индикаторные дискретные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, производят измерение отклонения положения мест ударов этих частиц о чувствительный экран-мишень, устанавливаемый под заданным углом для отражения их в ловушку, и регулируют чувствительность измерений изменением начальных скоростей индикаторных дискретных частиц и расстояния между источником, запускающим индикаторные дискретные частицы, и экраном-мишенью. 2 ил.

Изобретение относится к электротермохимическим ускорителям твердых тел

Изобретение относится к электротермохимическим ускорителям и может быть использовано для исследования высокоскоростных ударных явлений

Изобретение относится к устройствам для нагрева затвердевающих нефтепродуктов в химической и нефтехимической промышленности

Изобретение относится к ракетно-космической технике

Изобретение относится к испытательной технике и может быть использовано при исследовании распространения поверхностных и сквозных трещин в образцах, моделирующих герметичные элементы конструкции систем космических аппаратов

 


Наверх