Патенты автора Липкина Татьяна Валерьевна (RU)

Изобретение относится к области производства электродов для анодных заземлителей из высококремнистого чугуна. Используют чугун, содержащий 9-12% кремния, модификатор добавляют в расплав в количестве 0,01% от общей массы компонентов, в качестве модификатора используют комплексный модификатор на основе многокомпонентных лигатур при следующем содержании компонентов, мас.%: Si - 60-65, Fe - 2-3, Mn - 1-2, Ti - 1-1,5, сплав Fe-Zr - 0,001-0,01, P - 0,05, S - 0,05, С-0,5 расплав перегревают до температуры 1530-1560°С, выпускают в кокиль, выдерживают в течение 2-2,5 минут, открывают его, переносят отливку в термостат с возможностью ее охлаждения до комнатной температуры со скоростью не более 115-120 °С/ч, выполняют обработку, включающую очистку поверхности охлажденной отливки абразивным материалом, нанесение по всей ее поверхности гидратированного фосфорного ангидрида содержащего P2O5 и H2O, мас.%: P2O5 - 90,1, H2O - 9,9, выдерживание 22-26 часов, промывку проточной водой и сушку при температуре 110±5°С, при этом операции нанесения, выдерживания, промывки и сушки повторяют. Изобретение позволяет получить электрод с повышенной устойчивостью к анодному растворению при пониженной хрупкости за счет образования на его поверхности высоколегированного кремнием поверхностного слоя. 2 ил., 1 табл., 1 пр.

Изобретение относится к области мониторинга скорости коррозионного процесса в системах газо-, нефте- и теплоснабжения. Предложен способ мониторинга коррозии трубопровода, заключающийся в выполнении контрольных вырезок, в разделении контрольных вырезок на образцы, идентификации фаз продуктов коррозии, определении количества фаз продуктов коррозии, вычислении доли свободной поверхности, определении активной составляющей импеданса в щелочном электролите и ртути. Затем по полученным фазовому составу продуктов коррозии и их количеству, значению доли свободной поверхности, активной составляющей импеданса рассчитывается показатель коррозии по системе уравнений линейной регрессии, построенных по обучающим выборкам образцов, полученные для определенных параметров коррозионной среды. По распределению значений активной составляющей импеданса по площади анализируемого образца и фазового состава продуктов коррозии определяется вид коррозионных поражений. Технический результат - повышение точности, достоверности и увеличение временного интервала прогнозирования коррозии, а также обеспечение информацией о причинах коррозионных поражений. 9 ил., 3 табл.

Изобретение относится к области мониторинга коррозии и может быть использовано в нефте- и газотранспортных системах, а также теплосетях. Заявленное устройство для измерения коррозии трубопроводов, содержащее крышку, уплотняющую прокладку и пластину-свидетель, при этом в крышке закреплен центральный стержень, расположенный в отверстии на стенке трубопровода, снабженном сальниковым уплотнением, состоящим из прокладки и крышки сальника, в качестве пластины-свидетеля используют часть внутренней поверхности трубопровода, ограниченной внутренним диаметром крышки, на ограниченной части внутренней поверхности трубопровода расположены два патрубка с кранами на расстоянии 0,4-0,5 диаметра крышки от оси центрального стержня, а на расстоянии 0,2-0,3 диаметра крышки расположен серебряный электрод. Технический результат при реализации заявленного решения заключается в повышении точности прогнозирования и анализа коррозии за счет создания условий применения вольтамперометрических методов исследования. 2 ил.

Изобретение относится к магнитному обогащению и может найти применение в порошковой металлургии, рудоперерабатывающей промышленности, очистке промышленных и сточных вод. Устройство включает магнитную систему, установленную наклонно с возможностью изменения угла наклона, газоход. Магнитная система погружена одним концом в бак, в который поступает пульпа, и состоит из активного магнитопровода с электрическими обмотками и пассивного магнитопровода, отделенных друг от друга зазором, в котором расположен газоход для подачи газа-теплоносителя в верхнюю часть магнитной системы, а также перемещения отделенных от пульпы частиц в сборник готового продукта с одновременной их сушкой и восстановлением. Газоход выполнен в виде трубы, снабженной газовым затвором для отработанного газа. Обе части магнитной системы изолированы от пульпы. Питание магнитной системы осуществляется трехфазным током. Расширяются технологические возможности. 4 ил.

Изобретение относится получению нанопорошка меди. Способ получения нанопорошка меди включает растворение медного анода с последующим восстановлением меди из электролита на титановом рифленом виброкатоде, по окончании электролиза полученный медный нанопорошок фильтруют под избыточным давлением инертного газа, промывают дистиллированной водой из расчета 1 л воды на 100 г нанопорошка и сушат при температуре 90-110°С в атмосфере аргона в течение 30-45 минут. В качестве электролита используют состав, содержащий 50-55 г/л хлорида аммония и 10-15 г/л поливинилпирролидона. Электролиз ведут при катодной плотности тока 0,3 А/см3 и анодной плотности тока 0,05 А/см2. Обеспечивается снижение агломерации порошка и повышение его устойчивости к окислению кислородом воздуха. 2 ил., 2 табл., 1 пр.

Изобретение относится к утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора. Для этого проводят растворение активной массы в 1M растворе хлорида аммония. Затем осуществляют электролиз раствора с титановым виброкатодом и графитовым анодом в режиме импульсов тока прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с. Перед электролизом раствор выдерживают в проточном смесителе 10-12 часов. Способ позволяет получать никелевый порошок размерами частиц в диапазоне 4-6 мкм. Техническим результатом является повышение выхода продукта и производительности процесса, получение ультрамикронных электролитических порошков никеля, повышение экономической эффективности и экологической безопасности процесса. 2 ил., 1 пр.

Изобретение относится к электрохимическим способам определения состава металлокомпозиционных систем: сталей, композиционных гальванических и оксидных покрытий и может найти применение в микроэлектронике, машиностроении, цветной металлургии, функциональной гальванотехнике

Изобретение относится к электрохимическим способам определения состава металлических сплавов и может найти применение в ювелирном деле, цветной металлургии, функциональной гальванотехнике

 


Наверх